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Abstract
 Polygenic inheritance plays a central role in Parkinson disease (PD). A priority in elucidating PD etiology lies in defining 
the biological basis of genetic risk. Unraveling how risk leads to disruption will yield disease-modifying therapeutic targets 
that may be effective. Here, we utilized a high-throughput and hypothesis-free approach to determine biological processes 
underlying PD using the largest currently available cohorts of genetic and gene expression data from International Parkinson’s 
Disease Genetics Consortium (IPDGC) and the Accelerating Medicines Partnership-Parkinson’s disease initiative (AMP-
PD), among other sources. We applied large-scale gene-set specific polygenic risk score (PRS) analyses to assess the role of 
common variation on PD risk focusing on publicly annotated gene sets representative of curated pathways. We nominated 
specific molecular sub-processes underlying protein misfolding and aggregation, post-translational protein modification, 
immune response, membrane and intracellular trafficking, lipid and vitamin metabolism, synaptic transmission, endoso-
mal–lysosomal dysfunction, chromatin remodeling and apoptosis mediated by caspases among the main contributors to PD 
etiology. We assessed the impact of rare variation on PD risk in an independent cohort of whole-genome sequencing data 
and found evidence for a burden of rare damaging alleles in a range of processes, including neuronal transmission-related 
pathways and immune response. We explored enrichment linked to expression cell specificity patterns using single-cell 
gene expression data and demonstrated a significant risk pattern for dopaminergic neurons, serotonergic neurons, hypotha-
lamic GABAergic neurons, and neural progenitors. Subsequently, we created a novel way of building de novo pathways by 
constructing a network expression community map using transcriptomic data derived from the blood of PD patients, which 
revealed functional enrichment in inflammatory signaling pathways, cell death machinery related processes, and dysregu-
lation of mitochondrial homeostasis. Our analyses highlight several specific promising pathways and genes for functional 
prioritization and provide a cellular context in which such work should be done.
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Introduction

Although a great deal of progress in understanding the 
genetic underpinnings of familial and sporadic Parkinson 
disease (PD) has been made, the biological basis and cellu-
lar context of this risk remain unclear. We have learned that 
about 1–2% of PD is associated with a classical Mendelian 
inheritance pattern, while the majority of disease is driven 
by a complex set of factors in which polygenic risk seems to 
play a crucial role [3]. The fact that many of the genes that 
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contain disease-causing mutations also map within risk loci 
identified by genome-wide association studies (GWAS), sup-
ports the notion that common pathways are involved in both 
forms, and therefore, these pleomorphic genes might interact 
to regulate downstream common targets in both monogenic 
and non-monogenic PD [24].

Several common molecular processes have been sug-
gested as critical in PD pathophysiology, including lyso-
some mediated autophagy, mitochondrial dysfunction, 
endosomal protein sorting and recycling, immune response, 
alpha-synuclein aggregation, lipid metabolism and synaptic 
transmission [2]. A goal in much of this work has been to 
unify the proteins encoded by PD-linked genes into common 
pathways. For instance, some success has been seen in this 
regard within the autosomal recessive genes PINK1, PRKN, 
and DJ-1, which share a common cellular mechanism: mito-
chondrial quality control and regulation [12, 18]. However, 
despite this success, the PD genetics field is still facing the 
challenge of understanding how genetic risk variants may 
disrupt biological processes and drive the underlying patho-
biology of the disease. In the current era, using genetics to 
understand the disease process is a key milestone to facilitate 
the development of targeted therapies.

A priority in elucidating PD etiology lies in defining 
cumulative risk. GWAS continues to expand the number of 
genes and loci associated with disease [17], but the majority 
of these contributors individually exert small effects on PD 
risk. Current estimates of heritability explained by GWAS 
loci suggest that there is still an important component of risk 
yet to be discovered.

Here, we present a novel high-throughput and hypoth-
esis-free approach to detect the existence of PD genetic 
risk linked to any particular biological pathway. We apply 
polygenic risk score (PRS) to a total of 2199 curated and 
well-defined gene sets representative of canonical pathways 
publicly available in the Molecular Signature Database v7.2 
(MSigDB) [26] to define the cumulative effect of pathway-
specific genetic variation on PD risk. To assess the impact of 
rare variation on PD risk explained by significant pathways, 
we perform gene-set burden analyses in an independent 
cohort of whole-genome sequencing (WGS) data, includ-
ing 2101 cases and 2230 controls.

