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a b s t r a c t

Background: Many researchers have evaluated the performance of outbreak detection algorithms with
recommended parameter values. However, the influence of parameter values on algorithm performance
is often ignored.
Methods: Based on reported case counts of bacillary dysentery from 2005 to 2007 in Beijing, semi-syn-
thetic datasets containing outbreak signals were simulated to evaluate the performance of five outbreak
detection algorithms. Parameters’ values were optimized prior to the evaluation.
Results: Differences in performances were observed as parameter values changed. Of the five algorithms,
space–time permutation scan statistics had a specificity of 99.9% and a detection time of less than half a
day. The exponential weighted moving average exhibited the shortest detection time of 0.1 day, while the
modified C1, C2 and C3 exhibited a detection time of close to one day.
Conclusion: The performance of these algorithms has a correlation to their parameter values, which may
affect the performance evaluation.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Following the outbreak of severe acute respiratory syndrome
[1] in 2003, there has been a growing recognition of the necessity
and urgency of early outbreak detection of infectious diseases. In
January 2004, the National Disease Surveillance, Reporting and
Management System were launched in China. The system which
covers 37 infectious diseases has the potential to provide timely
analysis and early detection of outbreaks. However, as the pas-
sive surveillance system relies on accumulated case and labora-
tory reports, which are often delayed and sometimes
incomplete, the opportunity to contain the spread of the disease
is often missed.

As increasing numbers of early outbreak detection algorithms
are now being used in public health surveillance [2–9], there is a
need to evaluate their performance. Due to a lack of complete
and real data pertaining from historical outbreaks, the perfor-
ll rights reserved.
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Medical University School of
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mance of these systems have been previously difficult to evaluate
[10]. Adding to these difficulties is the fact that the information ob-
tained from historical outbreaks may be heterogeneous, due to
changes in the outbreak surveillance criteria’s over time. In order
to compensate for missing or heterogeneous information, semi-
synthetic datasets can be created which contain the outbreak sig-
nals, using a software tool. By using this tool, the parameters of
the outbreak including the desired duration, temporal pattern
and the magnitude (based on a predefined criteria), can be spe-
cially set.

This approach has been documented in a number of previous
studies, which have compared the performance of early outbreak
detection algorithms using simulated outbreaks [11–18]. The
simulation enables the performance assessment and provides
much-need comparative findings about outbreak detection
algorithms. However, there are still limited studies examining
how the performance varies with the values of these algorithm
parameters. Our study aimed to observe the relationship
between the algorithms’ performance and their parameters
values. The outcomes of this study may help improve the
accuracy and objectivity of the evaluation of these algo-
rithms and provide guidelines for future research and
implementation.

http://dx.doi.org/10.1016/j.jbi.2009.08.003
mailto:wangcdc@sohu.com
http://www.sciencedirect.com/science/journal/15320464
http://www.elsevier.com/locate/yjbin
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2. Methods

2.1. Baseline data

Bacillary dysentery is one of the key epidemic potential diseases
in Beijing. It commonly occurs in summer and in regions with high
population densities. With economic development and improve-
ments in sanitary conditions in China, the incidence of bacillary
dysentery has decreased substantially from 1990 to 2003 [19].
Between 2004 and 2007, data from the National Disease Surveil-
lance Reporting and Management System showed that the average
incidence rate of bacillary dysentery was 235.9 cases per 100,000
in Beijing. Whilst there has been a substantial decline in the dis-
ease burden, bacillary dysentery continues to be a major public
health problem in Beijing.

