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ABSTRACT

BACKGROUND/OBJECTIVES: Atherosclerosis is a primary cause of cardiovascular disease 
associated with inflammation and lipid metabolism disorders. The accumulation of 
cholesterol-containing macrophage foam cells characterizes the early stages. The p-coumaric 
acid (p-CA) contained in vegetables may have various physiological activities. The inhibitory 
effect of p-CA on foam cell creation in THP-1 macrophages needs clarification. In this 
study, we explored the impact of p-CA on foam cells by co-treatment with oxidized low-
density lipoprotein (ox-LDL) and lipopolysaccharides (LPS), mimicking the development of 
atherosclerosis in vitro and studied the regulation of its underlying mechanisms.
MATERIALS/METHODS: THP-1 cells differentiated by phorbol 12-myristate 13-acetate (1 
μM) for 48 h and treated in the absence or presence of p-CA for 48 h. THP-1 macrophages 
were treated with combined ox-LDL (20 μg/mL) and LPS (500 ng/mL) for 24 h. The 
3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assays detected cell 
viability. Oil red O staining allowed us to observe lipid accumulation. Western blotting and 
quantitative polymerase chain reactions quantified corresponding proteins and mRNA.
RESULTS: Ox-LDL and LPS for 24 h enhanced the lipid accumulation using Oil red O 
in treated foam cells. By contrast, p-CA treatment inhibited lipid accumulation. p-CA 
significantly upregulated cholesterol efflux-related genes such as ATP binding cassette 
transporter A1, liver-X-receptor α and peroxisome proliferator-activated receptor gamma 
expression. Moreover, p-CA decreased lipid accumulation-related gene such as lectin-like 
oxidized low-density lipoprotein receptor-1, cluster of differentiation 36 and scavenger 
receptor class A1 expression. Combined ox-LDL and LPS increased nuclear factor-κB (NF-
κB), cyclooxygenase-2 (COX-2) and pro-inflammatory (tumor necrosis factor-α [TNF-α] and 
interleukin [IL]-6) activation and expression compared with untreated. p-CA suppressed this 
increased expression of NF-κB and COX-2, TNF-α and IL-6.
CONCLUSION: p-CA may play a vital role in atherosclerosis inhibition and protective effects 
by suppressing lipid accumulation and foam cell creation by increasing cholesterol efflux and 
can be potential agents for preventing atherosclerosis.
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INTRODUCTION

The incidence of numerous cardiovascular diseases, including arteriosclerosis and heart 
disease, is increasing due to various factors such as westernized eating habits and lack of 
physical activity [1,2]. Atherosclerosis, one of the risk elements for cardiovascular disease, 
is a chronic inflammatory disease of arterial blood vessels characterized by oxidized lipid 
accumulation, foam cells, and inflammatory cytokines [3]. Foam cells, which play a vital role 
in the initiation phase of atherosclerosis, are differentiated from monocytes [4,5]. In the early 
stages of atherosclerosis, monocytes migrate to the arterial intima, and low-density lipoprotein 
(LDL) flows into the artery and is oxidized to oxidized low-density lipoprotein (ox-LDL) [6]. 
Monocytes differentiate into macrophages, absorb lipoproteins, and form foam cells [7].

Intracellular lipid homeostasis in macrophages dynamically regulates foam cell development 
by cholesterol efflux and ox-LDL uptake [8]. Lipid accumulation in macrophages through 
the scavenger receptor (SR) pathway induces endoplasmic reticulum stress, activates nuclear 
factor-κB (NF-κB) signaling, and stimulates the production of inflammatory cytokines, 
thereby transforming into lipid-laden foam cells [9,10]. In in vitro and in vivo studies, 
increased lipid accumulation through SRs accelerated atherosclerotic lesion formation 
[11,12]. Macrophages express SRs, such as scavenger receptor class A1 (SR-A1), cluster of 
differentiation 36 (CD36), and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), 
which absorb modified LDL and promote intracellular lipid accumulation, generating lipid-
laden foam cells [13]. Additionally, SR in macrophages upregulates inflammatory cytokines, 
leading to cholesterol accumulation by macrophages. Macrophage cholesterol efflux can 
reduce cholesteryl esters and reduce atherosclerotic plaques [14]. Cell and animal studies 
have conveyed that cholesterol efflux plays a role in preventing atherosclerosis [15-17]. The 
clearance of macrophages carrying excessive influx of modified LDL from the arterial wall is 
mediated by cholesterol efflux, where intracellular lipids are transported to the liver by ATP 
binding cassette transporter A1 (ABCA1) and ATP binding cassette transporter G1 (ABCG1) 
[18]. ABCA1, which produces precursors of high-density lipoprotein (HDL) particles, plays 
a central role in maintaining cholesterol homeostasis and preventing atherosclerosis by 
promoting cholesterol and ox-LDL efflux [19]. Peroxisome proliferator-activated receptor 
γ (PPARγ) and liver X receptor-α (LXRα) contribute to the inhibition of foam cell creation 
by causing cholesterol to leak into the extracellular space and induce the transcription of 
ABCA1 and ABCG1 [20-22]. Activation of the PPARγ/LXRα/ABCA1 pathway may prevent 
atherosclerosis by enhancing cholesterol efflux.