Additionally, we explore cell-type expression specific-
ity enrichment linked to PD etiology by using single-cell 
RNA sequencing data from brain cells. Furthermore, we 
use graph-based analyses to generate de novo pathways 
that could be involved in disease etiology by constructing a 
transcriptome map of network communities based on RNA 
sequencing data derived from the blood of 1612 PD patients 
and 1042 healthy subjects.

Subsequently, we perform summary-data-based Men-
delian randomization (SMR) analyses to prioritize genes 
from significant gene-sets by exploring possible genomic 

associations with expression quantitative trait loci (eQTL) in 
public databases and nominate overlapping genes within our 
transcriptome communities for follow-up functional studies.

Finally, we present a user-friendly platform for the PD 
research community that enables easy and interactive access 
to these results (https ://pdgen etics .shiny apps.io/pathw aysbr 
owser /).

Methods

Gene set selection representative of canonical 
pathways

The Molecular Signatures Database (MSigDB database 
v7.2) is a compilation of annotated gene sets from various 
sources such as online pathway databases, the biomedical 
literature, and manual curation by domain experts [15, 26]. 
We selected the collection “Canonical Pathways” composed 
of 2199 curated gene sets of pathways annotated from the 
following databases; Reactome (1499), KEGG (186), BIO-
CARTA (289), Pathway Interaction Database (196), Matri-
some project (10), Signaling Gateway (8), Sigma Aldrich 
(10), SuperArray SABiosciences (1) (http://softw are.broad 
insti tute.org/gsea/msigd b).

Genotyping data: cohort characteristics, quality 
control procedures, and study design

 To assess PD risk, summary statistics from Chang et al. 
[7] PD GWAS meta-analysis involving 26,035 PD cases 
and 403,190 controls of European ancestry were used as 
the reference dataset for the primary analysis to define risk 
allele weights. In this study, there were 7,909,453 imputed 
SNPs tested for association with PD with a minor allele fre-
quency (MAF) > 0.03. Recruitment and genotyping quality 
control procedures were described in the original report 
[7]. Individual-level genotyping data not included in Chang 
et al. [7] and from the last GWAS meta-analysis [17] was 
then randomly divided as the training and testing datasets. 
The training dataset used to construct the PRS consisted of 
7218 PD cases and 9424 controls, while the testing dataset 
to validate the results consisted of 5429 PD cases and 5814 
controls, all of European ancestry (see Fig. 1 for analysis 
workflow and rationale summary). Demographic and clini-
cal characteristics of the cohorts under study are given in 
Supplementary Table 1, online resource.

Additional details of these cohorts, along with detailed 
quality control (QC) methods, can be found in Nalls 
et  al. [17]. For sample QC, in short, individuals with 
low call rates (< 95%), discordance between genetic and 
reported sex, heterozygosity outliers (F-statistic cutoff 
of > − 0.15 and < 0.15) and ancestry outliers (± 6 standard 
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deviations from means of eigenvectors 1 and 2 of the 1000 
Genomes phase 3 CEU and TSI populations from princi-
pal components) were excluded. Further, for genotype QC, 

variants with a missingness rate of > 5%, minor allele fre-
quency < 0.05, exhibiting Hardy–Weinberg Equilibrium 
(HWE) < 1E−5 and palindromic SNPs were excluded. 

Fig. 1  Workflow and rationale summary
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Remaining samples were imputed using the Haplotype Ref-
erence Consortium (HRC) on the University of Michigan 
imputation server under default settings with Eagle v2.3 
phasing based on Haplotype Reference Consortium r1.1 
2016 (http://www.haplo type-refer ence-conso rtium .org), and 
variants with an imputation quality (R2 > 0.3) were included.