The observed daily case counts of bacillary dysentery from 2005
to 2007 in Beijing were extracted from the National Disease Sur-
veillance Reporting and Management System [20] for this study.
The onset date of illness and area code at the sub-district level
was extracted for each reported case. This data was used as the
baseline for the outbreak simulation. Data from 2005 to 2006 were
used to adjust and optimize the parameter values of the algo-
rithms, while data from 2007 were used to evaluate the
algorithms.
2.2. Data simulation

The outbreak criteria was defined on the basis of the bacillary
dysentery reporting criteria specified in the National Protocol for
Information Reporting and Management of Public Health Emergen-
cies (Trial) [21]. This protocol was issued by the Health Emergency
Office of the Ministry of Health (MOH) at the end of 2005. In the
protocol, a bacillary dysentery outbreak was defined as the occur-
rence of 10 or more bacillary dysentery cases in the same school,
natural village or community within 1–3 days. Based on this defi-
nition, there was only one actual outbreak in the summer of 2007.
During this outbreak, 10 children from a middle school were clin-
ically diagnosed as having bacillary dysentery and four were
culture positive for Shigella sonnei. The first case became ill on
the evening of the 21st of July and was taken to hospital the next
day. Two cases were reported on the 22nd of July, a further four
on the 23rd of July, and two on the 24th July. As there were insuf-
ficient documents collected during the outbreak, a simulated out-
break signal had to be produced.

Before the simulation, the actual outbreak was excluded by
replacing actual data with a 7-day moving average for fear of con-
tamination. Our simulation approach used semi-synthetic data,
that was, authentic baseline data injected with artificial signals
[9]. The AEGIS-Cluster Creation Tool (AEGIS-CCT) was used to gen-
erate outbreak signals [22]. First, the duration was fixed at three
days and the outbreak magnitude varied from 10 to 20. The out-
break magnitude was fixed at 10 cases and the duration was varied
from one to three days.

The temporal progression of these outbreaks included a ran-
dom, a linear, and an exponential growth spread (12 signals for
each temporal progression pattern). A total of 36 different out-
break signals were finally simulated. Considering the spatial distri-
bution and seasonal variability of bacillary dysentery, we randomly
selected 30 (10 for each pattern) from a possible 100 sub-districts
(townships), where the incidence was higher than the average inci-
dence in Beijing, and then randomly selected one day as the start-
ing date of an outbreak from the high incidence seasons. The
remaining six outbreak signals were randomly added to the low
incidence seasons and areas. Simulations injected into the baseline
data from the selected sub-districts (2005–2006) were used to
observe the relationship between the algorithm performance and
the parameter value. This data allowed us to select the optimal
combination of parameter values. Simulations added to the base-
line data from 2007 were used to evaluate the algorithm. In order
to reduce sampling errors, means were calculated by repeating the
sampling 50 times.

2.3. Evaluation indices

Evaluation indices included sensitivity, specificity and time to
detection [14]. An outbreak was considered to be detected when
a signal was triggered: (1) within the same period as the start
and end date of the particular simulated outbreak; and (2) within
the same sub-district as what the simulation was geographically
located in. In our study, sensitivity was defined as the number of
outbreaks in which P1 day was flagged, divided by the number
of simulated outbreaks. Specificity was defined as the number of
days that were not flagged divided by the number of non-outbreak
days. Time to detection was defined as the interval between the
beginning of the simulated outbreak and the first day flagged by
the algorithm, divided by the number of simulated outbreaks. Time
to detection was zero, if the algorithm flagged a simulated out-
break on the first day. Time to detection was three, if the algorithm
did not produce a flag on any of the days during the period of the
simulated outbreak. Time to detection is an integrated index that
reflects both timeliness and sensitivity of an algorithm.

2.4. Evaluation criteria

We intended to find a simple and practical criterion to evaluate
the performance of these algorithms. Generally, the parameter val-
ues with the shortest time to detection were considered as prefer-
able. The disparity in specificity between the parameter values was
also taken into consideration. Priority was given to the value with
the higher specificity, if the time to detection was either equal to or
had a difference of less than half a day and the difference between
the specificities was >5.0%.

2.5. Outbreak detection algorithms

We compared the performance of five outbreak detection
algorithms, the exponential weighted moving average (EWMA),
C1-MILD (C1), C2-MEDIUM (C2), C3-ULTRA (C3) and the space–
time permutation scan statistic model.

