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ABSTRACT: Renowned for their high porosity and structural diversity, metal−
organic frameworks (MOFs) are a promising class of materials for a wide range of
applications. In recent decades, with the development of large-scale databases, the
MOF community has witnessed innovations brought by data-driven machine
learning methods, which have enabled a deeper understanding of the chemical nature
of MOFs and led to the development of novel structures. Notably, machine learning
is continuously and rapidly advancing as new methodologies, architectures, and data
representations are actively being investigated, and their implementation in materials
discovery is vigorously pursued. Under these circumstances, it is important to closely
monitor recent research trends and identify the technologies that are being
introduced. In this Perspective, we focus on emerging trends of machine learning
within the field of MOFs, the challenges they face, and the future directions of their
development.
KEYWORDS: Machine Learning, Metal−Organic Frameworks, Data-Driven, Regression Models, Generative Models,
Machine Learning Potentials, Data Mining, Autonomous Lab

1. INTRODUCTION
Metal−organic frameworks (MOFs), composed of an ordered
network of metal ions/clusters and organic linkers, have
emerged as an innovative class of crystalline materials in recent
decades. Given their expansive interstitial pores and chemical
versatility, MOFs have gained attention across a wide range of
applications, including gas storage,1−4 catalysis,5−7 sensors,8,9

and drug delivery.10,11 In particular, the high structural diversity
that originates from the countless combination of their building
blocks stands out as the most distinctive characteristic of
MOFs.12,13 Numerous MOFs with unique structures and novel
functionalities have been identified, with the number of
experimentally reported structures exceeding 100,000.14,15

Furthermore, the relatively simple synthetic motif of MOFs
has enabled their generation in silico, offering an unlimited
number of hypothetical structures. Such high structural diversity
and vast search space keep pushing the boundaries of the
applications of MOFs into unexplored territories.13

Paradoxically, the high structural diversity endowsMOFswith
boundless potential, yet at the same time, it presents a challenge
in pinpointing the top performing structures for specific
applications. While there are clear limitations in experimentally
examining a large number of structures, molecular simulations
have provided viable alternative opportunities. Various types of
simulations, including Density Functional Theory (DFT)
calculations, Grand Canonical Monte Carlo (GCMC) simu-
lations, and Molecular Dynamics (MD) simulations, have been

actively used in this context. Though simulations contain a
certain amount of error, they have enabled much faster
evaluation of structures, thereby contributing to the discovery
of novel MOFs. However, the employment of molecular
simulations within the vast material space of MOFs still faces
several limitations. Even though molecular simulations are
relatively fast compared to experimental assessment, evaluating
every structure in the database (so-called high-throughput
screening16,17) is inefficient or often not viable.13 More
importantly, interpreting the large volumes of simulated data
is not straightforward, and as such, there is a demand for effective
methodologies to analyze accumulated data and extract
meaningful information from these data.
Data-driven approaches, represented by machine learning,

have become an irreplaceable tool in materials design that
successfully addresses the aforementioned challenges. By
effectively capturing inherent patterns from large amounts of
data, machine learning models have successfully unveiled
various structure−property relationships, providing a compre-
hensive understanding of materials chemistry.18 Chemical
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insights provided by these methods have been actively utilized in
planning future experiments or in designing new materials with
desired characteristics.19−22 Another recent trend in materials
design is the employment of deep generative models, which
directly generate chemical structures as outputs without their
search space being restricted to training databases.23,24 More-
over, recently emergingmethodologies such as machine learning
potentials (MLPs)25,26 or knowledge transfer between different
domains27 are of great interest, and their incorporation into the
various areas of materials science is now encouraging. In this
Perspective, we offer a comprehensive outline of recent trends
and future directions in machine learning approaches in
materials science with a particular focus on MOFs (see Figure
1).

2. STRUCTURE−PROPERTY RELATIONSHIPS AND
REGRESSION MODELS

2.1. Importance of Structure−Property Relationship
Elucidating how structural features affect the microscopic/
macroscopic properties of materials (so-called structure−
property relationships) is one of the primary tasks in the field
of materials science.37,38 Based on the chemical intuitions
provided by these relationships, researchers establish design
principles, thereby enabling the construction of materials with
the desired characteristics for targeted properties. In addition,
elucidating the structure−property relationship provides in-
sights into the underlying mechanisms of material behaviors,
which can lead to the discovery of new phenomena beyond
existing knowledge.
Before the advent of machine learning techniques, elucidating

structure−property relationships in materials science relied

heavily on experimental characterization and theoretical
modeling. Researchers would often hypothesize relationships
between the atomic or molecular arrangement within a material
and the macroscopic target property and then validate these
hypotheses through extensive experimentation and/or theoreti-
cal analysis. However, the rapid development and widespread
adoption of machine learning methods have provided powerful
tools for analyzing complex relationships within vast amounts of
data. With the help of various algorithms and architectures,
procedures for unveiling structural-property relationships have
become much more systematic and efficient over the last few
decades. Specifically, regression models,39 statistical methods
used to understand and quantify the relationship between one or
more independent variables and a dependent variable, is widely
used in this purpose.
Due to the large materials space and high structural

complexity, structure−property relationships in MOFs are
often complicated and not straightforward. So, elucidating
structure−property relationships of MOFs may be more
challenging compared with other material domains, which is
why utilizing advanced data-driven methodologies becomes
even more important. In this section, we focus on the research of
MOFs with regression models. We first briefly summarize how
the property predictions of MOFs have been conducted so far
and pay special attention to recent attempts to utilize the
transformer architectures for accurate property predictions.
2.2. Conventional Machine Learning Approaches

With regard to the data-driven approaches to predict material
properties, input representation is crucial in determining the
overall performance of the model. Early machine learning
approaches for MOFs focused on representing structures using