Polygenic effect scores for individual biological 
gene‑sets versus PD risk

A polygenic effect score (PES) was generated to estimate 
polygenic risk for each of the 2199 gene sets representative 
of biological pathways and then tested for association with 
PD. PES was calculated based on the weighted allele dose 
as implemented in PRSice2 (v2.1.1) (https ://githu b.com/
chois hingw an/PRSic e) [9]. Using the reference dataset, 
we selected variants with a summary statistic p value of 
association less than or equal to 0.05 and with MAF > 1%. 
We extracted these variants from the training dataset, and 
linkage disequilibrium (LD) clumping was performed using 
the default r2 = 0.1 and 250 Kb of distance. Then, 1000 per-
mutations of sample labels were implemented to generate 
association p-value estimates for each gene-set. A p-value 
threshold = 0.05 was considered to prefilter the inclusion of 
variants in an effort to avoid overfitting when comparing 
across gene sets as well as improve computational efficiency. 
The permutation test in the training dataset provided a 
Nagelkerke’s pseudo r2 value after adjusting for an estimated 
prevalence of 0.005 (aged population estimate as per Gasser 
and colleagues), age at onset for cases and age at examina-
tion for controls, gender, and 20 PCs to account for popula-
tion stratification. For those gene-sets surpassing Bonferroni 
multiple testing correction (p-value corrected = 0.05/2199 
gene-sets = 2.27E−5), PES was then tested in an independ-
ent cohort (testing dataset) in a similar way, and overlap-
ping gene-sets significantly associated with PD risk were 
reported. In an attempt to explore what biological processes 
were associated with PD risk after excluding known risk fac-
tors, the same analyses were performed after removing the 
90 known PD GWAS hits [17] and additional SNPs located 
1 Mb upstream and downstream from the signal. PES analy-
ses considered that all the variants conferred risk under the 
additive model and did not cover regulatory regions adjacent 
to the up or downstream of the genes or intergenic variants.

Whole‑genome sequencing data: cohort 
characteristics and quality control procedures

The following eight cohorts were utilized in this study; 
Biofind (https ://biofi nd.loni.usc.edu/), NABEC [11], LNG 
Path confirmed, PDBP (https ://pdbp.ninds .nih.gov/), 
NIH PD CLINIC, PPMI (https ://www.ppmi-info.org/), 
WELLDERLY and UKBEC. Clinical and demographic 

characteristics of the cohorts under study are summarised 
in Supplementary Table 2, online resource. Participants 
included sporadic PD cases clinically diagnosed by expe-
rienced neurologists. PD cases met criteria defined by the 
UK PD Society Brain Bank. This included 2101 cases and 
2230 controls. All individuals were of European descent 
and were not age- or gender-matched.

DNA sequencing was performed using two vendors: 
Macrogen and USUHS. For samples sequenced at Macro-
gen, one microgram of each DNA sample was fragmented 
by the Covaris System and further prepared according to 
the Illumina TruSeq DNA Sample preparation guide to 
obtain a final library of 300–400 bp average insert size. 
Libraries were multiplexed and sequenced on the Illumina 
HiSeq X platform. For samples sequenced by USUHS, 
DNA samples were processed using the Illumina TruSeq 
DNA PCRFree Sample Preparation kit, starting with 
500 ng input and resulting in an average insert size of 
310 bp. USUHS processed single-libraries on single lanes 
on HiSeq X flow cells, and the Macrogen protocol used 
multiplexing. Paired-end read sequences were processed 
in accordance with the pipeline standard developed by 
the Centers for Common Disease Genomics [5]. The 
GRCh38DH reference genome was used for alignment as 
specified in the FE standardized pipeline [31]. The Broad 
Institute’s implementation of this FE standardized pipe-
line, which incorporates the GATK [8] Best Practices is 
publicly available and used for WGS processing. Single-
nucleotide (SNV) and InDel variants were called from 
the processed WGS data following the GATK [8] Best 
Practices [8] using the Broad Institute’s workflow for joint 
discovery and variant quality score recalibration (VQSR). 
For quality control, each sample was checked using com-
mon methods for genotypes as well and sequence-related 
metrics. Using Plink v1.9 [6], each sample’s genotype 
missingness rate (< 95%), heterozygosity rate (exceed-
ing ± 0.15 F-stat), and gender were checked. The King 
v2.1.3 kinship tool (8) was used to check for the presence 
of duplicate samples. Sequence and alignment related met-
rics generated by the Broad’s implementation of the FE 
standardized pipeline were inspected for potential qual-
ity problems. This included the sample’s mean sequence 
depth (< 30×) and contamination rate (> 2%), as reported 
by VerifyBamID (9), and single nucleotide variant count 
as reported by Picard’s CollectVariantCallingMetrics (< 3 
StDev) based on the sample’s genomic vcf (gvcf). Princi-
pal components (PCs) were created for each dataset using 
PLINK. For the PC calculation, variants were filtered for 
minor allele frequency (> 0.01), genotype missingness 
(< 0.05), and HWE (P≥1E−6), and minor allele count < 3. 
GCTA [33] was used to remove cryptically related at the 
level of first cousins or closer (sharing proportionally more 
than 12.5% of alleles).

