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knockout mice, suggesting that while IL-6 may be sufficient 
to induce glomerular Lcn2/Ngal expression, it is not essen-
tial.  Conclusions:  The glomerulus is involved in septic AKI, 
and we demonstrate that podocytes secrete key mediators 
of AKI including IL-6 and Lcn2/Ngal. 

 Copyright © 2012 S. Karger AG, Basel 

 Introduction 

 Acute kidney injury (AKI) contributes to significant 
morbidity and mortality in the intensive care unit (ICU) 
 [1] . One of the most common causes of AKI is sepsis, and 
its pathophysiology is related to alterations in renal 
 hemodynamics, inflammation, endothelial dysfunction, 
tubular obstruction and glomerular thrombosis  [2, 3] . 
Most studies investigating AKI have focused on patho-
physiologic changes in the tubulo-interstitium, despite 
early work suggesting that AKI is associated with chang-
es in the glomeruli  [4, 5] . Sepsis-mediated AKI causes al-
buminuria due to transient podocyte dysfunction, foot 
process effacement and decreased tubular reabsorption 

 Key Words 

 Acute kidney injury  �  Albuminuria  �  Glomeruli  �  
Interleukin-6  �  Lipocalin  �  Lipopolysaccharides 

 Abstract 

  Background/Aims:  Acute kidney injury (AKI) contributes to 
significant morbidity and mortality in the intensive care unit 
(ICU). Plasma levels of interleukin (IL)-6 predict the develop-
ment of AKI and are associated with higher mortality in ICU 
patients with AKI. Most studies in AKI have focused on the 
tubulo-interstitium, despite evidence of glomerular involve-
ment. In the following study, our goals were to investigate 
the expression of IL-6 and its downstream mediators in sep-
tic-induced AKI.  Methods:  Podocytes were treated in vitro 
with lipopolysaccharide (LPS) and mice were treated with 
LPS, and we evaluated IL-6 expression by real-time PCR, 
 ELISA and in situ RNA hybridization.  Results:  Following LPS 
stimulation, IL-6 is rapidly and highly induced in cultured 
podocytes and in vivo in glomeruli and infiltrating leuko-
cytes. Surprisingly, in direct response to exogenous IL-6, 
podocytes produce lipocalin-2/neutrophil gelatinase-asso-
ciated lipocalin (Lcn2/Ngal). LPS also potently induces Lcn2/
Ngal expression in podocytes in culture and in glomeruli in 
vivo. Intense Lcn2/Ngal expression is also observed in IL-6 
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of filtered proteins  [6–8] . Indeed, treatment with plasma 
from burn patients with sepsis-associated AKI reduces 
podocyte viability, downregulates nephrin expression 
and causes redistribution of actin fibers and nestin fila-
ments  [9, 10] . These studies suggest that podocyte dys-
function is an important contributor to septic AKI.

  Sepsis-mediated AKI is associated with dramatic rises 
in the expression of chemokines and cytokines, including 
interleukin (IL)-6, tumor necrosis factor (TNF)- � , IL-1 � , 
IL-18, IL-8, fractalkine, IL-33 and IL-10, but the func-
tional relevance of cytokine expression is incompletely 
understood [for a review, see ref.  11 ]. Studies suggest that 
various infiltrating leukocyte subsets, including neutro-
phils  [12] , macrophages  [13]  and resident tubular cells 
 [14] , are the major sources of inflammatory cytokines. 
However, we and others have shown that podocytes se-
crete cytokines and chemokines, including IL-1  [15] , IL-6 
 [16, 17] , TNF- � , transforming growth factor- � , IL-8  [18]  
and monocyte chemoattractant protein (MCP)-1  [19–22]  
in various conditions. In this study, we explored the hy-
pothesis that podocytes may also secrete inflammatory 
mediators in sepsis, and play a pathogenic role in septic 
AKI.