Figure 1.Development of machine learning and its application in MOFs. The emergence of notable machine learning architectures or methodologies
and their representative implications in MOFs are presented in chronological order. Elements related to regression models, machine learning
potentials, and generative models are colored in yellow, red, and orange, respectively. The graph neural network, a fundamental class of artificial neural
networks, is colored in both yellow and red, as it is actively used in developing various machine learning models, including regression models and
machine learning potentials. Reprinted with permission from refs 28−36 with the following respective copyrights and licenses. Copyright 2019
Springer Nature (ref 28). Copyright 2024 Springer Nature (ref 29). Copyright 2021 Springer Nature (ref 30). Copyright 2021 Springer Nature (ref
31). licensed under CC BY 4.0 (ref 32). Copyright 2021 Springer Nature (ref 33). Copyright 2022 Springer Nature (ref 34). Copyright 2023 Springer
Nature (ref 35). licensed under CC BY-NC (ref 36).
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their geometric descriptors, which is the simplest way of
converting MOFs into machine interpretable vectors. These
descriptors were typically processed using conventional machine
learning models such as the Support Vector Machines (SVM),40

XGBoost,41 and Random Forest42 (Figure 2a). For example,
Fernandez et al.43 introduced a quantitative structure−property
relationship (QSPR) for CH4 uptake in MOFs by utilizing
geometric descriptors such as void fraction and volumetric
surface area.
Subsequent advances in machine learning models for MOFs

involved considering additional relevant chemical descriptors
that relied on empirical intuition. Fanourgakis et al.44 used
descriptors derived from the potential energy surface for CH4
adsorption predictions (Figure 2b). They calculated the average
Boltzmann factor by considering different probe atoms
interacting with the scaffold and observed a meaningful
improvement in the accuracy. Bucior et al.45 used a histogram
of the energy grid to predict the H2 working capacity of MOFs
(Figure 2c). The energy grid here represents the Lennard-Jones
and Columbic potential energy between the probe gas and the
MOF at each grid points. Using the Least Absolute Shrinkage
and Selection Operator (LASSO) model, they achieved a high
accuracy (R2 score of 0.96) and successfully identified 51
promising MOF candidates with a H2 working capacity greater
than 45 g L−1. These attempts highlight the importance of
selecting appropriate and innovative descriptors to improve the
predictive power of machine learning models in identifying high
performing MOFs. Beyond the works mentioned above, there
are a number of studies that have utilized intrinsic descriptors for
MOF property prediction.46−48

Recently, Graph Neural Networks (GNNs49) have become
one of the most widely used input abstractions in various
materials domains, including inorganic compounds and drug-
like molecules. By representing atoms as nodes and bonds as
edges, graph representations can effectively capture both local
atomic environments and long-range structural information.
These models have also been expanded to periodic (i.e.,
crystalline) materials, with the Crystal Graph Convolutional
Neural Network (CGCNN)50 being the most representative
example, successively addressing the issue regarding periodic
boundary conditions (Figure 2d). As such, Rosen et al.51 built a
QMOF database with more than 20,000 MOF band gap data
calculated at the DFT level, and the CGCNNmodel achieved an
R2 score of 0.876 in predicting band gaps of these structures. In
their subsequent work,52 they achieved even higher performance
with the Material Graph Network (MEGNET),53 another
GNN-based prediction model. Recently, Shoghi et al.54 applied
joint multidomain pretraining approach (JMP) based on
GemNet-OC55 and achieved state-of-the-art performance in
predicting the bandgap of MOFs. These advancements
demonstrate the importance of using GNN models to
significantly improve the predictive accuracy of MOF properties
by effectively capturing complex interactions within their
structures.
2.3. Transformer-Based Regression Models

Lately, property prediction for materials have been advanced
with the implementation of transformer-based machine learning
models.35,56−58 Transformers, primarily investigated in natural
language processing, are known to efficiently process sequential

Figure 2. Various machine learning models in MOFs. (a) Scheme of conventional machine learning using geometric descriptors. (b) Example of an
energy surface used to calculate the average Boltzmann factor, showing different probe atoms interacting with the scaffold. Reprinted with permission
from ref 44. Copyright 2019 American Chemical Society. (c) Model predicting H2 working capacity using a histogram of energy grids. Used with
permission of Royal Society of Chemistry from ref 45. (d) Overview of CGCNN, representing atoms as graph nodes and bonds as graph edges, and
using a convolutional neural network to predict properties. Reprinted figure with permission from ref 50. Copyright 2018 American Physical Society.
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data using the attention mechanism.59 Their large number of
hyperparameters offers significant potential and versatility,
facilitating their wide application in areas such as computer
vision and audio processing.
Based on this high potential, there has been a surge of research

on MOF property prediction using transformer-based models,
capitalizing on their ability to capture complex relationships
within data. With regards to MOFs, the MOFormer, developed
by Cao et al.58 used the contextual representation of MOFs as

inputs, and pretrained the transformer and CGCNN through
self-supervised learning. The pretrained model was fine-tuned
for bandgap and gas adsorption, achieving up to 48% higher
accuracy compared to models such as stoichiometric-12060 and
those using revised autocorrelations descriptors (RACs61),
which are discrete correlations between heuristic atomic
properties. In DeepSorption, Cui et al.57 developed a trans-
former model with atomic coordinates and atom types as inputs
(Figure 3a). This model accounts for global structure and local

Figure 3. Examples of MOF property prediction models using transformers. (a) Overview of the Deepsorption model, which inputs atom coordinates
and element types into a transformer, colearning with expert knowledge on adsorption. Reprinted from ref 57. Copyright 2023 The Authors. (b)
Architecture of the MOFTransformer, which considers two different types of input (local features: atom graph, and global features: energy grid)
simultaneously in the transformer. The model is pretrained on one million virtual MOFs and fine-tuned to predict desired properties. Reprinted with
permission from ref 35. Copyright 2023 Springer Nature.
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spatial atomic interactions using multiscale atomic attention (5,
8, 12, and infinite). In addition, various geometric descriptors
were predicted along with the target value during the training
process, improving the accuracy and time efficiency. This
approach showed a 20−35% reduction in mean absolute error
(MAE) compared to those of CGCNN and other descriptor-
based models in predicting adsorption curves. Wang et al.56