http://www.haplotype-reference-consortium.org
https://github.com/choishingwan/PRSice
https://github.com/choishingwan/PRSice
https://biofind.loni.usc.edu/
https://pdbp.ninds.nih.gov/
https://www.ppmi-info.org/
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Gene‑set burden analyses

The sequence kernel association test-optimal (SKAT-O) [14] 
was implemented using default parameters in RVTESTS 
[35] to determine the difference in the aggregate burden 
of rare coding genetic variants (minor allele count ≥ 3) 
between PD cases and controls for the nominated gene-sets 
by PRS. SKAT-O was applied to aggregate genetic infor-
mation across defined genomic regions to test for associa-
tions with gene-sets of interest under two frequency levels 
(MAF ≤ 0.03 and MAF ≤ 0.01) and three functional cate-
gories (missense, loss of function and Combined Annota-
tion Dependent Depletion (CADD) score > 12 representing 
between 1 and 10% predicted most pathogenic variants in the 
genome). Covariates including gender, age at onset (cases), 
age at enrollment (controls), and 10 PCs were included to 
adjust the analyses. ANNOVAR was used for variant anno-
tation [30].

Network expression community map in gene 
expression data

Baseline peri-diagnostic RNA sequencing data derived from 
the blood for 1612 PD patients and 1042 healthy subjects 
available from the Parkinson Progression Marker Initiative 
(PPMI) was used to construct a network of expression com-
munities based on a graph model with Louvain clusters. 
This cleaned and normalized data was downloaded from 
the Accelerating Medicines Partnership for Parkinson’s 
disease (AMP-PD) on March 1st, 2020. Library prepara-
tion, protocol, and transcriptomic quality control procedures 
can be found in detail in the original source https ://amp-pd.
org/trans cript omics -data. Prior to analyses, all data for the 
baseline visit were extracted. Data for each gene was then 
z-transformed to a mean of zero and a standard deviation 
of one. Scikit-learn’s extraTreeClassifier option was used 
to extract coding gene features for inclusion in the network 
builds that are likely to contribute to classifying cases versus 
controls under default settings in the feature selection phase, 
leaving 8.3 k protein-coding genes for candidate networks 
[22]. Following this feature extraction phase, controls were 
excluded, and case-only correlations were calculated for all 
remaining gene features. Next, this correlation structure was 
converted to a graph object using NetworkX [28]. We fil-
tered for network links at positive correlations (upregulated 
in cases together) between genes greater than or equal to 0.8. 
Subsequently, the Louvain algorithm was employed to build 
network communities within this graph object derived from 
the selected feature set [1].

Finally, pathway enrichment analysis within expression 
communities was performed to further dissect its biologi-
cal function using the function g:GOSt from g:ProfileR 
[19]. The significance of each pathway was tested by 

hypergeometric tests with Bonferroni correction to calculate 
the error rate of each network.