Inflammation plays an essential role in forming foam cells in the development and 
progression of atherosclerosis [23]. Foam cells created by phagocytosing ox-LDL due to 
vascular endothelial cell damage appear to be involved in the creation and progression of 
atheromatous plaques by secreting cytokines such as tumor necrosis factor-α (TNF-α) and 
interleukin (IL)-1, thereby inducing cell necrosis and thrombus formation [24,25]. In the 
inflammatory response, ox-LDL stimulates signaling in NF-κB and increases cholesterol 
accumulation, promoting the development of atherosclerosis [26]. NF-κB, one of the key 
regulators of inflammation, is an important transcription factor involved in plaque formation 
and progression of atherosclerosis [27]. Activation of NF-κB in macrophages accelerates 
atherosclerotic plaque formation by increasing the expression of inflammatory cytokines and 
chemokines, such as monocyte chemoattractant protein-1 (MCP-1), IL-12, and TNF-α [28-30]. 
Several current studies have verified that sirtuin 1 (SIRT1) is a key regulator of atherosclerosis 
formation and progression [31]. In macrophages and endothelial cells, SIRT1 suppresses 
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NF-κB transcriptional activity and reduces developmental responses by regulating pro-
inflammatory cytokines including TNF-α and IL-6 [32,33]. A recent study found that high-fat 
diet-induced NF-κB and inflammatory cytokines were reduced in SIRT1-overexpressing mice, 
thereby reducing hepatic lipid accumulation [34]. Therefore, suppressing inflammation 
and improving macrophages oxidized lipid influx and efflux mechanisms are essential to 
preventing atherosclerosis.

Anti-atherosclerosis drugs lower cholesterol levels, while side effects such as gastrointestinal 
symptoms, muscle pain, and insomnia have been reported [35]. Recent research has 
increasingly focused on phytochemicals derived from safe, natural products such as ferulic 
acid, anthocyanin, and resveratrol, which have no known side effects [36-38]. Notably, 
laquinimod has been shown to prevent atherosclerosis by inhibiting monocyte adhesion 
to human aortic endothelial cells, primarily through the reduction of inflammatory gene 
expression, including IL-6 and MCP-1 [39]. Additionally, the administration of puerarin to 
apolipoprotein E knockout mice has demonstrated a protective effect against atherosclerosis 
by decreasing the proliferation of vascular smooth muscle cells (VSMCs) and reducing the 
expression of IL-8 [40]. The phenolic compound p-coumaric acid (p-CA) is found in fruits, 
vegetables, and plants such as cranberries and tomatoes [41,42]. p-CA has been reported 
to have various activities such as antioxidant, anti-dementia, and anti-angiogenesis [43-
45]. Nevertheless, the study of atherosclerosis and its underlying mechanisms for p-CA 
is not elucidated. Therefore, this study explored how p-CA affects cholesterol efflux, lipid 
accumulation and inflammation-related gene expression in human monocyte THP-1 cell-
derived macrophages.

MATERIALS AND METHODS

Materials
p-CA, lipopolysaccharides (LPS), phorbol 12-myristate 13-acetate (PMA), and thiazolyl blue 
tetrazolium bromide (MTT) were purchased from Sigma-Aldrich (St. Louis, MO, USA). 
Human THP-1 cells were procured from the Korean Cell Line Bank (Seoul, Korea). The BCA 
protein assay kit and ox-LDL were procured from Thermo Fisher Scientific (Waltham, MA, 
USA). Unless otherwise stated, all other chemicals were procured from Sigma-Aldrich or 
Biosesang (Seongnam, Korea).