developed Uni-MOF by employing self-supervised learning on a
transformer model using 631,000 MOFs and COFs. They
pretrained the model by predicting the three-dimensional
positions of atoms from noisy data and by predicting the
masked atoms. This model was then fine-tuned with multi-
system properties randomly sampled from various MOF
databases, gas types, temperatures, and pressures, achieving
gas adsorption predictions with stable R2 values ranging from
0.83 to 0.98.
Recent research has focused on improving the prediction

performance of MOFs using multimodal learning, which
considers different types of inputs simultaneously. The
MOFTransformer developed by Kang et al.,35 considered both
global features (e.g., geometric and topological descriptors) and
local features (e.g., specific bonds and chemistry of the building
block) to target various different properties that might being
correlated to one regime or another (Figure 3b). Using 1 million
hypothetical MOFs, they performed three types of pretraining
tasks: topology prediction, void fraction prediction, and metal
cluster/organic linker classification. After fine-tuning, their
model successfully predicted H2 uptake, H2 diffusivity, and
bandgap with higher performance than baseline models.
Multimodal learning is a new branch that has not been explored

in depth for MOFs but has a huge potential for improving the
accuracy and robustness of property predictions.
2.4. Potential Weaknesses and Improvements

Despite the significant advancements in property predictions
brought about by machine learning, several challenges still
remain. Regression models are highly dependent on data, and
given that most property data are obtained through molecular
simulations, the accuracy of the simulationmethods significantly
affects the model’s performance. Currently, several databases of
MOFs, such as CoREMOF62 and QMOF,51 exist, but they still
contain relatively small amounts of data compared to other
domains of materials. Particularly, properties that require DFT
calculations, such as band gaps, demand a substantial amount of
time to obtain, making it difficult to secure a large data set.
Additionally, in the case of MD simulations, including gas
diffusivity or bulk modulus calculations, the reproducibility of
data is often low, leading to inaccuracies in machine learning
predictions. These issues highlight the need for the continued
development of more robust databases and improved simulation
techniques to increase the reliability and accuracy of machine
learning models.
From descriptor-based models to multimodal transformer

models, there have been significant advances in property
prediction for MOFs. Looking ahead, developing innovative
ways to represent MOFs and employing advanced machine
learning techniques will be critical for further improving the
accuracy and efficiency of these methodologies. In addition, to
obtain MOFs with desired properties using regression models,
the trained models are often implemented into high-throughput
screening (HTS) schemes, replacing traditional molecular

Figure 4. Schematic illustration of constructing an MLP. It consists of three steps: construction of a database through ab initio calculations,
representing atomic environments with descriptors, and training a regression model. Used with permission of John Wiley & Sons from ref 70.
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simulations. Frequently, in these endeavors, methods such as
genetic algorithms,13,63,64 active learning,65 and reinforcement
learning66 are used synchronously to explore the MOF space
efficiently. However, there still exists a demand for more
accurate and efficient exploration, highlighting the growing need
for the development of novel search algorithms.

3. MACHINE LEARNING POTENTIALS

3.1. Brief Introduction to MLPs

Atomistic simulations enable the accumulation of various
material property data, but the trade-off between accuracy and
computational cost has long been a challenging aspect of
exploring large chemical spaces. The widely used DFT
calculation is considered to be relatively accurate but slow. For
less computational cost, classical (empirical) interatomic
potentials are used to simulate molecular dynamics, where
Coulomb potential67 and Lennard-Jones potential68 are widely
used examples. A reactive force filed (ReaxFF)69 is another
notable example that can simulate flexible bond breaking and
formation, but nonetheless, these interatomic potentials lack
accuracy and are applicable to narrower chemical domains
compared to quantum level simulations. In this regard, machine
learning potentials (MLPs) overcome the trade-off between
accuracy and computational cost by using predictive machine

learning models trained on ab initio calculation data, allowing
them to learn the potential energy surface at the level of
quantum mechanics. These approaches of using MLPs have
gained significant attention in various materials domains, and
recent works in MLPs are approaching the level of covering a
broad range of chemical space with a single transferable
model.25,70,71

To construct MLP models, one needs to represent atomic
environments and train a model to learn the potential energy
surface from the selected database (Figure 4). There has been
extensive effort to develop descriptors for atomic environments
and to train models capable of learning interatomic
potentials.34,72−83 The history and detailed examples are beyond
the scope of this article, so one can refer to cited papers to
understand the model architecture and concepts. As of the
writing this manuscript, MACE83,84 (specifically MACE-mp-0)
demonstrates the highest accuracy among publicly available
MLPs in theMatbench Discovery benchmark,85 which evaluates
the performance of models in predicting solid-state thermody-
namic stability properties. The MACE architecture combines
atomic cluster expansion73 and message passing neural net-
work,86,87 where MPTrj data set81 has been used for training. As
neural network architectures have advanced quickly and new ab
initio data has been integrated in a compatible manner,88,89 the
field of MLPs in atomistic simulations is growing rapidly.

Figure 5. Examples of using MLPs in the context of MOFs. (a) Proposed protocols for conducting molecular simulations using MLP with H2
molecules and Al-soc-MOF-1d. The trained MLP was used to obtain the H2 adsorption isotherm and diffusion coefficient. The obtained properties
were compared with the experimental values. Reproduced from ref 92 with permission from the Royal Society of Chemistry. (b) The change in volume
over time of two different supercell of MIL-53 (Al). The larger simulation cell with more than 10k atoms were simulated using MLP. While there was
no large pore (lp) phase for the small supercell, the lp phase was observed for the large supercell, and as such, the transition pressure matched well with
the experimental results. Reprinted from ref 96 with permission from Copyright 2023 Springer Nature.
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Utilization of MLPs in MOFs is also highly encouraging, as the
large and complex chemical environment causes difficulties in
their atomistic simulations. In the following sections, examples
of MLP implementation for modeling MOFs are demonstrated
alongside potential future directions.
3.2. Usage of MLPs in MOFs: Ab Initio Level Energy
Calculation