We calculated the EWMA, using a 28-day baseline based on day
t � 30 through till day t � 3 within each sub-region [15]. If the ob-
served values were xi � N (l, r2), the weighted daily counts of each
sub-district were calculated as:

Zt ¼ k�Xt þ ð1� kÞZt�1 ð1Þ

UCL ¼ lþ k
r̂ffiffiffi
n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k

� �
½1� 1� k2t� �

�

s
ð2Þ

In the algorithm, k (0 < k < 1) was the weighting factor, and k
was the control limit coefficient [15,23]. They are the adjustable
parameters. Based on the range in values of k found in previous lit-
erature [23], k was set as 0 < k 6 3. The adjustment interval for k
and k was set as 0.1 and 0.5, respectively. The moving standard
deviation (S) was used as the estimate of r; and the moving aver-
age (MA) was used as the estimate of l.

The cumulative sum (CUSUM) algorithm keeps track of the
accumulative deviation between the observed and expected val-
ues. For CUSUM, the accumulated deviation St was defined as:

St ¼maxð0; St�1 þ ððXt � ðl0 þ krxtÞÞ=rxtÞÞ ð3Þ
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S_{0} = 0�krxt is the allowed shift from the mean to the detected.
St is the current CUSUM calculation, and St�1 is the previous CU-
SUM calculation. We found that there was an aberration when
the mean l0 shifted to l0 + krx� h was the decision value. In EARS,
k was set as 1 and when St > h = 2, an alarm would be trigged [24].

When the denominator rxt equals to zero, 0.2 was taken to re-
place zero in EARS. However, as both sides of the equation can
be multiplied (St = max (0, St�1 + ((Xt � (l0 + krxt ))/rxt)) > 2) by
rxt, the decision value was changed to hrxt (referred to as H).

BioSense originally implemented the C1, C2 and C3 methods but
has since modified the C2 method (referred to as W2). In our study,
we did not use the threshold; k or decision values set in EARS,
rather we adjusted these values to achieve a preferable efficiency
for aberration detection. Additionally, we did not use 0.2 when
rxt was 0, rather the actual value. Based on the previous literatures
[13,25,26], we determined the value range of H and k, as
3r 6 H 6 5r and 0 < k 6 1.5, respectively. The adjustment interval
for k and H was set as 0.1 and 0.5r, respectively. We modified the
three original CUSUM referred to as C1, C2 and C3 to C10, C20 and
C30 in the reporting of the results in this study.

The equation is written as

C10 ¼maxf0;Xt � ðMA1 þ kS1Þ þ Ct�1g ð4Þ
C20 ¼maxf0;Xt � ðMA2 þ kS2Þ þ Ct�1g ð5Þ

C30 was the sum of Ct, Ct�1 and Ct�2 derived from C20. MA1 was
the moving sample average and S1 was the moving standard devi-
ation of the case count reported from baseline. MA2 and S2 were the
moving sample average and moving standard deviation of the case
count reported during baseline period, with a 2-day lag. The mov-
ing standard deviation (S) was used as the estimate of r; and the
moving average (MA) was used as the estimate of l. The length
of the baseline comparison period for all three methods was 7-days
in order to account for the day of the week effect [13,14].