THP-1 cell culture and PMA-induced differentiation
Human THP-1 cells were cultured in RPMI 1640 (Welgene, Daegu, Korea) medium 
supplemented with 10% fetal bovine serum and 1% antibiotics (Welgene) in an atmosphere 
of 5% CO2 at 37°C. THP-1 cells were treated with PMA (1 μM) for 48 h to induce differentiation 
into macrophages. THP-1 cells hatched in the presence or absence of numerous 
concentrations of p-CA (0–20 μM) were cultured for 48 h and then treated with ox-LDL (20 
μg/mL) and LPS (500 ng/mL) for 24 h before harvest. Subsequently, the culture medium for 
cytokine secretion measurement was collected, the cells were washed twice with phosphate-
buffered saline (PBS; Biosesang), and the cells were harvested.

Measurement of cell viability
The cytotoxic effects of p-CA on PMA-activated THP-1 macrophages were measured using the 
MTT assay. The cells were seeded at 1 × 106 cells/well in 24-well plates and treated with p-CA 
for 48 h. The cells were treated with ox-LDL (20 μg/mL) and LPS (500 ng/mL) for 24 h before 
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the MTT assay. MTT solution (100 μL; 1 mg/mL) was added and incubated for a further 2 h. 
The precipitated formazan was solubilized in 1mg/mL of 100% dimethyl sulfoxide. Finally, 
plates were placed in a plate reader (EZRead 400 microplate reader; Biochrom, Cambridge, 
UK) to measure absorbance at 570 nm.

Oil red O staining
Cells were examined for lipid inclusion by Oil Red O staining. Briefly, cells were incubated 
with 4% paraformaldehyde (PFA) for 30 min at 4°C and then treated with Oil Red O solution 
(Sigma-Aldrich) for 30 min. Images were acquired using a Leica microscope. We used a 
×400 objective for all images. The images were collected using the Leica Application Suite X 
software (Leica Microsystems, Wetzlar, Germany). The degree of staining was quantified by 
measuring absorbance at 520 nm using an EZRead 400 microplate reader.

Enzyme-linked immunosorbent assay (ELISA)
Cell-free supernatants were collected, and cytokine levels were measured using IL-6 and TNF-α 
ELISA kits (Raybiotech, Norcross, GA, USA) to assess the impact of p-CA on cytokine production 
in PMA-activated THP-1 macrophages. Values were calculated based on a standard curve.

Immunoblotting analysis
Whole-cell lysates were prepared using RIPA buffer (Biosesang) supplemented with Halt™ 
protease and phosphatase inhibitor cocktail (Thermo Fisher Scientific). Nuclear lysates 
were prepared using a nuclear extraction buffer (20 mM HEPES, 0.4 mM NaCl, 1 mM 
EDTA, 1 mM EGTA, 1 mM dithiothreitol, and 1 mM PMSF) containing 10% NP-40. Lysate 
protein concentrations was measured by a BCA protein assay kit (Pierce, Rockford, IL, 
USA) following the manufacturer’s protocol. Sodium dodecyl sulphate-polyacrylamide 
gel electrophoresis separated proteins (20 μg), and protein bands were transferred onto 
a nitrocellulose membrane (Invitrogen, Waltham, MA, USA), reacted for 2 h in a blocking 
buffer (10 mM Tris-HCl [pH 7.5], 150 mM NaCl, 0.1% Tween 20, and 5% nonfat dry milk), 
and incubated with appropriate primary antibodies for 2 h. After incubation with the 
primary antibody and washing, the blot was then incubated with a diluted conjugated 
secondary antibody for 2 h. After applying the Western blotting luminol reagent (Santa Cruz 
Biotechnology, Dallas, TX, USA) to the blot, the results were analyzed using the ChemiDoc 
XRS+ Imaging System (BioRad, Hercules, CA, USA). Protein expression intensity was 
normalized to β-actin and quantified using ImageJ (a free online image analysis software).

Quantitative polymerase chain reaction (qPCR) analysis
Total RNA was isolated using a Trizol reagent per the manufacturer’s protocol (Thermo 
Fisher Scientific). Total RNA concentration and purity were assessed by measuring 260 and 
280 nm absorbance using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific). 
An Omniscript RT kit (QIAGEN, Hilden, Germany) synthesized first-strand cDNA from 1 μg 
of total RNA. SYBR green-based quantitative PCR was performed using a CFX96 Touch Real-
Time PCR Detection System (BioRad). All reactions were run in triplicate. Significance was 
determined from β-actin-normalized 2−∆∆CT value comparisons.