In many MOF systems, generic force field parameters cannot
accurately model various adsorption properties, because these
force fields were not specifically developed for MOFs, which
often contain unique chemical moieties such as open metal sites
(OMS). In this regard, MLPs can be an optimal method to
calculate adsorption energies within a reasonable time scale and
thereby significantly enhance accuracy compared to force field-
based calculations.
In particular, Zheng et al.90 utilized MLP to simulate the

potential energy surface along with the insertion of a single CO2
molecule into Mg-MOF-74, which contains a 5-coordinated
Mg−O cluster that induces OMS within the framework. Since
quadrupole moments play a role in CO2, the oxygen part of CO2
shows strong interaction with the positively charged OMS.
Although classical force fields can provide the plausible free
energy profile, they still significantly underestimate the
interaction between the OMS and the CO2molecules. However,
the trained MLP in this work accurately accounted for the
chemisorption between the OMS and the CO2 molecule by
predicting the intermolecular interaction to be much stronger
than that predicted by the classic force field.
Beyond the case of a single molecule, Goeminne et al. trained

the MLP with snapshots containing different numbers of guest
molecules (CO2 in this case) from DFT calculations.91 From
this procedure, they efficiently considered the host−guest
interactions within the entire framework and captured the
subtle changes in host−guest or guest−guest interactions due to
the confinement effects of the MOFs. Following the underlying
assumption of the widely used conventional GCMC, they
collected data with a static framework and rigid adsorbates and
extracted interaction energies and forces from single point
calculations. They applied this scheme to ZIF-8 and confirmed
that MLP can reproduce the experimental adsorption isotherm.
However, one limitation encountered in their study was the
limited transferability of the MLP. The MLP trained with ZIF-8
cannot be directly used in other polymorphic MOFs that share
the same components but exhibit different topologies. From this
point of view, the distinct characteristics of MOFs can be a
hurdle for the transferability of MLPs in MOFs. Similarly, Liu et
al. attempted to run GCMC simulations to accurately reproduce
the experimental H2 adsorption isotherm of Al-soc-MOF-1d,
with the aid of MLP (Figure 5a).92 Given that the MLP was
trained using configurations collected from ab initio molecular
dynamics (AIMD), one can anticipate that the guest-induced
flexibility of the frameworks, which is often overlooked, may be
implicitly considered during the adsorption simulation.
Finally, Yu et al. tried to ascertain the stable position of Pt

clusters in MOF-808 using MLP.93 They trained an MLP with a
few representative fragments capable of representing the entire
system and demonstrated that the trainedMLP could accurately
predict the optimal position of the Pt clusters and their
corresponding energies, closely aligning with the DFT
calculation results. Furthermore, given the relatively low
computational cost compared to conventional DFT calcula-
tions, they were able to readily explore migration pathways,

which are typically computationally intensive due to the
numerous transition states between the initial and final states.
3.3. Usage of MLPs in MOFs: Ab Initio Level Molecular
Dynamics

Given that MLP outputs both interaction energy and atomic
forces, it theoretically allows one to simulate MD simulations at
the DFT accuracy level. Furthermore, unlike conventional
generic force fields widely used for MOFs, MLPs can simulate
bond breaking and formation, allowing for the simulation of
unpredictable intrinsic structural flexibilities regarding various
external stimuli such as temperature, pressure, and gas
adsorption. Thus, MLPs may help simulate phenomena
observed in experiments that cannot be reproduced using
conventional DFT calculations or force field based calculations.
Additionally, they may provide new insights into experimen-
talists by revealing previously undiscovered behavior related to
MOFs.
In the early stages of MLP development in MOFs, structures

were decomposed into molecular fragments, and the MLP was
trained based on these units.94,95 These trained models were
able to accurately predict the equilibrium lattice constant and be
applied for more complex applications such as mechanistic and
thermal behaviors.95 However, this method fundamentally has a
limitation: the periodicity cannot be explicitly considered at the
training level. To address this issue, several follow-up studies
used the entire unit cell as a training set for MLPs. Vandenhaute
et al.96 trained the MLP model named NequIP with an
incremental learning approach that used the concept of
metadynamics to efficiently sample configurations to train the
model. In this work, UiO-66 (Zr) and MIL-53 (Al) were
selected as representative rigid and flexible MOFs, respectively.
With the merits of MLPs, which can simulate large cells with
high accuracy, they expanded the simulation cell to 9 × 2 × 9 for
MIL-53 (Al) (comprising more than 10 000 atoms) and
successfully reproduced the experimental transition pressure
data (Figure 5b). In this work, they investigated the framework’s
flexibility in response to external pressure, but the guest-induced
flexibility has not yet been studied using MLP. Therefore, it
would be a great suggestion for a future research topic. Similarly,
Fan et al.97 rationally designed two-dimensional MOFs that
potentially exhibit phase transitions due to wine-rack motif and
observed the mechanistic behaviors using anMLPmodel. While
previous studies have matched simulation results to exper-
imental ones, recent study from the same group utilizedMLPs to
unravel phenomena not observed in experiments at the
molecular level.98 They investigated the dynamics of CALF-20
and observed negative area compressibility (NAC) and negative
thermal expansion (NTE), which are counterintuitive phenom-
ena not observed experimentally with CALF-20.
In addition to the deformation within the crystalline

frameworks, Castel et al.26 used MLP to investigate the
amorphous phases of MOFs at the molecular level. They
selected ZIF-4 as the benchmark MOF, which has been shown
to possess multiple amorphous phases in experiments. The
amorphous phases were obtained using melt-quenching
methods, which can intuitively be embodied using molecular
dynamics. Since bonds should remain intact in conventional
generic force fields, the breaking of the crystallinity of MOFs,
which involves reversible bond breaking and formation, cannot
be simulated. However, as previously mentioned, bond breaking
and formation can be simulated using MLP similar to DFT
calculations, enabling investigation of the loss of crystallinity.
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3.4. Potential Applications of MLPs in MOFs