The space–time permutation scan statistic model utilizes thou-
sands to millions of overlapping cylinders to define the scanning
window, each of which is a possible candidate for an outbreak.
The circular base represents the geographical area of the potential
outbreak from zero to some designated maximum value. The
height of the cylinder represents the time period of a potential
cluster. The probability function for any given window is propor-
tional to [27,28]:

PðCAÞ ¼

P
z2A

CA
Czd

� � C �
P

Z2ACzdP
d2ACzd � CA

� �
Pc

d2aCzd

� � ð6Þ

where Czd was the observed number of cases in subzone z and dur-
ing day d. C was the total number of observed cases during the
whole study phase T for the whole study region. CA was the ob-
served case count scanned in cylinder A. The generalized likelihood
ratio (GLR) was calculated as a measure of the evidence that cylin-
der A contains an outbreak. Among the many cylinders evaluated,
the one with the maximum GLR constitutes the space–time cluster
of cases that is least likely to be a chance occurrence and, hence, is
the primary candidate for a true outbreak. The size and location of
the scanning window is under dynamic change [28]. The maximum
temporal cluster size was determined by considering the incubation
period of the disease studied. For bacillary dysentery, the average
incubation period was 1–3 days. Therefore, the maximum temporal
cluster size in this study was set as (1d, 3d, 5d and 7d). The maxi-
mum spatial cluster size can be determined in virtue of the geo-
graphical area or the proportion of the whole population. Since
data on the proportion of the population in each sub-district were
unavailable, the maximum spatial cluster size in this study was
set as (2, 5, 8 and 10 km), referring to the geographical area of each
sub-district. The performance was analyzed using P values of 0.05.
2.6. Data analysis

Analyses were undertaken using EXCEL, SPSS software (version
13.0 for Windows; SPSS Inc., Chicago, IL), AEGIS-CCT (available
from http://sourceforge.net/projects/chipcluster/), JAVA program-
ming (available from http://java.com/zh_CN/) and SaTScan (avail-
able from www.satscan.org). SPSS was used for data processing,
descriptive statistics and the chi-square test. The Bonferroni cor-
rection was applied for multiple comparisons to control the family
wise error rate. The significance level a for an individual test was
calculated by dividing the family wise error rate (0.05) by the num-
ber of tests [29]. EWMA and the cumulative sum were coded by
JAVA programming to find out whether the incidence level was
abnormal. SaTScan was used to analyze the clustering of cases in
different sub-districts in Beijing based on space–time permutation
scan statistics and whether the incidence level was abnormal.
3. Results

3.1. Adjustment and optimization of parameter

The correlation coefficients between the three evaluation indi-
ces (sensitivity, specificity and time to detection) and parameter
values were calculated. Table 1 showed the correlation coefficients
with Pearson’s r and P values. All algorithms showed strong rela-
tion between the evaluation indices and the parameter’ values, ex-
cept space–time permutation scan statistic. Great majority of the
correlation was statistically significant, with P values less than
0.05(two-tailed). However, for space–time permutation scan sta-
tistic, specificity showed no relation to the spatial cluster size. Only
when the maximum temporal cluster size was set as 3d, both sen-
sitivity and time to detection exhibited a significant correlation
with the spatial cluster size (P < 0.05).

Figs. 1–4 describe the average sensitivity, specificity and time to
detection of the five algorithms. The top plot of Fig. 1 shows the
sensitivity versus k values for the three control limit coefficients
(k). In all of the combinations of k and k values, the sensitivities
were greater than 90%. As k increased from 0 to 0.9, the sensitivity
also increased. The middle plot of Fig. 1 shows the specificity of the
three k values. Specificity of the three k values had a similar change
trend by k value, increasing until k = 0.3, and then declining grad-
ually. The bottom plot of Fig. 1 shows the effect of k values on
detection timeliness of EWMA. Time to detection declined gradu-
ally with the increasing k values. Among these combinations of dif-
ferent k and k values, k = 0.9, k = 1.0 showed the shortest detection
time, with a specificity of 89.5%. There were only two combination
of k and k values that had a detection time longer than half a day
(k = 0.1, k = 2.0 and k = 0.1, k = 3.0). Out of the remaining combina-
tions, there were 11 which had specificity greater than 89.5%.
Within these 11 combinations, k = 0.7, k = 3.0 showed the greatest
specificity (97.2%). According to the evaluation criteria, we con-
cluded that k = 0.7, k = 3.0 was the optimal parameter for EWMA.