  It has been shown that IL-6 may play an important role 
in the pathophysiology of septic AKI  [2, 11] , as IL-6 levels 
predict the development of AKI and are associated with 
higher mortality in ICU patients with AKI  [23, 24] . How-
ever, some studies suggest that IL-6 may function in an 
anti-inflammatory manner [for a review, see ref.  25 ] and 
be a marker rather than a mediator of inflammation  [26] . 
In mice, lipopolysaccharide (LPS) causes sepsis-induced 
AKI. In these studies, we use a low-dose LPS model to 
induce transient podocyte dysfunction  [6] , and we show 
that LPS induces podocyte secretion of IL-6. In these 
studies, we also observe that podocytes express and sig-
nal via the IL-6 receptor.

  In ischemic kidneys, lipocalin-2/neutrophil gelatin-
ase-associated lipocalin (Lcn2/Ngal) is typically ex-
pressed by the thick ascending loop of Henle, macula 
densa and intercalated cells of the collecting duct  [27] . 
Lcn2/Ngal has been proposed as a promising new bio-
marker to identify tubular injury-associated AKI  [28, 29]  
and may distinguish septic from non-septic AKI  [30] . A 
novel observation in our studies is that in direct response 
to exogenous IL-6, podocytes produce Lcn2/Ngal. LPS 
also potently induces Lcn2/Ngal expression in podo-
cytes. Interestingly, we observe intense glomerular and 
tubular expression of Lcn2/Ngal expression in IL-6 
knockout (KO) mice, suggesting that while IL-6 may be 
sufficient to induce glomerular Lcn2/Ngal expression, it 

is not essential. Finally, we detect higher albuminuria and 
MCP-1 expression in LPS-treated IL-6 KO mice com-
pared with controls, suggesting that absence of IL-6 may 
impair podocyte function in LPS-induced AKI. These 
studies suggest that manipulation of podocyte function 
may provide a new therapeutic strategy for the manage-
ment of sepsis-induced AKI.

  Materials and Methods 

 C57BL/6 mice and IL-6 KO mice on a C57BL/6 background 
(B6.129S2- Il6  tm1Kopf /J, No. 2650) were obtained from the Jackson 
Laboratories (Bar Harbor, Maine, USA). Lcn2/Ngal KO mice 
(C57BL/6 background) were a kind gift from Dr. Tak Mak (Uni-
versity of Toronto, Toronto, Ont., Canada)  [31] . Mice were housed 
and handled in accordance with VA and NIH guidelines under 
protocols approved by the Institutional Animal Care and Use 
Committee. We treated 9- to 12-week-old C57BL/6 mice with LPS 
(10  � g/g body weight i.p.; Sigma-Aldrich, St. Louis, Mo., USA; 
4524,  Escherichia coli  055:B5): n = 12 C57BL/6, n = 6 IL-6 KO and 
n = 7 Lcn2/Ngal KO mice or phosphate-buffered saline (PBS) con-
trol (n = 7 C57BL/6 mice, n = 4 IL-6 KO and n = 4 Lcn2/Ngal KO 
mice). Mice were acclimatized for 24 h prior to LPS treatment and 
housed in metabolic cages. Mice were euthanized 3, 12, 24 and
48 h after LPS injection.

  Podocytes 
 Conditionally immortalized podocytes were kindly provided 

by Drs. Peter Mundel and Stuart Shankland, and propagated at 
33   °   C (permissive conditions) on type I collagen-coated plastic 
plates with IFN- �  as previously described  [32] . For differentia-
tion, cells were transferred to 37   °   C for 14 days and semi-quanti-
tative PCR studies were used to verify expression of synaptopodin 
and WT-1.