Immunofluorescence staining
After p-CA treatment, cells were washed twice in PBS, fixed with 4% PFA for 30 min at 4°C, and 
stained overnight with the NF-κB antibody (1:100 dilution; Santa Cruz Biotechnology). After 
air drying, the slides were incubated with a secondary antibody (1:2,000 dilution; Invitrogen) 
for 60 min, then stained with DAPI (100 ng/mL; Beyotime, Shanghai, China) at 37°C to stain 
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the nuclei, and the samples were washed 3 times with PBS. Slides were washed twice in PBS, 
air-dried, treated with a mounting medium, and examined at 400× magnification under a 
fluorescence microscope. Leica Application Suite X software collected images.

Statistical analysis
All experiments were repeated at least 3 times, and the data from each experiment were 
represented as mean ± SD. Significant differences among groups were determined by one-
way analysis of variance, followed by the Duncan multiple range test using SPSS version 25.0 
(SPSS Institute, Chicago, IL, USA). The specific significance values are specified in the figure 
legend, and statistical significance was defined as P < 0.05.

RESULTS

p-CA inhibits inflammation in LPS-induced THP-1 cells
The cytotoxicity of p-CA in the inflammatory environment caused by LPS treatment was 
measured through MTT. As a result, no cytotoxicity was observed for p-CA in both the 
LPS-treated and untreated groups (Fig. 1A). Thus, the non-toxic concentration range of 
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Fig. 1. Effect of p-CA on cell viability of LPS-treated THP-1 cells and upregulated expression of the inflammatory 
factor. (A) THP-1 monocytes were exposed to 1 μM of phorbol 12-myristate 13-acetate for 48 h, pretreated with 
p-CA at several concentrations and then induced with or without 500 ng/mL LPS for 24 h. Cell viability was 
measured using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. Experiments were 
performed in triplicate, and results are presented as the mean ± SD. The protein expression levels of NF-κB and 
SIRT1 were determined using immunoblotting (B). 
LPS, lipopolysaccharides; p-CA, p-coumaric acid; NF-κB, nuclear factor-κB; SIRT1, sirtuin 1. 
Different letters indicate significant differences (P < 0.05) as determined by Duncan’s multiple range test.



p-CA (5–20 μM) was used in subsequent experiments. Whether p-CA inhibited LPS-induced 
NF-κB and SIRT1 expression in the nucleus was confirmed using western blotting. As shown 
in Fig. 1B, the expression of NF-κB increased, and the expression of SIRT1 decreased in 
the inflammatory environment induced by LPS treatment. However, treatment with p-CA 
reduced the expression of NF-κB and increased the expression of SIRT1.

Effects of p-CA on foam cell formation
Using Oil red O staining, we evaluated whether p-CA suppressed lipid accumulation 
and foam cell formation in ox-LDL and LPS co-treatment in THP-1 macrophages. Fig. 2 
shows strong red staining in macrophages after co-treatment ox-LDL and LPS. However, 
lipid accumulation significantly declined in macrophages exposed to p-CA (20 μM) (P < 
0.05). These results showed that p-CA retarded the effect of ox-LDL and LPS on inducing 
lipoprotein accumulation and foam cell creation in THP-1 macrophages.

Effect of p-CA on lipid receptors expression in foam cells
To investigate whether there was reduced lipid accumulation by p-CA in ox-LDL and LPS 
co-treatment in THP-1 macrophages, we determined the expression degrees of CD36, SR-A1, 
and LOX-1 using immunoblotting and qPCR. Co-treatment with ox-LDL and LPS significantly 
increased the expression of CD36, SR-A1, and LOX-1. However, pretreatment with p-CA under 
combined ox-LDL and LPS-treated THP-1 macrophages resulted in significantly reduced 
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Fig. 2. Downregulation of lipid accumulation by p-CA treatment in THP-1 foam cells. THP-1 differentiated 
macrophages were cultured in the absence or presence of p-CA (0–20 μM) before 24 h. Then, the THP-1 cell 
was cultured in LPS (500 ng/mL) containing ox-LDL (20 μg/mL) for 24 h. (A) Cells were stained with Oil Red 
O; microphotographs were obtained using an optical microscope, magnification 400×. (B) Stained cells were 
dissolved in an isopropanol solution, and the staining intensity was measured at 520 nm. Experiments were 
performed in triplicate, and results are presented as the mean ± SD. 
LPS, lipopolysaccharides; ox-LDL, oxidized low-density lipoprotein; p-CA, p-coumaric acid. 
Different letters indicate significant differences (P < 0.05), as determined by Duncan’s multiple range test.