Fig. 2 shows the influence of different H and k values on sensi-
tivity, time to detection and specificity. The sensitivity was shown
to decrease as k increased. As the sensitivity decreased, time to
detection increased. Among the combinations of H and k values,
(H = 3r, k = 0.1) had the shortest time to detection of 0.3 day (spec-
ificity: 55%). There were 14 combinations with a detection time of
half a day longer than (H = 3r, k = 0.1). All of these 14 combinations
had specificities greater than 55%, with the highest one being
95.6%, when H = 5r, k = 0.4. According to the evaluation criteria,
(H = 5r, k = 0.4) was found to be the optimal combination for C10.

http://sourceforge.net/projects/chipcluster/
http://java.com/zh_CN/
http://www.satscan.org


Table 1
Correlation between the three evaluation indices (sensitivity, specificity and time to detection) and parameter values for five algorithms with P values#.

Algorithms Sensitivity Specificity Time to detection

Pearson’s r P value Pearson’s r P value Pearson’s r P value

k value for EWMA (k = 1.0) — — 0.526 0.118 �0.897 0.000*

k value for EWMA(k = 2.0) 0.837 0.003* 0.684 0.029* �0.990 0.000*

k value for EWMA (k = 3.0) 0.921 0.000* 0.780 0.008* �0.990 0.000*

k value for C10 (H = 3r) �0.918 0.000* 0.969 0.000* 0.987 0.000*

k value for C10 (H = 4r) �0.973 0.000* 0.937 0.000* 0.992 0.000*

k value for C10 (H = 5r) �0.908 0.000* 0.904 0.001* 0.995 0.000*

k value for C20 (H = 3r) �0.759 0.000* 0.982 0.000* 0.973 0.000*

k value for C20 (H = 4r) �0.907 0.000* 0.961 0.000* 0.984 0.000*

k value for C20 (H = 5r) �0.938 0.000* 0.943 0.001* 0.959 0.000*

k value for C30 (H = 3r) �0.694 0.004* 0.998 0.000* 0.956 0.000*

k value for C30 (H = 4r) �0.818 0.000* 0.994 0.000* 0.962 0.000*

k value for C30 (H = 5r) �0.866 0.000* 0.995 0.000* 0.960 0.000*

Spatial cluster size for space–time permutation scan statistic (3d) �0.958 0.042* — — 0.962 0.038*

Spatial cluster size for space–time permutation scan statistic (7d) �0.835 0.165 — — 0.756 0.244
Spatial cluster size for space–time permutation scan statistic (10d) �0.746 0.254 — — 0.538 0.462

# Pearson’s r was calculated directly for those variables showing linear relation. While for those variables showing relation of log linear, Pearson’s r was calculated after
applying logarithmic transformation.

* P value was less than 0.05 (2-tailed).
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Fig. 1. Sensitivity, specificity and time to detection for EWMA with a combination
of k and k (k = 0.1, 0.2, ..., 1.0; k = 1.0, 2.0 and 3.0), shown from top to bottom.
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Fig. 2. Sensitivity, specificity and time to detection for C10 with a combination of k
and H (k = 0.1, 0.2, ..., 1.5; H = 3r, 4r and 5r), shown from top to bottom.
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The relationship between performance and the combination of
H and k values for C20 is shown in Fig. 3. We found that sensitivity
declined as k increased from 0.1 to 1.5. In comparison, specificity
and time to detection increased as sensitivity declined. The combi-
nation of (H = 3r, k = 0.1) showed the shortest detection time
(0.2d), with a specificity of 46.2%. Similarly, 14 combinations had
a detection time which was half a day longer than (H = 3r,
k = 0.1). The specificities for all of these 14 combinations was
greater than 46.2%, with the highest one recorded at 88.6%, when
H = 4r, k = 0.5. Accordingly, (H = 4r, k = 0.5) was thought the opti-
mal combination for C20.