Publicly available quantum calculation data to train MLPs are
limited considering the vast chemical space of MOFs that
originates from their high tunability and modularity. Hence,
employing MLPs in MOFs is slower than in other materials,
which makes it worthwhile to explore MLP applications in
different domains and adapt them to the MOF.
Most MOF simulations involving quantum calculations are

restricted to considering only solid state frameworks due to
computational costs. However, this approach can lead to
discrepancies compared to experiments, as the fixed framework
assumption may not fully capture real-world behaviors. On the
other hand, MLPs have been proven to accurately simulate the
physicochemical properties of various liquid systems and
heterogeneous solid−liquid systems.99−102 Given that MOFs
often interact with liquid systems such as water or other solvents,
the simulation of heterogeneous systems including MOFs using
MLPs represents an important area for future research. Likewise,
MLPs can offer an attractive solution for research on MOFs in
heterogeneous catalysis. In other materials, MLPs have been
used to predict reaction pathways, free energy diagrams of
heterogeneous catalysts, and the chemical environment of
surfaces.103−108 Given the growing interest in using MOFs as
potential heterogeneous catalysts, deployment of MLPs can
accelerate this research field.
In addition, MLPs increase the accessible scale of simulation

systems. Through MLPs, amorphous phase of MOFs or MOFs
with defects can be simulated, which have been challenging with
conventional methods.70,109−112 Also, MLPs hold promise for
simulating the bottom-up generation process of MOFs, which is
anticipated to provide a deeper understanding of MOFs and
their synthetic procedure.
Despite potential usages of MLPs in MOFs, the main

bottleneck remains the lack of organized quantum calculation
data. The QMOF database51 (containing quantum-level
calculated chemical properties of 20,000+MOFs) and a recently
published OpenDAC database113 (containing 40 M DFT
calculations, targeting direct air capture using MOFs), provide
enormous help and support to deploy MLPs in MOFs.
Nonetheless, a larger amount of high-quality data is required
to accelerate the development of MLPs in MOFs. The increased
availability of quantum calculation data will drive the develop-
ment ofMLPs targetingMOFs, thereby enhancing the capability
of atomistic simulations at the mesoscale, which is crucial for
MOFs.

4. GENERATIVE MODELS FOR MOF DESIGN

4.1. Generative Models and Their Applications in Materials
Design

In recent years, the emergence of deep generative models has
brought about huge success in the field of computer science.
Unlike conventional discriminative models, by learning the
intrinsic probability distributions of the data, generative models
are capable of generating new data points which resemble a
given data set. Various generative model architectures, including
Variational Autoencoders (VAEs),114 Generative Adversarial
Networks (GANs),115 and diffusion models,116 have been
developed and have achieved significant advancements in
various domains. Notably, computer vision117,118 and natural
language processing119,120 are areas where the success of
generative models is particularly prominent. Their exceptional
performance in generating realistic images has led to the

development of image generators such as DALL-E121,122 and
Midjourney,123 while large language models like ChatGPT124

have become irreplaceable tools in various applications.
The huge success of generative models witnessed in other

domains has facilitated their implementation in the field of
materials science. Notably, the generation process of these
models often initiate with the sampling of a random noise or a
random vector within the latent space.114,116 Therefore, they
offer theoretically unlimited search space without being
restricted to a given data set, which is a fascinating characteristic
in generating novel chemical structures. In addition, generation
process of these models can be intentionally biased for the
acquirement of desired samples, which is called conditional
generation.125,126 Through such processes, materials with user-
desired properties can be selectively generated, achieving the
inverse design of materials.
Generative models have been widely investigated for various

domains, including drug-like molecules,127,128 proteins,129,130

and small crystals.131 However, as discussed in previous sections,
the implementation of new technologies into porous materials is
often relatively slow. This is due to their structural complexity,
which often comprises a relatively large number of atoms
spanning a wider range of atom types.13,132 In addition, the
periodic nature of porous materials is another main bottleneck
when dealing with crystalline structures, which slows the
introduction of cutting-edge methodologies.
Nonetheless, the industrial importance of porous materials

has motivated researchers to continually explore them, and few
pioneering studies have reported the implementation of
generative models for these materials. Kim et al.133 have applied
GAN architecture for the generation of zeolites, which is a class
of porous materials that have received significant industrial
attention. A GAN is a representative generative model
composed of two components, a generator and a discriminator,
that compete with each other to produce realistic data and
evaluate its authenticity. They represented the zeolites as three
channels of grids containing information on the location of
silicon atoms, oxygen atoms, and energy of probe gas molecules,
respectively. They successfully generated structures unseen in
training sets and validated the capability of generating structures
with user-desired properties. A follow-up study by Park et al.134

replaced the GAN with the diffusion model, while utilizing the
same representations as the previous work. The diffusion model
is one of the most recent generative model architectures, which
iteratively refine noisy data to generate high-quality samples by
simulating a diffusion process. Accordingly, Park et al. observed
a 2,000-fold improvement in the generation performance,
validating that diffusion models exhibit exceptional performance
in materials generation. Conditional generation was aimed at
void fraction, heat of adsorption, and Henry coefficient, and has
successfully generated structures with the desired chemical
properties.
4.2. Generative Models for MOFs

Compared with zeolites, MOFs exhibit much greater structural
and chemical complexity. There are more than 100 types of
atoms known to comprise MOFs,135 and the average number of
atoms in the unit cell is much larger. Consequently, the number
of experimentally synthesized MOFs exceeds 100,000,14 while
there are only ∼200 experimentally validated zeolite struc-
tures.136 Therefore, implementing MOFs into generative
models is more challenging and may require alternative input
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representations rather than representing them as a whole graph
or coordinating each and every atom within the 3D coordinate.
Yao et al.33 have utilized VAE for the generation of MOFs,

named SMVAE, marking the first attempt at implementing
generative models for MOFs (Figure 6a). Empowered by the
modular nature of MOFs, they represented MOFs as a
combination of topology and building blocks (i.e., metal
nodes, organic nodes, and edges), which is a simple but effective
way of representing complicated MOF structures. SMVAE is

composed of two parts: the edge encoder/decoder and reticular
framework encoder/decoder. The encoder componentsmap the
given MOF structures into latent vectors with reduced
dimensions, while the decoders map them back to the original
MOF structures. The entire architecture is trained jointly, and
during the generation phase, the trained decoders enable the
generation of new structures from randomly sampled latent
vectors. SMVAE exhibited 61.5% of structure validity, measured
by the prior validity of the sampled vectors. (Among randomly