expression of CD36, SR-A1, and LOX-1 (P < 0.05) (Fig. 3A). Moreover, co-treatment with ox-
LDL and LPS significantly upregulated the mRNA levels of CD36, SR-A1 and LOX-1, but p-CA 
treatment significantly decreased the mRNA levels of CD36, SR-A1 and LOX-1 compared to the 
control (P < 0.05) (Fig. 3B and C). These results suggested that p-CA suppresses foam cell 
formation by inhibiting ox-LDL-and LPS-induced lipid accumulation.
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Fig. 3. Inhibition of SR-A1, CD36, and LOX-1 expression by p-CA treatment in THP-1 foam cells. The protein 
expression levels of SR-A1, CD36, and LOX-1 were determined using (A) immunoblotting. (B, C) The relative mRNA 
expression levels are shown after normalization against β-actin mRNA expression. (B) CD36 and (C) LOX-1 levels. 
The data are expressed relative to the mRNA levels found in untreated cells, which was arbitrarily defined as 1. 
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least in triplicate, and the results are presented as mean ± SD. Data were analyzed by applying the 2−ΔΔCT method. 
LOX-1, lectin-like oxidized low-density lipoprotein receptor-1; SR-A1, scavenger receptor class A1; LPS, 
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differentiation 36. 
Different letters indicate significant differences (P < 0.05) as determined by Duncan’s multiple range test.



Effect of p-CA on cholesterol efflux in foam cells
We examined the effect of p-CA on cellular cholesterol efflux in foam cells using 
immunoblotting and qPCR. As shown in Fig. 4A and C, co-treatment ox-LDL and LPS 
decreased PPARγ, LXRα, and ABCA1 expression compared to the control (P < 0.05). However, 
p-CA reversed PPARγ, LXRα, and ABCA1. Moreover, the mRNA level of PPARγ, LXRα, and 
ABCA1 was reduced in ox-LDL and LPS co-treatment compared to control, but p-CA treatment 
significantly increased the mRNA level of PPARγ, LXRα, and ABCA1 compared to the control (P 
< 0.05) (Fig. 4B, D and E). These results suggested that p-CA could prevent ox-LDL-and LPS-
induced foam cell formation by increasing cholesterol efflux.

Effects of p-CA on pro-inflammatory cytokine release and related gene 
expression via NF-κB pathway in foam cells
We examined inflammatory cytokines secretion and NF-κB expression by p-CA treatment 
in ox-LDL and LPS-induced foam cell formation. As shown in Fig. 5A and B, ELISA assays 
revealed that the inflammatory cytokines IL-6 and TNF-α secretion was significantly 
upregulated in ox-LDL and LPS-induced foam cell formation. Still, p-CA suppressed this 
overproduction of cytokines in ox-LDL and LPS-induced foam cell formation (P < 0.05). 
Protein expression results were similar to those obtained from the ELISA analysis (Fig. 5C-E). 
Conversely, cyclooxygenase-2 (COX-2) and TNF-α expression was downregulated by p-CA. In 
the early stages of atherosclerosis, NF-κB promotes the inflammatory response and facilitates 
the process of macrophages converting into foam cells by ingesting lipids [46]. As shown in 
Fig. 6A, p-CA treatment significantly reduced NF-κB expression (P < 0.05). p-CA significantly 
reduced the mRNA expression level of the NF-κB gene in foam cells compared to ox-LDL 
and LPS co-treatment (P < 0.05) (Fig. 6B). Also, Immunofluorescence analysis established 
the inhibitory effect of p-CA acid on ox-LDL and LPS-induced nuclear translocation of p65 
(Fig. 6D). These results indicate that p-CA may serve as potential inflammation inhibitors by 
reducing inflammation of foam cells in the early stages of atherosclerosis.