Fig. 4 shows the influence of sensitivity, time to detection and
specificity of H and k values for C30. The specificity and time to
detection had an overall growth of k value. Sensitivity declined
gradually as k increased. Among the combinations of H and k
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Fig. 3. Sensitivity, specificity and time to detection for C20 with a combination of k
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0 0.5 1 1.5
75

80

85

90

95

100

Se
ns

iti
vi

ty
 (%

)

0 0.5 1 1.5
0

20

40

60

80

100

Sp
ec

ifi
ci

ty
 (%

)

0 0.5 1 1.5
0

0.5

1

1.5

k

Ti
m

e 
to

 d
et

ec
tio

n 
(d

)

H=3 σ

H=4 σ

H=5 σ

Fig. 4. Sensitivity, specificity and time to detection for C30 with a combination of k
and H (k = 0.1, 0.2, ..., 1.5; H = 3r, 4r and 5r), shown from top to bottom.
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values, (H = 3r, k = 0.1) had the shortest time to detection (0.1d),
with a specificity of 18.3%. Likewise, there were 14 combinations
with a detection time half a day longer than (H = 3r, k = 0.1). 13
out of these 14 combinations had specificities greater than
18.3%, the highest one being 73.9%, when H = 3r and k = 0.8. Con-
sequently, (H = 3r, k = 0.8) was thought as the optimal combina-
tion for C30.

We found that the space–time permutation scan statistics
exhibited no real difference in the specificity when the parame-
ter combinations were changed (Table 2). When the maximum
temporal cluster size was set as 3d and the maximum spatial
cluster size of 2 km, the detection time was found to be the
shortest. This combination also resulted in the highest specificity
and sensitivity. Thus the optimal parameter was taken as 3d
(maximum temporal cluster size) and 2 km (maximum spatial
cluster size).
Table 2
Average sensitivity, specificity and time to detection for space–time permutation scan sta

Spatial cluster
size (km)

Temporal cluster size = 3d Temporal cluster

Sensitivity
(%)

Specificity
(%)

Time to detection
(d)

Sensitivity
(%)

Sp
(%

2 96.9 99.9 0.2 90.6 99
5 84.4 99.9 0.5 81.3 99
8 84.4 99.9 0.5 84.4 99

10 81.3 99.9 0.6 81.3 99
3.2. Evaluation of the algorithms

Five commonly used algorithms were evaluated by comparing
the performance with their optimized parameters values. The per-
formance of these algorithms is shown in Table 3 with P values.
According to Bonferroni’s procedure, the significance level a for
an individual test was calculated by dividing the family wise error
rate (0.05) by four. This was found to be 0.0125. Of the algorithms
evaluated, space–time permutation scan statistics had a higher
average specificity than any other algorithms (P < 0.001), followed
by EWMA (95.2%), while C30 showed the lowest specificity (73.7%).
EWMA had the shortest time to detection (0.1d), while C10 showed
the longest time to detection of one day. Space–time permutation
scan statistics had a relatively longer time to detection compared
to EWMA (0.2d), but this difference was not statistically significant
(P = 0.081 > 0.0125). According to the evaluation criteria and statis-
tical test, we could conclude that space–time permutation scan
tistics with various combinations of spatial and temporal cluster size.

size = 7d Temporal cluster size = 10d

ecificity
)

Time to detection
(d)

Sensitivity
(%)

Specificity
(%)

Time to detection
(d)

.9 0.4 96.9 99.9 0.3

.9 0.6 81.3 99.9 0.6

.9 0.5 87.5 99.9 0.4

.9 0.6 84.4 99.9 0.5
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statistics was the optimal algorithm, followed by EWMA. Space–
time permutation scan statistics had a specificity of 99.9%, which
meant that only one false alarm occurred per 1000 days, whereas
EWMA was evaluated to trigger one false alarm for every 21 days.
4. Discussion

The burden of bacillary dysentery has long been thought to be
great in many developing countries [30]. Detecting outbreaks in
their early stages may prevent secondary infections, and subse-
quently an epidemic from occurring. The benefits of this extend
not only to the individual, but also to the community in terms of
morbidity prevented and costs saved.