Figure 6.Generative models for MOFs. (a) SMVAE Architecture. A variational autoencoder was trained for the generation of the MOFs. MOFs were
represented as a combination of their building components (topology, metal node, organic node, and edge). Reprinted from ref 33 with permission
from Copyright 2021 Springer Nature. (b) MOFFUSION Architecture. A diffusion model was trained for MOF generation using a signed distance
function (SDF) as an input representation. Reprinted from ref 36 licensed under CC BY-NC.
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sampled latent vectors, 61.5% resulted in validMOF structures.)
By training an additional property prediction model that
predicts chemical properties of MOFs from latent vectors,
they were able to generate structures with desired properties.
Focusing on CO2 adsorption, they demonstrated that the model
is capable of controlling the CO2 adsorption capacity and
selectivity.
Among various generative model architectures, diffusion

models have gained huge attention with their remarkable
performance in generating realistic samples and versatile
conditioning capabilities.116,118 Application of diffusion models
into MOF generation has recently been attempted with several
different approaches to deal with the structural complexity of
MOFs. Park et al.137 concentrated in generating MOF linkers
(rather than the entire structure) and plugged the generated
linkers into pcu topology with fixed types of metal nodes (Cu
paddlewheel, Zn paddlewheel, and Zn tetramer). They utilized
DiffLinker,128 which is a predeveloped diffusion model, for the
generation of linker molecules based on chemical fragments.
They defined the structures whose CO2 capacity is higher than 2
mmol/g at 0.1 bar as high-performing MOFs, and obtained 540
unique molecular fragments extracted from these high-perform-
ing MOFs in pre-existing databases. Using these fragments, they
have obtained 12,305 linkers and based on them, obtained
120,000MOF structures. They screened their MOF space using
a separate predictive model and validated six MOFs with a CO2
capacity higher than 2 mmol/g.
Fu et al.138 utilized an elegant way of dealing the structural

complexity of MOFs by incorporating coarse-grained repre-
sentation of building blocks. With raising the claim that a
template-based approach can restrict the search space and
exclude viable materials, they generated MOFs by directly
positioning coarse grained building blocks within the 3D
coordinate. An additional MOF assembly process was required
as a postprocessing step, for the alignment of the orientations of
building blocks and determination of the connectivity between
them. They trained an additional regression model which
predicts CO2 working capacity from the latent vectors, and
utilized this for the selective generation of structure with high
CO2 capacities.
Most recently, Park et al.36 have developed a diffusion model

for MOF generation, with a particular focus on handling diverse
modalities of data during the conditional generation (Figure
6b). They pointed out that the target properties considered in
inverse design research for porous materials have been restricted
so far in terms of flexibility and claimed the necessity of handling
diverse data modalities during conditional generation. Notably,
they used signed distance functions (SDFs) as an input
representation to delicately describe the pore structures of
MOFs, and their model achieved a high structural validity of
81.7%. Furthermore, they showcased the capability of
conditioning on diverse modalities of data, including numeric,
categorical, text data, and even their combinations.
4.3. Strengths and Weaknesses

Materials generation using generative models has several
strengths over other material design methodologies. In general,
the training process of generative models follows unsupervised
learning, where a model is trained on data without explicit labels
or annotations. Generative models can learn from unlabeled
data by capturing the underlying distribution; therefore, the
generative models can be beneficial in cases where labeled data
are scarce or expensive to obtain. In addition, generative models

can explore vast (often theoretically unlimited) search space,
which is an attractive feature when it comes to generating diverse
and novel chemcial structures. Lastly, as introduced in previous
research, materials with target properties can be designed
through conditional generation.
With more diverse and versatile conditioning methodologies

being investigated, one interesting research direction is the
incorporation of natural language processing as one of the
conditions. Recently, large language models have been deployed
to construct user-friendly platform for materials design.139

Notably for MOFs, Kang et al. have developed a module named
ChatMOF140 which enables users to communicate with the
module using their natural language. Likewise, handling text data
during the conditional generation is a direction where
generation models are pursing.141 This allows users to express
their desired features in natural language, significantly lowering
the barrier to using these models, especially for those without
domain knowledge.
However, there still exist several fundamental challenges when

it comes to generative models for materials design. As previously
mentioned, generative models work by learning the probability
distributions of the given training data, and this fundamentally
makes generative models highly dependent on their training
data, where a bias in training data set would lead to the same bias
in generated samples. This dependency can pose significant
challenges for materials generation, where the construction of a
perfectly nonbiased data set is frequently difficult to achieve.
Therefore, considerable effort should be made in preparing a
diverse yet evenly distributed training data set when training
generative models.
Another aspect worth sharing is that generative models are

less suitable for extrapolation. As thesemodels utilize the learned
patterns from the training data, they are capable of generating
new samples that are similar to the training data (i.e.,
interpolation). However, generating data points that lie outside
the range of the training data can be challenging. For example,
tasks such as generatingMOFs with an unprecedentedly highH2
capacity could be challenging for these models. Nonetheless,
research on generation models for extrapolation is actively
ongoing,142 and through this, it is anticipated that more
fundamental solutions for such tasks will emerge.

5. FUTURE DIRECTIONS AND EMERGING TRENDS

5.1. Enhancing Speed and Efficiency

While conventional machine learning models have about 10,000
parameters, regression models using the transformer architec-
ture can have up to 100 million parameters.35,56−58 The increase
in the number of parameters improves the model’s potential to
learn more complex patterns and relationships, thereby
increasing its accuracy and flexibility. However, as the number
of parameters increases, the training process becomes
significantly longer and the amount of data required for training
increases exponentially.143,144 This presents a challenge in terms
of computational resources and data acquisition, highlighting
the need for efficient training strategies and robust data
acquisition methods.
In this context, transfer learning is considered a promising

method to reduce both the training time and the amount of data
required. Transfer learning is a machine learning technique
where a predevelopedmodel serves as the foundationmodel that
can be applied to other tasks.145 It typically involves training a
model on a large data set (known as the pretrained model) and
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then initializing the training process for a specific task of interest
(referred to as fine-tuning), often with smaller learning rates.
This method can be effective when it comes to systems in which
the number of data is relatively small. Transfer learning thus
holds significant promise for enhancing the efficiency and
accuracy of property prediction models for MOFs, which often
exhibits complicated data distributions and insufficient
data.35,146,147 In a similar context, knowledge transfer between
different domains is also a promising approach, which is
discussed in the following section.
Furthermore, lightweight deep learning models can be