DISCUSSION

Cardiovascular diseases are recognized as major causes of death and disability worldwide 
[47]. In 2019, the World Health Organization reported that these diseases accounted for 
32% of the global mortality rate [48]. Meanwhile, according to the 2019 National Health 
and Nutrition Examination Survey, the prevalence of cardiovascular diseases in South Korea 
was reported to be 21.8% [49]. The mortality rate from cardiovascular diseases tends to rise 
sharply with age [50]. Atherosclerosis, a chronic inflammatory vascular disease, has the main 
characteristic of early lesions in which macrophages ingest ox-LDL to form foam cells [3,51]. 
Accumulation of lipid-containing foam cells accelerates plaque formation by abnormal 
cholesterol metabolism and increased inflammation [52]. A previous study reported that 
LPS treatment in human macrophage-derived foam cells with ox-LDL suppressed cholesterol 
efflux and increased inflammation [53,54]. Therefore, controlling the balance of cholesterol 
inflow and outflow to prevent the accumulation of lipids inside macrophages and to inhibit 
conversion into foam cells is an essential factor in preventing and treating atherogenesis 
[55]. Research on natural dietary agents such as ferulic acid, resveratrol, and curcumin 
focuses on foam cell formation inhibition and cholesterol efflux [56-58]. For this reason, it is 
necessary to improve the knowledge of biological mechanisms to elucidate the health effects 
of bio active molecules in natural products. p-CA is a phenolic compound and mainly has 
antioxidant and anti-diabetic effects [41,59,60].
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The development of atherosclerotic plaques begins with endothelial cell damage, allowing 
more LDL particles to pass through the vessel wall. These lipoproteins, particularly 
LDL, become trapped in the intima by the extracellular matrix. The LDL then undergoes 

783https://doi.org/10.4162/nrp.2024.18.6.774

Effect of p-coumaric acid in LPS and ox-LDL-induced foam cells

https://e-nrp.org

b
c

d

a

e

0

0.5

2.0

1.5

1.0

(D)(C)

CO
X-

2 
m

RN
A

ex
pr

es
si

on
 le

ve
l

(f
ol

d 
va

lu
e 

vs
. c

on
tr

ol
)

LPS (500 ng/mL)

p-CA (µM)

ox-LDL (20 µg/mL)

LPS (500 ng/mL)

p-CA (µM)

ox-LDL (20 µg/mL)

−

0

+

0

+

5

+

10

+

− + + + +

20

0

5,000

20,000

15,000

10,000

(B)

LPS (500 ng/mL)

p-CA (µM)

ox-LDL (20 µg/mL)

−

0

+

0

+

5

+

10

+

− + + + +

20

0

4,000

2,000

10,000

8,000

6,000

(A)

TN
F-

α 
(p

g/
m

L)

IL
-6

 (p
g/

m
L)

LPS (500 ng/mL)

p-CA (µM)

ox-LDL (20 µg/mL)

d

−

0

a

+

0

+

5

+

10

+

− + + + +

20

0

0.5

2.0

1.5

1.0

(E)

Re
la

tiv
e 

de
ns

ity
 o

f
TN

F-
α 

to
 β

-a
ct

in
 

LPS (500 ng/mL)

p-CA (µM)

ox-LDL (20 µg/mL)

d

−

0

c

b

d

a

+

0

+

5

+

10

+

− + + + +

20

−

0

+

0

+

5

+

10

+

− + + + +

20

TNF-α

COX-2

β-actin

b b
c

e

a

b

d
c
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modification and is taken up by macrophages using specialized cell surface SRs, forming foam 
cells. As more lipids accumulate, smooth muscle cells migrate to the lesion and encapsulate 
the plaque, forming a fibrous cap that protects the lipid core from the vessel lumen. These 
plaques can decrease blood flow or rupture, causing thrombosis and blocking blood flow [61].
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In the early stages of atherosclerosis, LDL has been known as an indicator of the onset 
of atherosclerosis, and both LDL and total cholesterol are considered major risk factors 
due to their high correlation with the development of atherosclerosis [62,63]. Khatana 
et al. [64] discovered that the primary mechanism of macrophage formation stems from 
excessive ox-LDL intake and disruptions in lipid efflux. Macrophages play an essential role in 
atherosclerosis development, as activated in the subendothelium in atherosclerotic lesions 
after engulfing LDL [65,66]. Circulating monocytes, recruited to the vascular lamina after LDL 
uptake, would differentiate into macrophages upon infiltration, and with over-loaded ox-LDL, 
these macrophages would transform into foam cells, which is a hallmark of atherosclerosis 
[66]. In other words, the formation of lipid-rich foam cells has a significant impact on the 
development of atherosclerosis [67]. Lipid-laden foam cells form fibrous atheroma and cause 
excessive inflammatory responses in endothelial cells. Additionally, ox-LDL is toxic to cells 
and induces the expression of inflammatory genes, thereby promoting the formation of foam 
cells. Ox-LDL induced macrophage migration in vitro by increasing NF-κB translocation [68]. 
Additionally, proinflammatory cytokines, including IL-6, COX-2, and TNF-α recruit monocytes 
to the vascular wall, increase ox-LDL uptake, and increase SR expression, thereby accelerating 
foam cell formation and atherosclerosis [69-71]. Many recent studies have demonstrated that 
phytochemicals inhibit ox-LDL uptake by reducing inflammation and the expression of SR-A1, 
CD36, and LOX-1, thereby attenuating foam cell formation in macrophages [72]. For instance, 
phenethyl isothiocyanate, sweroside, and eugenol have been shown to reduce macrophage 
foam cell formation and inflammation by downregulating CD36 expression and upregulating 
ABCA1 expression [73-75]. Therefore, the mechanisms that inhibit foam cell formation in the 
early stages of atherosclerosis could ultimately play a crucial role in preventing atherosclerosis 
and cardiovascular diseases. Our results indicate that the combined treatment of ox-LDL and 
LPS promotes the accumulation of lipids within cells and increases the amount of Oil red 
O-stained lipid particles deposited intracellularly. Our data show that a concentration of 20 
μM p-CA significantly decreased the formation of lipid droplets compared to untreated. We 
found that Oil red O staining exposed that p-CA lowered foam cell formation and lipid uptake, 
compared with ox-LDL and LPS-treated THP-1 cells. Like this study, Xue et al. [76] reported 
that quercetin reduced lipid accumulation in LPS-induced murine macrophages and inhibited 
foam cell formation. Liu et al. [77] reported that mulberry extract reduced lipid accumulation 
in ox-LDL-induced foam cells.