Cell‑type polygenic risk enrichment analysis

Single-cell RNA sequencing data [25] based on a total of 
9970 cells obtained from several mouse brain regions (neo-
cortex, hippocampus, hypothalamus, striatum, and midbrain) 
was used to explore cell types associated with PD risk. There 
are certainly differences between the mouse and the human 
brain. We used the package EWCE (v. 0.99.2) (https ://githu 
b.com/Natha nSken e/EWCE) to perform mouse to human 
homolog gene conversion. The package contains a dataset 
with the human orthologs of Mouse-Genomics-Informatics 
(MGI) mouse genes (mouse_to_human_homologs list). 
Out of the 14,579 mouse genes reported in Supplementary 
Table 4, Skene et al. [25], a total of 13,533 genes (92.82%) 
were converted to human HGNC symbols. Only genes with a 
high-confidence (1:1 mapping) were retained. As described 
in Skene et al. [25], a large fraction of non-matches is rea-
sonable given evolutionary differences between humans and 
mice. The dataset described by Skene et al. [25], includes 
the specificity of expression for each gene within each cell 
type where values range from zero to one and represent the 
proportion of the total expression of a gene found in one 
cell type compared to all cell types. The closer the score is 
to 1, the more specific is the expression in that particular 
cell type. Taking this into account, PRS R2 (variance) was 
calculated within each cell type using PRSice2 (v2.1.1) as 
previously described in this manuscript. Cell type expression 
specificity levels ranging from 0 to 1 were then distributed 
in deciles. If a particular cell type is associated with PD 
risk, it is expected to observe a shift in the curve distribu-
tion with low PRS  R2 in non-specific gene sets (i.e., lower 
deciles) and a higher PRS R2 in more specific gene sets (i.e., 
higher deciles). Linear regression adjusted by the number 
of SNPs included in the PRS was performed to assess the 
trend of increased PRS R2 per decile of cell-type expression 
specificity.

Summary‑data‑based Mendelian randomization 
quantitative trait loci analyses

Two-sample SMR was applied to explore the enrichment of 
cis eQTLs within the 46 gene-sets nominated by our large-
scale PRS analysis. The methodology can be interpreted as 
an analysis to test if the effect size of genetic variants influ-
encing PD risk is mediated by gene expression or methyla-
tion to prioritize genes underlying these gene-sets for fol-
low-up functional studies [37]. QTL association summary 
statistics from well-curated expression datasets were com-
pared to Nalls et al. [17] summary statistics after extracting 
the gene-set-specific independent SNPs considered as the 

https://amp-pd.org/transcriptomics-data
https://amp-pd.org/transcriptomics-data
https://github.com/NathanSkene/EWCE
https://github.com/NathanSkene/EWCE
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instrumental variables. Expression datasets used for these 
analyses include estimates for cis-expression from the Gen-
otype-Tissue Expression (GTEx) Consortium (v6; whole 
blood and 10 brain regions), the Common Mind Consortium 
(CMC; dorsolateral prefrontal cortex), the Religious Orders 
Study and Memory and Aging Project (ROSMAP), and the 
Brain eQTL Almanac project (Braineac; 10 brain regions). 
Additionally, we studied expression patterns in blood from 
the largest eQTL meta-analysis so far [29]. LD pruning 
and clumping were carried out using default SMR proto-
cols (http://cnsge nomic s.com/softw are/smr). Multi-SMR 
p-values (gene-level expression summaries for eQTLs) were 
adjusted by Bonferroni multiple test correction considering 
the number of genes tested per gene-set, and HEIDI was 
used to detect pleiotropic associations between the expres-
sion levels and PD risk that could be biasing the model at 
a p-value < 0.01 [32]. Effect estimates represent the change 
in PD odds ratio per one standard deviation increase in gene 
expression. Enrichment of cis expression was assessed per 
gene-set and per tissue. The number of genes tested per 
gene-set were Bonferroni corrected, and a Chisq test was 
applied to assess whether the proportion of QTLs per gene-
set was significantly higher than expected by chance.

Results

Large‑scale PES analysis nominates biological 
processes involved in PD risk

Out of the 2199 gene sets representative of biological pro-
cesses included in this report, 279 gene-sets were signifi-
cantly associated with PD risk in the training phase (Bon-
ferroni threshold for significance 0.05/2,199 = 2.27E−5) 
(Supplementary Table 3, online resource, https ://pdgen 
etics .shiny apps.io/pathw aysbr owser /). Following the same 
analysis workflow, a total of 46 gene sets were replicated in 
the testing phase and nominated as potentially linked to PD 
risk through common genetic variation (Table 1, Fig. 2a, b).