considered to enhance the efficiency of their use in materials
science. Lightweighting of models refers to designing models
with a reduced number of parameters while preserving
performance.148 This practice is particularly important for
handling large amounts of data, as it can mitigate the slow
inference speeds and the resource-intensive pretraining steps. In
this context, MLPs are noteworthy, as recent advancements have
led to increased accuracy,149 but also larger model complexity
and size, resulting in greater memory usage and computational
costs. While MLPs have significant potential, in order to develop
a method with high applicability, researchers should also
consider the burden of large model sizes in addition to the
model accuracy. Various techniques are being explored for
lightweighting machine learning models, such as knowledge
distillation,150,151 where smaller models are taught what larger
models have learned, and model architectures are modified to
reduce their size.152−155 Although lightweighting has not yet
been extensively studied in materials science, focusing research
efforts on model efficiency within the trend of increasing model
parameters could lead to the development of models with
shorter learning times while maintaining high performance.
5.2. Merging Tools/Data Set from Other Materials

Due to complex structures and the need for high-fidelity data,
data scarcity is one of the main bottlenecks that data-driven
approaches frequently face, especially in porous materials
research.156 Particularly, this problem is prominent in fields
where the property of interest is hard to simulate, thus
experimental assessment is demanded (e.g., proton conductiv-
ity157,158), or where simulation data is expensive (e.g., electronic
structure calculation159). For such cases of having limited data
for the specific task, if one has access to a large data set from
another field, then transferring that data to your specific task
would be a viable approach to remedy the issue of data scarcity.
Especially for porous materials, as diverse classes of porous
materials (e.g., zeolite, MOFs, COFs, PPNs, etc.) have been
investigated for several decades, utilizing the accumulated data
across porous materials domains (or even from nonporous
materials) could propose a new paradigm in their investigation
using data-driven approaches.
One of the representative examples of utilizing cross-domain

knowledge is the work by He et al.160 With the goal of verifying
the electrically conductive MOFs, they developed a binary
classification model that classifies whether a structure is
conductive or not based on its band gap. At the time, there
was no database specifically for MOF band gaps. (However, a
QMOF database,51 now provides DFT-calculated band gaps of
MOF structures.) To overcome this limitation, they utilized the
accumulated data on inorganic compounds. The Open
Quantum Materials Database (OQMD)161 contains band gap
information for ∼52,300 inorganic compounds calculated at
DFT level. They trained their classification model on this data

set and applied it to the MOF database to identify structures
likely to be conductive. Their methodology predicted nine
conductive MOFs, with subsequent computational validation
confirming that six of them were metallic. This serves as an
adequate example of using data from another domain to address
the data scarcity issue in the field of MOF research.
Transfer learning is a widely used method for the transfer of

knowledge between different domains. Cai et al.162 explored the
feasibility of implementing transfer learning in the context of
heterogeneous porous materials. Their focus was on addressing
the imbalance between the sizes of the computation-ready
experimental (CoRE) data sets, where there are relatively few
CoRE COF structures (about 1,000 structures) compared to
CoREMOF (with over 10,000 structures).14 In order to achieve
high accuracy in predicting Xe/Kr selectivity with CoRE COFs,
the researchers employed transfer learning. Specifically, they
pretrained the model using the CoRE MOF database and fine-
tuned it with 300 COF structures. They confirmed that transfer
learning consistently achieved higher accuracy compared to
direct learning, which solely utilized the COF database.
Park et al.163 presented another compelling application of

transfer learning in porous materials. They trained a transformer
architecture across various domains of porous materials,
encompassing MOFs, COFs, zeolites, and PPNs. Empowered
by a synergistic effect among different material classes, they
aimed to address data imbalances via transfer learning. Their
approach involved proposing a cross-material few-shot learning
scheme. By transferring knowledge obtained from MOFs, they
observed an enhancement in the accuracy of predicting the band
gap of COFs in few-shot learning scenarios. Additionally, the
authors further explored the feasibility of a zero-shot learning
scheme where a model trained solely on material A could be
applied for the prediction of unseen material B.
As another representative example of knowledge transfer

between porous materials, Sun et al.27 utilized a meta-learning
scheme to seek for the optimal H2 storage conditions. Meta-
learning and transfer learning are both approaches that aim to
improve the efficiency of training by using prior knowledge.
However, the goal of meta-learning is slightly different, as it aims
to train a model that can generalize well across a variety of tasks.
With utilizing high-throughput data for zeolites, MOFs, and
hyper-cross-linked polymers, they developed a meta-learning
model capable of jointly predicting the adsorption capacity for
various materials across a wide range of pressure and
temperature. It was verified that a model trained using the
meta-learning method exhibits higher accuracy compared to
separately trained models for each material.
Several precedent works that utilized knowledge transfer

across material domains to address the issue of data scarcity are
covered in this section. As more data accumulate rapidly and
new databases are constructed, the utilization of data without
being restricted to the material class of interest is becoming a
common approach. Even beyond dealing with data scarcity,
chemical intuition obtained from other domains can enhance
the performance of themodel in the target domain. Therefore, as
an intense amount of data continues to accumulate in the future,
appropriately utilizing knowledge and data from other domains
will become an increasingly important strategy.
5.3. Data Extraction from Literature