Atherosclerosis is a chronic inflammatory condition, and many studies have shown that 
various cytokines are essential in the advancement of atherosclerosis and the instability of 
plaques [78-80]. IL-6 is a cytokine that regulates the inflammatory response of leukocytes 
and other cells and is also considered to be a biomarker of inflammation [79]. TNF-α is 
deemed an effective pro-inflammatory mediator, which promotes the expression of different 
inflammatory cytokines and adhesion molecules and increases the apoptosis of VSMCs, thus 
promoting atherosclerosis and plaque instability [80]. NF-κB, a critical signaling pathway 
that affects the entire process of atherosclerosis from inflammatory response and plaque 
formation to rupture, increases cytokines expression and chemokines accelerates foam cell 
creation [81]. Recent cells and animal studies have exposed that inhibiting NF-κB, a regulator 
of macrophage inflammation, reduces foam cell formation [70,82,83]. Here, we confirmed 
that co‐treatment on LPS and ox‐LDL upregulated the protein expression of NF-κB, TNF-α, 
and COX-2 and reduced SIRT1 compared to the untreated cells. By contrast, p-CA treatment 
declined the expression of NF-κB, TNF-α, and COX-2 and upregulated SIRT1. Lin et al. 
[84] reported that baicalein suppressed inflammation through NF-κB signaling in ox-LDL-
induced endothelial umbilical vein cells. Kuo et al. [85] reported that ellagic acid inhibited 
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inducible nitric oxide synthase, IL-8 and IL-6 production through NF-κB and MAPK pathway 
in ox-LDL stimulated human umbilical vein endothelial cells. These findings suggest that 
p-CA suppresses ox-LDL and LPS-induced inflammation by regulating NF-κB expression. 
Foam cells are formed by lipid uptake and the loss of cholesterol homeostasis, where the 
absorption of ox-LDL by monocyte-derived macrophages is an early event in atherosclerosis 
[86]. When monocytes ingest lipoprotein particles and transform into macrophages, an 
imbalance arises between cholesterol uptake and efflux, resulting in the creation of foam 
cells [87]. Therefore, balancing cholesterol influx and efflux in macrophages is important 
to prevent lipid overload and atherosclerotic plaque formation. Many studies using natural 
compounds have recently been conducted to control the cholesterol mechanism.