  To propagate primary podocytes, kidneys from 6- to- 8-week-
old C57BL/6 mice were perfused with Dynabeads (Epoxy M-450; 
Life Technologies, Grand Island, N.Y., USA), decapsulated and 
digested at 37   °   C in a collagenase solution (1 mg/ml; Sigma-Al-
drich)  [33] . Minced kidneys were strained and a magnet particle 
concentrator was used until the purity of the glomeruli reached 
 1 95%. The glomeruli were then transferred to collagen-coated 
dishes with growth media  [22]  and incubated at 37   °   C for 5–7 days. 
Adherent cells were harvested from plates and strained (40  � m), 
and the magnet catcher removed any remaining Dynabeads. Cells 
were transferred to collagen-coated dishes and incubated at 37   °   C. 
Passage 2–3 cells were used. To validate that the cells were podo-
cytes, they were grown on coverslips and stained with anti-syn-
aptopodin antibody (clone G1D4; Fitzgerald Industries, Acton, 
Mass., USA) and WT-1 (SC-192; Santa Cruz Biotech, Santa Cruz, 
Calif., USA).

  Cytokine and Albumin ELISA 
 Fully differentiated podocytes (14 days) were replated into a 

24-well plate. The next day, the podocytes were treated with LPS 
(10 ng/ml) or control in 1% fetal bovine serum in RPMI 1640 (Life 
Technologies) without antibiotics. At various time points, culture 
supernatant concentrations of IL-6 were determined by sandwich 



 Lee   /Borsting   /Declèves   /Singh   /Cunard    Nephron Exp Nephrol 2012;121:e86–e96e88

ELISA with the OPTEIA TM  set (BD Pharmingen, San Diego, Ca-
lif., USA). Urinary albumins and creatinines were assessed by 
ELISA using the Albuwell M and Creatinine Companion kits 
(Exocell, Philadelphia, Pa., USA).

  Real-Time PCR and Microarray Studies 
 Fully differentiated conditionally immortalized podocytes 

were treated with 10 ng/ml IL-6 (R&D Systems, Minneapolis, 
Minn., USA) and RNA was prepared with TRIzol (Life Technolo-
gies) and cleaned up with the RNeasy Plus Kit (Qiagen, Valencia, 
Calif., USA). RNA from control and IL-6-treated podocytes was 
analyzed by microarray assay (GeneChip �  Murine Genome, U74/
Av2 Array; Affymetrix, Santa Clara, Calif., USA) with the assis-
tance of the Veterans Medical Research Foundation GeneChip TM  
microarray core.

  cDNA was prepared with the Superscript II �  kit (Life Tech-
nologies) and real-time PCR studies were performed as previous-
ly described  [22] . For RNA quantification, TaqMan �  gene expres-
sion assays (mIL-6 Mm00446190_m1, MCP-1 Mm00441242, IL-
6r �  Mm00439653_m1) with TaqMan Universal PCR Master Mix 
or Power SYBR �  Green PCR Mastermix (Applied Biosystems) 
were performed. Primers for Lcn2/Ngal are 5 � -GGACC A GGG -
C T G TCGCTACT-3 �  and 5 � -GGTGGCCACTTGCAC AT TGT-3 �  
and nephrin 5 � -ACCCTCCAGTTAACTTGTCT TT GG-3 � , 5 � -A-
TG CAGCGGAGCCTTTGA-3 � . Amplification efficiencies were 
normalized against RPL19 and relative fold increases were calcu-
lated using the Pfaffl technique of relative quantification  [22, 34] .

  Western Blotting 
 Cell lysates were prepared with cell lysis buffer (Cell Signaling, 

Beverly, Mass., USA) with protease inhibitors  [35] . Samples were 
run on NuPAGE bis-Tris gels (Life Technologies) and transferred 
onto nitrocellulose membranes (Life Technologies). The follow-
ing antibodies were used: anti-IL-6r �  (AF1830; R&D Systems), 
gp130 (sc-656) and actin (sc-1616; Santa Cruz Biotech). Detection 
was performed with ECL Plus detection reagents (GE Healthcare, 
Piscataway, N.J., USA).