The quality of the data is crucial for developing reliable machine
learning models. In this section, we focus on the discrepancies
between real-world data and data obtained from simulations.
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Most existing MOF databases are generated through simu-
lations, which allow them to cover vast chemical spaces with
high time efficiency. However, simulation methods are not
perfectly accurate and can introduce small or large errors.
Additionally, simulations are often conducted under assump-
tions such as perfect crystallinity, which can lead to discrepancies
from real materials. To overcome these limitations, researchers
have attempted to extract data from the experimental literature
(often referred to as data mining) so that experimental data can
be directly utilized for model training.
In the early stages of data mining for MOFs, rule-based

extraction methodologies and relatively simple natural language
processing (NLP) techniques were employed. Park et al.164

developed a text mining algorithm that captures units for surface
area and pore volume from HTML format inputs. Nandy et
al.165 used NLP and image analysis techniques to mine solvent-
removal stability and thermal degradation temperatures of
MOFs from experimental literature. The scope of data mining
later expanded to include synthetic information on MOFs,
where synthesis conditions of MOFs were extracted from
experimental procedures and further processed for deeper
understanding on their synthesis.166,167 More recently, large
language models have emerged as an irreplaceable tool in data
mining. Compared with rule-based algorithms, the use of large
language models has made the mining process more flexible and
accurate. These models have also impacted the MOF
community, with the Yaghi group employing ChatGPT for the
data mining of MOF data.168,169

Data mining is an evolving field and is expected to play a
crucial role in constructing high-quality experimental databases.
The MOF domain is particularly suited to active mining given
the large volume of ongoing experimental work. One factor that
could drive rapid progress in this field is the establishment of
standardized practices in data reporting and management. If
researchers adopt a uniform format for data reporting in the
scientific literature, the accuracy of data mining could be
significantly enhanced. Additionally, since researchers typically
report only the top (or best) experimental results, the volume of
experimental data could be dramatically increased if they also
publish their failed or partially successful outcomes.
5.4. Automation of Experiments and Autonomous
Laboratories

Lastly, in this section, we highlight promising and futuristic
approaches of data acquisition. Automation of the experimental

process is an emerging concept in materials discovery that has
gained huge traction in recent days.170,171 This is made possible
by using robotic systems, where robotic arms and other
mechanical systems handle tasks such as sample preparation,
mixing chemicals, and operating instruments. Such automation
possesses huge advantages compared with experiments carried
out by humans. Automated experiments can run continuously
(i.e., 24 h per day/7 days a week) with higher efficiency, thereby
allowing researchers to obtain more experimental data in an
efficient manner. Additionally, it minimizes the risk of human
error in experimental procedures, leading to more reliable and
reproducible results. Due to these benefits, automation of
experimental processes is an attractive method for obtaining
large volumes of high-quality data.
The implementation of autonomous systems has also been

applied to the field of MOFs. In research carried out by Moosavi
et al.,20 they utilized an automated system to acquire
experimental data on the synthesis of HKUST-1. Their system
was able to carry out 30 reactions per cycle, where one cycle was
completed within a single day. Through repeated experiments,
they verified that the robotic platform provides a consistent
synthesis protocol with high reproducibility and good control
over the synthesis variables. They represented the synthesis
conditions as 9-dimensional synthesis vectors and implemented
genetic algorithm to find the optimal synthesis conditions. The
synthesis served as the chromosome, and through selection,
crossover, and mutation, the synthesis conditions were
optimized generation by generation. As a result, they achieved
the HKUST-1 sample with the highest surface area reported to
date.
In addition, Xie et al.21 used a robotic platform for the rapid

synthesis of ZIF-67 via the Joule heating method (Figure 7a).
Their robotic platform controlled two chemical parameters (a
molar ratio of Co ions to 2-methylimidazole and a total volume
of precursors) and two processing parameters (applied DC
voltage and reaction time). Using the data provided by the
robotic system, they applied a Bayesian optimization algorithm
to optimize the synthesis conditions of ZIF-67. Bayesian
optimization suggests new synthesis conditions based on past
evaluations (crystallinity of the samples in this work). It was
observed that as iterations proceeded, structures with gradually
higher crystallinity were obtained. Through this process and
further analysis, they were able to retrieve chemical insights into
the crystallinity of ZIF-67.

Figure 7. Autonomous materials discovery. (a) Schematic showing a process of synthesizing ZIF-67 with improved crystallinity via the integration of a
robotic platform with a Bayesian optimization algorithm. Reprinted with permission from ref 21. Copyright 2021 American Chemical Society. (b)
Autonomous materials discovery with the autonomous lab. Powder dosing, sample heating, and product characterization were automated while the
transfer between these stations is performed using robotic arms. Reprinted with permission from ref 172. Copyright 2023 Springer Nature.
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An autonomous lab (also called a self-driving lab) is a more
advanced and futuristic concept, in which laboratory processes
and experiments are conducted without human intervention
(Figure 7b).172,173 The facility typically features robotics,
artificial intelligence (AI), and multiple sensors, where
sophisticated AI algorithms manage and optimize experimental
parameters, analyze data in real-time, and autonomously make
decisions based on predefined objectives. Active learning is often
referred to in this context, as it helps in selecting the next set of
experiments, thereby making the whole process more efficient.
Few materials domains, including organic semiconductor lasers
(OSLs), are being tested for the introduction of autonomous
lab, yet several obstacles remain, including both mechanical and
software challenges.171 To the best of our knowledge, MOF
synthesis in a completely autonomous lab with zero human
intervention has not been reported yet, but it is our opinion that
the efforts of researchers will make it possible in the near future.

6. CONCLUSIONS
In this Perspective, we introduced the recent trends of machine
learning studies in MOFs and the future directions pursued by
the researchers. Regression models for elucidating structure−
property relationships were first covered, from conventional
methods to transformer-based models, which have recently
shown exceptional performance. Subsequently, we covered the
recent trends in machine learning studies with a particular focus
on MLPs, which have immense potential across a wide range of
applications. MLPs are now gaining attention in the field of
MOFs, with the anticipation that they will pave the way for the
complicated chemistry of MOFs to be handled in an effective
manner. Generative models are another emerging branch
offering a new paradigm in materials design. We shared recent
attempts to implement them in MOFs, along with some aspects
of materials design using generative models. Lastly, several
challenges encountered using machine learning methodologies,
and efforts to address them have been discussed.
Machine learning has played a critical role in shifting the

paradigm of research in the materials field. MOFs are a domain
where their achievements are particularly pronounced, and
significant advancements have been witnessed through the
introduction of machine learning-based methodologies.
Through continued research efforts, machine learning is poised
to unlock the full potential of MOFs, driving further progress
and innovation in materials science.
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