Supplementary Table 4, (online resource) summarizes 
what SNPs within the 90 risk loci located up to 1  Mb 
upstream and downstream from the GWAS signal were 
included for each of the 2199 gene-sets as part of the large-
scale polygenic risk score analyses for both the training and 
testing phases.

After excluding the 90 PD risk loci and SNPs located 
1 Mb upstream and downstream from the GWAS hits, six 
gene sets including adaptive immune system, innate immune 
system, vesicle mediated transport, signaling by G protein-
coupled receptors (GPCR) ligand binding, metabolism of 
lipids and neutrophil degranulation remained significant, 
suggesting as yet unidentified risk within these gene-sets 
(Bonferroni threshold for significance 2.27E−5) (Table 2, 

Fig. 2c, d). For an easy interpretation of these findings, sig-
nificant gene-sets were clustered in hierarchies according 
to genetic redundancy, as highlighted in Supplementary 
Figs. 1, 2, online resource. Additionally, considering genetic 
pleiotropy across the 46 gene-sets, we prioritized the top 1% 
of genes involved in multiple pathways as a way of nominat-
ing promising PD candidate genes (Supplementary Table 5).

In an attempt to define etiological subtypes of PD, we 
performed Uniform Manifold Approximation and Projection 
for Dimension Reduction Analysis (UMAP) to explore the 
possibility of clustering different subgroups of patients that 
could be enriched for risk in certain molecular pathways. 
UMAP analysis showed two different clusters of patients 
according to the pathway-specific PES (subgroup 1 and sub-
group 2; Supplementary Fig. 3a, online resource). Subgroup 
1 was not enriched on any LRRK2 G2019S carriers, while 
all patients from subgroup 2 (N = 100) were LRRK2 G2019S 
carriers. When LRRK2 gene boundaries were removed from 
the analysis and PES were calculated per individual, no 
subgroups were observed. We assume that since LRRK2 
G2019S is the main risk factor for PD, this variant over-
weights PES for those pathways in which LRRK2 plays a 
role in (Supplementary Fig. 3b, online resource). This would 
suggest that pathway-specific PES by itself is not an accu-
rate way to define etiological subgroups of the disease since 
association does not involve prediction. Future multimodal-
ity studies are necessary to increase discriminative accuracy 
given the heterogeneous nature of PD.

Gene‑set‑based burden analyses identifies 
gene‑sets involved in PD risk through rare variation

To test whether the same biological processes are enriched 
by rare coding variants, we implemented gene-set based 
SKAT-O in a large WGS cohort composed of 2101 PD 
cases and 2230 controls. Out of the 46 gene-sets signifi-
cantly associated with PD risk through common variation, 
20 were linked through low-frequency genetic variation 
(MAF ≤ 3%) and 19 through rare variation (MAF ≤ 1%), 
at a p-value < 0.05 (Table 3). At a MAF threshold ≤ 3%, 12 
gene-sets remained significantly associated with PD risk 
when focusing only on missense mutations, 4 when con-
sidering only loss of function variants and 6 when filtering 
by CADD score > 12 (~ among the 1–10% most pathogenic 
variants in the genome) (Table  3). At a MAF thresh-
old ≤ 1%, 12 gene-sets remained significantly associated 
with PD risk when focusing only on missense mutations, 
four when considering only loss of function variants and 
five when filtering by CADD score > 12 (Table 3). Con-
sidering a more stringent p-value (Bonferroni threshold 
for significance 0.05/46 gene-sets = 0.001), five gene sets 
including Alzheimer’s disease, Parkinson’s disease, Trans-
mission across chemical synapses, Neuroactive ligand 

http://cnsgenomics.com/software/smr
https://pdgenetics.shinyapps.io/pathwaysbrowser/
https://pdgenetics.shinyapps.io/pathwaysbrowser/
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receptor interaction and GPCR ligand binding remained 
significant at MAF ≤ 3%. When focusing on MAF ≤ 1%, 
the above mentioned gene sets in addition to Aspargine-N-
glycosylation were significantly associated with PD risk.