  In situ RNA Hybridization 
 Kidneys were perfused with PBS, fixed in 4% paraformalde-

hyde (PFA), cryopreserved in 30% sucrose-DEPC-PBS, embedded 
in optimal cutting temperature (Tissue-Tek; Sakura Finetek, Tor-
rance, Calif., USA), and snap frozen in a dry ice/2-methylbutane 
slurry. Vascular endothelial growth factor (VEGF) expression 
vector (pBluescript-VEGF) was a kind gift from Dr. Susan Quag-
gin’s laboratory (University of Toronto). Additionally, we cloned 
murine Lcn2/Ngal and IL-6 expression vectors into pSPT19 
(pSPT19-Lcn2 and pSPT19-IL-6) using the following primers for 
Lcn2/Ngal: 5 � -GACCTAGAAGCTTTGGAAACC-3 � , 5 � -GCCA-
C ACTCGGTACCCATTCAG-3 � , and IL-6 5 � -CCCAAGCTTA-
TGAAGTTCCTCTCTGCAAGA-3 � , 5 � -CCG GAA TTC CTA G G-
T  T TGCCGAGTAGATCT-3 � . Lcn2/Ngal-, VEGF- and IL-6-di-
goxigenin (DIG)-labeled riboprobes were generated (DIG RNA 
labeling kit; Roche Diagnostics, Indianapolis, Ind., USA). Sec-
tions were dried o/n and permeabilized with RNase-free protein-
ase K (20  � g/ml) for 5 min at 37   °   C and washed in PBS-DEPC. 
Next sections were re-fixed in 4% PFA, washed in PBS-DEPC and 
prehybridized in 5 !  SSC with 50% deionized formamide, yeast 
tRNA and heparin. The DIG-labeled riboprobes (1,000 ng/ml) 

were hybridized o/n at 60   °   C and then washed with 50% for-
mamide/0.2 !  SSC at 50   °   C. Detection with sheep anti-DIG-alka-
line phosphatase (1:   500) and then nitroblue tetrazolium solution 
and 5-bromo-4-chloro-3-indolyl-phosphate solution was per-
formed, and slides were counterstained with 0.1% nuclear fast red, 
washed and mounted  [36] .

  Statistics 
 Differences were analyzed using Student’s t test and ANOVA 

with post hoc Tukey tests for pairwise comparisons. Analysis was 
accomplished with SPSS 20 (IBM, Armonk, N.Y., USA).

  Results 

 LPS Induces IL-6 Expression in Podocytes 
 LPS is a classic inducer of inflammation and it stimu-

lates a myriad of cytokines, including IL-6  [37] . Fully dif-
ferentiated immortalized podocytes were exposed to 10 
ng/ml of LPS, and we analyzed IL-6 mRNA and protein 
expression at various time points. Quantitative PCR re-
vealed a rapid burst of IL-6 mRNA synthesis by 2 h with 
an equally profound downregulation by 4 h ( fig. 1 a). ELI-
SA analysis on the supernatants from LPS-treated cell 
 supernatants detected IL-6 protein expression by 2 h 
( fig. 1 b). Consistent with mRNA kinetics, near-maximal 
IL-6 protein levels were noted by 4 h. These data suggest 
exquisite control of IL-6 production likely at the level of 
transcription. Interestingly, higher doses of LPS did not 
further increase IL-6.

  Podocytes Express the IL-6 Receptor 
 The IL-6 receptor is composed of two subunits, the  �  

chain (IL-6r � , glycoprotein (gp) 80  [38] ) and the  �  chain 
(the signal transducer gp130,  [39] ). IL-6 mediates its bio-
logical effects through either ‘classical signaling’ or 
‘trans-signaling’ [for a review see ref.  40 ]. The classical 
pathway involves a membrane-bound IL-6 receptor 
(mIL6r � )  [41] , whereas trans-signaling occurs through a 
soluble IL-6 receptor (sIL6r � )  [42] . To determine if podo-
cytes express IL-6r � , we performed Western blotting and 
discovered that podocytes express both IL6r �  and gp130 
protein ( fig. 1 c) as well as mRNA [unpubl. observations]. 
We did not detect substantial amounts of sIL6r �  in the 
supernatant suggesting that fully differentiated podo-
cytes in culture probably do not secrete IL-6 and facilitate 
trans-signaling ( fig. 1 c).