Promoting cholesterol efflux to prevent excessive lipid accumulation is essential in avoiding 
macrophage-derived foam cell creation in atherosclerosis [88]. Cholesterol efflux is 
necessary as it activates extracellular cholesterol receptors like ApoA1 and HDL through 
membrane transporters such as ABCA1, ABC transporters are crucial in mediating excessive 
cholesterol removal from cells to maintain cholesterol homeostasis [19,89]. ABCA1, a 
membrane transporter abundant in macrophages, generates precursors for HDL particles 
by promoting the transfer of cholesterol and phospholipids from lipid-rich macrophages to 
lipid-free apoA1 [90]. In animal and human experiments, loss of ABCA1 or induced excessive 
cholesterol deposition in macrophages, causing an inflammatory response [91,92]. Recent 
studies have reported that the ABC transporter, a cholesterol efflux pathway, suppresses 
atherosclerosis by forming HDL [93]. LXRα and LXRβ are essential for protecting against 
cardiovascular diseases [94]. Members of the nuclear receptor superfamily of DNA-binding 
transcription factors, cholesterol sensor LXRs, promote reverse cholesterol transport, 
bile acid synthesis, and intestinal cholesterol efflux [95]. LXR ligand activation strongly 
upregulates gene expression of ABCG1 and ABCA1, triggering the cholesterol efflux pathway 
[96]. LXR-deficient mice accelerated atherosclerosis by accumulating cholesterol, whereas 
curcumin-fed mice inhibited the development of atherosclerosis by activating LXRα [97]. 
Studies in macrophages have shown that PPARγ regulates cholesterol influx, efflux, and 
metabolism. Activated PPARγ promotes ApoA1-mediated cholesterol efflux, inhibits the 
formation of macrophage-derived foam cells and reduces the accumulation of triglycerides 
in treated macrophages. PPARγ, which mediates adipogenesis, is primarily expressed in 
the heart, macrophages, and adipocytes and is associated with lipid accumulation in the 
liver, heart, and blood vessels [98,99]. In macrophages, PPARγ has been shown to increase 
ABCA1 levels and upregulate LXR expression [22,100]. It has been demonstrated that PPARγ 
activation can induce cholesterol clearance and ABCA1/G1 in macrophages via LXR-mediated 
transcriptional regulation [100]. Therefore, the interaction between ABCA1/LXR/PPAR is 
essential in maintaining cholesterol homeostasis and HDL metabolism. Franceschelli et 
al. [101] reported that hydroxytyrosol reduced foam cell formation and inflammation by 
regulating the PPAR/LXRα/ABCA1 pathway. Zhao et al. [102] reported that betulinic acid 
promoted ABCA1 and suppressed NF-κB in LPS-treated THP-1 cells. Yan et al. [103] reported 
that curcumin increased cholesterol efflux via ABCA1/PPARγ in LPS and IFNγ induced murine 
macrophage. Therefore, we discuss the ABCA1/ LXRα/ PPARγ agonists involved in regulating 
cholesterol efflux.

The SRs composed of CD36, SR-A, and LOX-1, identified for their role in mediating the 
uptake and internalization of modified lipoproteins, such as oxidized LDL, have generally 
been considered essential for foam cell formation [104]. LOX-1, expressed in macrophages 
and smooth muscle cells, is a transmembrane glycoprotein in endothelial cells that binds 
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to and internalizes ox-LDL [105]. LOX-1, the major ox-LDL receptor on macrophages, is 
induced by proinflammatory cytokine stimulation [106]. Recent animal and cell studies have 
reported that downregulation of LOX-1 expression inhibited atherosclerotic lesion formation 
and reduced inflammation [107,108]. Among SRs, SR-A and CD36 regulate inflammatory 
signaling pathways, including those that lead to macrophage foam cell formation, lesion 
macrophage apoptosis, and plaque necrosis during atherosclerosis [109]. CD36 and SR-A 
mediate the transfection of ox-LDL, accumulating lipids and promoting the production of 
NF-κB and inflammatory cytokines [110]. In a recent study, knockout mice of CD36 declined 
ox-LDL uptake, foam cell, and plaque formation in mice [111]. Li et al. [112] reported that 
paeonol inhibits lipid accumulation in macrophages by downregulating CD36. Wang et 
al. [113] reported that ganoderic acid A attenuated ox-LDL-mediated foam cell creation by 
reducing LOX-1 and CD36 in THP-1 cells. Shen et al. [114] conveyed that bergaptol inhibited 
foam cell creation by decreasing CD36 and SR-A1 in LPS and ox-LDL-mediated murine 
macrophages. Therefore, we focused on the mechanisms of foam cell formation inhibition by 
concentrating on the ABCA1/LXR/PPARγ signaling pathway related to cholesterol efflux and 
the CD36/LOX-1/SR-A1 signaling pathway related to lipid accumulation. Similar to previous 
research, our study found that p-CA increases cholesterol efflux by inducing ABCA1/LXRα/
PPARγ in THP-1 macrophages co-treated with ox-LDL and LPS while inhibiting lipid uptake 
by increasing SR-A1, CD36, and LOX-1.

Altogether, p-CA inhibits the formation of foam cells induced by co-treatment of ox-LDL 
and LPS in THP-1-derived macrophages. Foam cell formation, along with the increase in 
inflammatory cytokine production, NF-κB and target gene expression, is inhibited by p-CA in 
foam cells. These results demonstrate that p-CA is effective natural substances for preventing 
and treating atherosclerosis.
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