From the case study in 2007, the outbreak was detected when
the accumulated number of cases reached the threshold (10 cases
in 3 days within the same geographic area). The problem with this
method of detection is that the optimal opportunity to curb an out-
break is often missed. In the event of a pandemic influenza or an-
other emerging inflection, missing this opportunity may have
national or global implications.

We observed that the effects of the same algorithm varied sig-
nificantly with different parameter values. For example, the time
to detection and specificity were 73.9% and 0.6d for C30 (H = 3r,
k = 0.8) versus 61.8% and 0.6d for C20 (H = 3r, k = 0.2). If the perfor-
mance of C30 and C20 were compared with these values, C30 (H = 3r,
k = 0.8) seemed to be better than C20 (H = 3r, k = 0.2) according to
the evaluation criteria, which might lead to the conclusion that C30

was more effective than C20. In fact, C20 (H = 4r and k = 0.4) had a
detection time of 0.6d and a specificity of 85.8%, 11.9% higher than
73.9% (C30, H = 3r, k = 0.8). In this case, C20 (H = 4r and k = 0.4)
were better than C30 (H = 3r and k = 0.8). The difference in perfor-
mance of the two algorithms is largely caused by the difference be-
tween parameters’ values. Therefore, parameter values should be
optimized prior to the performance evaluation of algorithms.

A wide range of outbreak detection algorithms are available
including: temporal, spatial and spatial–temporal [31]. In this
study, we used both the temporal and spatial information of the re-
ported cases. The temporal information refers to the onset date of
the illness, and spatial information refers to the sub-district where
the case currently resides at. CUSUM and EWMA are commonly
used to analyze the temporal data, as they can be adjusted to iden-
tify a meaningful change from the expected range of data values.
We calculated the daily case counts reported for each sub-district,
and then judged whether the change from the expected value was
significant within each sub-district. So in our study, CUSUM and
EWMA can also give us both the temporal and spatial information
of the signal.

Our study focused on the correlation between algorithm param-
eter values and their performance. By calculating the correlation
coefficient and comparing the performance of different algorithms
with various values, we observed a strong correlation between
them. The differences in the parameter values may have resulted
Table 3
Specificity and time to detection for five algorithms based on the optimize combinations

Algorithms Specificity (%)

Mean

EWMA (0.7, 3.0) 95.2
C10 (0.4, 5r) 95.7
C20 (0.5, 4r) 89.2
C30 (0.8, 3r) 73.7
Space–time permutation scan statistic (3d, 2 km) * 99.9

* Space–time permutation scan served as control group. According to Bonferroni’s pro
significance level a for an individual test was 0.05/4, being 0.0125.
from a difference in the performances among these algorithms.
Consequently, we recommend that before evaluating the effective-
ness of an outbreak detection algorithm, parameter values should
be optimized to remove the noise which has resulted from the po-
tential influence of parameter value for a given disease.

In our study we found that space–time permutation scan statis-
tics and the EWMA outperformed other algorithms both in terms
of timeliness and accuracy for detecting bacillary dysentery out-
breaks. EWMA applies weighting factors which decrease exponen-
tially. The choice of weighting factor k is the key for successful
outbreak detection. With proper k value, EWMA control procedure
can be adjusted to be sensitive to a small or gradual drift in the
process. We feel that adjusting k value should be an imperative
step before applying EWMA into practice. Space–time permutation
scan statistics consider both the temporal and spatial factors. The
scanning window is under dynamic change to avoid selection bias.
However, space–time scan statistics do not consider population
movements. In addition, space–time scan statistics can only iden-
tify clusters in simple regular shapes. If the cluster does not con-
form to a regular shape, the algorithm may have a poor
performance. Therefore, when space–time permutation scan statis-
tics are used to detect the outbreaks, it is imperative to understand
the cluster shape. Only in the right shape, can space–time permu-
tation scan statistics demonstrate a high detection efficacy. Aside
from these limitations, the use of space–time permutation scan
statistics allowed the early outbreak detection for bacillary
dysentery.