  LPS Induces Glomerular Expression of IL-6 
 Administration of LPS (10  � g/g, i.p.) to C57BL/6 mice 

induces transient podocyte dysfunction, whereas higher 
doses (15  � g/g) cause sepsis-induced AKI. Thus, we in-
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jected C57BL/6 mice with LPS (10  � g/g i.p.) or PBS, and 
evaluated whether in vivo podocytes treated with LPS ex-
press IL-6. IL-6 is secreted; therefore, precise cellular 
identification requires mRNA localization. In our in situ  
 studies, as early as 3 h ( fig. 2 b) and up to 12 h after LPS 
injection, we observed glomerular staining of IL-6 mRNA 
( fig. 2 d). There was evidence of IL-6 mRNA-expressing 

cells in the interstitium, likely corresponding to infiltrat-
ing monocytes/macrophages ( fig. 2 e)  [13] . We did not ob-
serve proximal tubular staining of IL-6 at any of the time 
points investigated (3, 12, 24 and 48 h); however, in the 
medulla, 3 h after LPS injection, there was evidence of 
IL-6 expression in the thin loops of Henle ( fig. 2 f).
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  Fig. 1.  LPS augments podocyte IL-6 expression and podocytes 
express the IL-6 receptor. Fully differentiated transformed podo-
cytes were treated with 10 ng/ml LPS.  a  IL-6 mRNA was evalu-
ated by real-time PCR at various time points. Results are the aver-
age of studies performed at least three times,  *  p  !  0.05 vs. control 
(C) podocytes and bars represent SEM.  b  Culture supernatant 

IL-6 was evaluated by ELISA. Results are representative of studies 
performed at least three times.  *  p  !  0.05 vs. control,  *  *  p  !  0.05 
vs. 2-hour LPS treatment.  c . Fully differentiated podocytes were 
treated with IL-6, and at 24 and 48 h Western blotting for IL-6r � , 
gp130 and actin was performed on cell lysates. SN = Podocyte 
culture supernatant at 48 h. 

  Fig. 2.  In vivo LPS induces glomerular 
 expression of IL-6 mRNA. C57BL/6 mice 
were treated with PBS ( a ) or LPS (10  � g/g) 
and kidneys were harvested at 3 ( b ,  c ,  e ,  f ) 
and 12 h ( d ). In situ hybridization of IL-6 
mRNA demonstrates glomerular staining 
3 and 12 h after LPS treatment ( b ,  d ). AS = 
Anti-sense. IL-6 was also expressed by in-
filtrating leukocytes (arrow,  e ) and in the 
thin loops of Henle ( f ). 
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  IL-6 Activates Podocyte Expression of Lcn2/Ngal 
 Intrigued by the findings that podocytes express both 

IL-6 and its receptor, we performed microarray analysis 
to elucidate the downstream effects of IL-6 signaling in 
podocytes. Microarray studies revealed that condition-
ally immortalized podocytes treated with IL-6 upregu-
late Lcn2/Ngal expression. We confirmed podocyte ex-
pression of Lcn2/Ngal, and quantitative PCR showed an 
8-fold induction of Lcn2/Ngal mRNA expression with 
IL-6 treatment ( fig. 3 a). Western blotting on concentrated 
supernatants from IL-6-stimulated podocytes similarly 
revealed increased Lcn2/Ngal secretion ( fig. 3 b).

  LPS Stimulates Lcn2/Ngal Expression 
 To investigate whether LPS had similar effects on 

podocyte secretion of Lcn2/Ngal, we treated fully differ-
entiated podocytes with LPS. LPS rapidly and potently 
stimulated Lcn2/Ngal mRNA production in podocytes 
to levels nearly 20-fold greater than treatment with exog-
enous IL-6 ( fig. 4 a). In contrast to the burst of IL-6 mRNA 
expression (which was dramatically reduced by 4 h) ob-
served after LPS exposure, Lcn2/Ngal mRNA expression 
increased with LPS treatment in a time-dependent man-
ner. By 24 h, there was a 1,100-fold increase in Lcn2/Ngal 
mRNA expression with supernatant concentrations of 
Lcn2/Ngal of 29,370 pg/ml. Western blotting performed 
on culture supernatants confirmed these findings 
( fig. 4 c).

  Primary podocytes were propagated from glomerular 
preparations of C57BL/6 mice  [33] . Podocyte identifica-
tion was confirmed by immunofluorescence and PCR ex-
pression of synaptopodin and WT-1 ( fig. 4 f).  Figure 4 d 
shows that LPS potently augmented Lcn2/Ngal mRNA 
expression in primary podocytes. We also detected Lcn2/
Ngal protein expression in the supernatants of LPS-treat-
ed primary podocyte cultures ( fig. 4 e).

  In vivo Podocytes Express Lcn2/Ngal 
 In the next set of studies, we evaluated whether in vivo 

podocytes express Lcn2/Ngal. We developed RNA probes 
for Lcn2/Ngal and verified dramatic upregulation of 
Lcn2/Ngal mRNA expression in LPS-treated podocytes 
( fig. 5 ). For the in vivo studies, as a positive control to lo-
calize podocytes, we performed in situ RNA hybridiza-
tion for VEGF mRNA expression in the kidneys of PBS- 
and LPS-treated mice ( fig. 6 b, d)  [36] .  Figure 6 a demon-
strates that Lcn2/Ngal mRNA is not highly expressed in 
the glomer uli of the PBS-treated mice (Lcn2 anti-sense). 
However, after 24 h of LPS treatment, there is evidence of 
glomerular mRNA expression of Lcn2/Ngal mRNA, like-
ly corresponding to podocyte staining ( fig. 6 e, f). We also 
observed tubular and glomerular parietal epithelial stain-
ing of Lcn2/Ngal 24 h after LPS treatment.  Figure 6 c is a 
24-hour LPS-treated kidney section probed with an 
Lcn2/Ngal sense probe, which serves as a negative control 
for nonspecific RNA binding. There was also podocyte 
staining of Lcn2/Ngal in LPS-treated IL-6 KO mice 
( fig. 6 g, h).

  LPS-Treated IL-6 KO Mice Develop More 
Albuminuria 
 We also evaluated albuminuria in C57BL/6 mice, IL-6 

KO mice and Lcn2/Ngal KO mice treated with LPS.  Fig-
ure 7 a demonstrates that IL-6 KO mice had significantly 
higher albuminuria than the PBS controls suggesting 
that IL-6 may protect podocyte function. MCP-1 is a po-
tential biomarker for AKI  [43] , and MCP-1 plays a central 
role in promoting renal injury in renal inflammatory dis-
eases [for a review, see ref.  44] . We observed a significant 
increase in MCP-1 mRNA expression in renal cortices
of the IL-6 KO mice compared with the PBS controls 
( fig. 7 b). There was a trend for a reduction in podocyte-
specific mRNAs including nephrin, synaptopodin and 
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ular staining of Lcn2/Ngal mRNA in the 
LPS-treated mice. VEGF podocyte stain-
ing is a positive control ( b ,  d ).  c  Lcn2 sense 
is a negative control for nonspecific RNA 
binding. IL-6 KO mice were treated with 
LPS and kidneys were harvested at 48 h ( g , 
 h ). AS = Anti-sense.                   
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WT-1 expression in renal cortices of LPS-treated IL-6 KO 
mice compared with the other treatment groups. We also 
observed a significant inverse correlation between neph-
rin mRNA expression and albuminuria ( fig. 7 c), support-
ing our hypothesis that the albuminuria could be related 
to podocyte dysfunction.