Previously, Hutwagner et al. [14] compared the time to detec-
tion with simulation based on influenza like illness and pneumonia
data. In her study, C1, C2 and C3 were found to have an increasing
time to detection. In comparison, we found a decline in the detec-
tion time for our modified C1, C2 and C3. These differences in the
time to detection calculations may explain the differences between
the two studies. In our study, when the algorithms failed to detect
the simulated outbreak, time to detection was set as the largest va-
lue (3 days). As we know, C1, C2 and C3 have increasing sensitivi-
ties. Obviously, as the sensitivity increased from C1 to C3, the
number of missed outbreaks decreased and consequently the time
to detection declined accordingly. An integrated time to detection
might be recommended, in order to address this limitation [14].

Theoretically, the optimal parameter value can maximize the
algorithm’s ability to detect aberration in disease incidence and
minimize the probability of producing a false alarm. The balance
between the accuracy and timeliness is still a matter of debate.
In our study, we set simple and practical evaluation criteria’s. Con-
sidering the time to detection integrating effect of sensitivity, we
simplified the three evaluation indices to two, time to detection
and specificity. The former reflected both the timeliness and sensi-
tivity, and the latter reflected the accuracy of outbreak detection.
We made timeliness the priority over accuracy due to bacillary
dysentery’s short incubation period and the fact that it can be both
food-borne and water-borne. When deciding which index should
be given the priority, practitioners should take the length of incu-
of parameter value.

Time to detection (d)

v2 Test lower CI Mean v2 Test lower CI

<0.001 0.1 >0.0125
<0.001 1.0 <0.001
<0.001 0.8 <0.001
<0.001 0.7 <0.001
— 0.2 —

cedure, the family wise error rate was 0.05, divided by the number of test. The



X. Wang et al. / Journal of Biomedical Informatics 43 (2010) 97–103 103
bation, the mode of transmission and the current situation (cli-
matic, social, demographic, economic factors, etc.) into
consideration.

The variation in patterns of the evaluation indices with the
change of parameter values observed in our study was found to
be consistent with previous related studies [9,12,14,15,32,33].
For example, Hutwagner et al. [14] observed that C1, C2 and C3
had increasing sensitivity, but a decreasing specificity as the sensi-
tivity increased. In our study, we also observed this change in sen-
sitivity and specificity in our modified C10, C20 and C30. In our study
we observed a growth in sensitivity and specificity as weighing
values increased from 0 to 0.3. It seemed that the range of weight-
ing values from 0.4 to 0.9 enabled a better performance. This rec-
ommendation was also made by Jackson et al. [15], who
suggested weighing values of 0.4 and 0.9 for EWMA.

There are several factors which may limit the generalization of
our findings. To apply these five algorithms, information on the
specific setting (workplaces, schools etc.) is often required. This
information is usually not available in the current National Disease
Surveillance Reporting and Management System in China. Conse-
quently, the sensitivity of the five algorithms may be less when a
bacillary dysentery outbreak occurs in a school, as the cases may
be scattered in different sub-districts. It is therefore important to
collect extra information on workplaces, schools and other units.
Due to a lack of actual outbreaks, we injected simulated outbreaks
into the baseline so we could undertake a performance assessment
on these outbreak detection algorithms. We changed the size, mag-
nitude, temporal progressive pattern, season and spatial distribu-
tion of bacillary dysentery, in order to have a variety of outbreak
conditions to test. As these are approximations, it is difficult to
evaluate how close our simulations came to the actual outbreak.
Consequently, further research is needed in predicting the actual
performance of these algorithms.
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