  Discussion 

 Inflammation plays a central role in the development 
of septic AKI. Infiltrating leukocytes, macrophages, lym-
phocytes and resident tubular and endothelial cells medi-
ate inflammatory changes in the kidney  [2, 4, 11, 45] . In 
various conditions, kidney injury is associated with en-
hanced expression of inflammatory cell markers by 
podocytes, including CD68, MHC-II, ICAM-1 and B7-1 
 [6, 46, 47] . Additionally, podocytes secrete cytokines and 
chemokines and express receptors for chemo-cytokines 
and complement. Here, we postulate that expression of 
these immunologic mediators by podocytes could modu-
late glomerular injury, albuminuria and renal outcome in 
AKI in sepsis.

  In the present study, we show that LPS-treated podo-
cytes rapidly upregulate IL-6 expression. IL-6 has been 
detected in supernatants of fully differentiated human 
and murine podocyte cultures, and it is suppressible by 
dexamethasone and activated vitamin D  [16, 17, 48] . IL-

6r �  is expressed by a limited number of cells  [49] , and it 
was first discovered in human urine  [38] . Subsequent 
studies have shown that the kidney expresses low levels of 
IL-6r � , though the specific cell type has not been defined 
 [50] . In this study, we demonstrate for the first time that 
IL-6r �  and gp130 are expressed by podocytes. It is likely 
that in podocytes IL-6 signaling is mediated by direct 
binding of IL-6 to mIL-6r � , as we do not see evidence of 
podocyte secretion of IL-6r �  ( fig. 1 c). In contrast, human 
mesangial cells  [51]  and rodent tubular epithelial cells do 
not express IL-6r �  and employ IL-6  trans-signaling   [50] .

  There are many questions remaining regarding the 
role that IL-6 plays in podocyte biology. Since podocytes 
express IL-6r � , it is likely that IL-6 functions in an auto-
crine or paracrine manner. IL-6 can induce anti-inflam-
matory effects and inhibit the production of inflamma-
tory cytokines, reduce expression of reactive oxygen spe-
cies and inhibit cellular apoptosis [for a review, see ref. 
 25 ]. Controversy also exists regarding the role of IL-6 in 
inflammatory diseases, as data suggest that it serves as a 
marker rather than a mediator of inflammation  [26] .

  Consistent with this study, in ischemia and cisplatin-
induced AKI, there is a rapid and transient increase in 
IL-6 expression  [13, 52, 53] . However, outcome of AKI in 
IL-6 KO mice is variable. In ischemic renal failure stud-
ies, IL-6 KO mice have shown either improvement or no 
changes in renal outcome  [13, 54, 55] . IL-6 KO mice are 
resistant to HgCl 2 -induced AKI, yet IL-6 trans-signaling 
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 Fig. 7. LPS-treated IL-6 KO mice develop higher albuminuria 
than wild-type mice. C57BL/6 mice, IL-6 KO and Lcn2/Ngal KO 
mice were treated with PBS or LPS and albuminuria was assessed 
at 48 h (24–48 h collection).    a  There is a significant increase in 
albuminuria in the IL-6 KO mice:        *  p  !  0.05 vs. PBS control and 
PBS Lcn2/Ngal KO mice,  *  *   p  !  0.05 vs. IL-6 KO PBS-treated 

mice.    b  Renal cortical MCP-1 mRNA is higher in the LPS-treated 
IL-6 KO mice compared with the PBS-treated mice:  *  p  !  0.05 vs. 
PBS control mice.  c  There is a significant inverse correlation be-
tween albuminuria and renal cortical nephrin mRNA expression: 
p  !  0.05, Pearson’s correlation.                           
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prevents AKI perhaps due to upregulation of anti-oxi-
dant pathways  [50] . IL-6 deficiency also accelerates cispl-
atin-induced AKI  [56] , and investigators have proposed 
that IL-6 may be protective in ischemic renal failure and 
in a mouse model of rhabdomyolysis-induced AKI  [57, 
58] . These variable outcomes in IL-6 KO mice could be 
due to the doses of injurious factors, experimental time 
course and definitions of AKI. Alternatively, we propose 
that these differences are related to the role of IL-6 as 
a key immunomodulatory cytokine. IL-6 mediates the 
transition from the early innate immune response to the 
more protective adaptive and resolution phases of in-
flammation  [59] . The effects of IL-6 are also highly cell 
type-dependent, and variable outcomes in IL-6 KO mice 
may be related to cellular expression of other inflamma-
tory mediators, such as a suppressor of cytokine signaling 
(SOCS3)  [60] .

  We have discovered that exogenous IL-6 activates 
podocyte expression of Lcn2/Ngal ( fig. 3 ). Lcn2/Ngal is 
an innate immune response mediator that binds bacte-
rial iron-containing siderophores and inhibits the growth 
of bacteria  [61, 62] . Inflammatory stimuli, including LPS, 
IL-6, IL-1 �  and IL-17, augment expression of Lcn2/Ngal, 
which is upregulated in ischemic kidneys  [27, 28, 63] . 
Plasma and urinary Lcn2/Ngal levels have been proposed 
as biomarkers for early identification of AKI in a variety 
of experimental and clinical settings  [28, 29] . Most stud-
ies have highlighted tubular expression of Lcn2/Ngal, but 
its expression also increases in glomerular diseases, in-
cluding diabetes  [64–67] , hemolytic uremic syndrome 
 [68] , HIV nephropathy  [69, 70] , systemic lupus erythema-
tosus  [71, 72]  and chronic kidney disease  [73] . Using a 
transgenic Lcn2/Ngal-luciferase reporter mouse, Paragas 
et al.  [27]  elegantly showed that ischemia-reperfusion, 
cisplatin and lipid A induce distal tubular expression of 
Lcn2/Ngal. They did not report glomerular expression of 
Lcn2/Ngal, but this may be related to the time points 
evaluated and the doses of lipid A. Consistent with their 
work, our in situ hybridization studies demonstrate that 
the highest expression of Lcn2/Ngal in the kidney is in 
the renal tubules.

  Our studies also show that IL-6 and LPS induce Lcn2/
Ngal expression. To investigate whether IL-6 is essential 
for LPS-induced upregulation of Lcn2/Ngal, we used IL-
6-blocking antibodies in vitro and observed similar in-
creases in Lcn2/Ngal expression. Moreover, LPS-treated 
IL-6 KO mice had similar increments in kidney and uri-
nary Lcn2/Ngal expression when compared with wild-
type controls [unpubl. observations], supporting our in 
vitro findings. Our findings suggest that LPS enhances 

additional podocyte-derived molecules, such as TNF- � , 
that activate Lcn2/Ngal expression.

  We observed more albuminuria in the LPS-treated 
IL-6 KO mice, and this was associated with higher MCP-
1 expression. MCP-1 induces podocyte proliferation and 
migration  [21]  and reduces nephrin expression  [74] . MCP-
1 also plays a central role in promoting renal injury [for a 
review, see ref.  44 ] and recent work suggests that MCP-1 
may serve as a biomarker for AKI  [43] . In our study, there 
were trends for reductions in renal cortical expression of 
podocyte-specific mRNAs and albuminuria was signifi-
cantly correlated with decreased cortical nephrin mRNA 
expression. These findings suggest that the IL-6 KO mice 
may have developed more podocyte dysfunction com-
pared with the wild-type mice. Notably, LPS-treated 
Lcn2/Ngal KO mice had similar albuminuria compared 
with the LPS-treated control mice, suggesting that ab-
sence of Lcn2/Ngal did not impair podocyte function in 
this model system.

  In this study, we show for the first time that podo-
cytes express Lcn2/Ngal and that IL-6 can activate ex-
pression of Lcn2/Ngal. Our studies also demonstrate 
that the glomerulus secretes inflammatory mediators in 
septic AKI and suggest that IL-6 may play a role in pres-
ervation of optimal podocyte function in sepsis-induced 
AKI.
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