After removing PD GWAS hits and SNPs located 1 Mb 
upstream and downstream, innate immune system and 
signaling by GPCR remained significantly associated with 
PD suggesting that rare variation within these gene-sets 
contributes to PD heritability (Supplementary Table 6, 
online resource).

In an effort to prioritize the top genes within significant 
gene-sets showing the highest cumulative effect on PD 
risk, individual gene-based SKAT-O analyses were per-
formed considering a MAF threshold ≤ 3% and three func-
tional categories (missense, loss of function and CADD 
score > 12). Using this approach, gene-level prioritization 
is highlighted in Supplementary Table 7, online resource.

Transcriptome map reveals expression modules 
linked to PD etiology

Using Louvain community detection, we generated tran-
scriptomic networks among PD cases. We identified 54 
de novo expression communities (Supplementary Table 8, 
Supplementary Fig. 4, online resource). Overall, the com-
munities generated were relatively robust, with a modu-
larity score of 0.523 (modularity ranges from − 1 to 1, 
with closer to 1 suggesting stronger connectivity between 
network members). The 54 network communities were 
found to be enriched via hypergeometric tests after Bon-
ferroni correction for processes relating to immune sys-
tem response, ribosome RNA processing to the nucleus 
and cytosol, cell cycle, oxidative stress, and mitochon-
drial impairment (Fig. 3, Supplementary Table 9, online 
resource).

Dopaminergic neurons, serotonergic neurons 
and neural progenitors play a role on PD etiology

We used single-cell RNA sequencing data from 24 different 
brain cell types [25, 34]. For each of those cell types, genes 
were clustered into 10 gene sets according to the level of 
expression specificity, ranging from 0 to 1 (0 means that a 
gene is not expressed at all and 1 means the gene expression 
is highly specific for that cell type). Then, PRS was calcu-
lated per quintile of specificity within cells. Increased PRS 
R2, consistent with increased cell expression specificity, was 
observed for embryonic dopaminergic neurons, serotoner-
gic neurons, hypothalamic GABAergic neurons, and neural 
progenitors at P < 0.05 in both the training and replication 
phases (Supplementary Table 10, online resource).Ta
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Mendelian randomization prioritizes pathways 
and genes based on their functional consequence

We aimed at nominating genes within significant gene-
sets contributing to PD etiology by assessing changes in 

expression across blood and brain. Out of the 46 gene-sets 
of interest, 7 showed a significant enrichment of QTLs 
more than expected by chance in the brain, 1 in substantia 
nigra and 11 in the blood (Supplementary Table 11, online 
resource).

Fig. 2  Canonical pathways associated with Parkinson disease risk 
through common genetic variation based on PES analyses. For-
est plots showing polygenic risk score estimates for the significant 
canonical pathways in the replication phase including (a) and remov-

ing (b) PD known risk loci ± 1Mb upstream and downstream. Esti-
mates of variance explained by PRS for the significant canonical 
pathways including (c) or excluding (d) PD known risk loci ± 1Mb 
upstream and downstream
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SMR revealed functional genomic associations with 
eQTLs in 201 genes (Supplementary Table  12, online 
resource) of which 88 were found to be part of the network 
communities significantly associated with PD in our tran-
scriptome community map (Supplementary Table 13, online 
resource).

Discussion

Despite success at uncovering genetic risk factors associ-
ated with PD, our understanding of the molecular processes 
involved in disease is still limited. Using the largest genomic 
and transcriptomic PD cohorts currently available, our study 
sought to define both cumulative genetic risk and functional 
consequences linked to myriad biological pathways in an 
unbiased and data-directed manner. To our knowledge, 
there are no previous reports in the PD field where a similar 
approach has been implemented to explore the contribution 
of thousands of molecular processes on both the trigger 

(risk) and the effect (expression changes) in a systematic 
manner.

Our large-scale PRS analysis identified multiple bio-
logical pathways associated with PD risk through common 
genetic variation. Overall, our results found that molecular 
processes underlying protein misfolding and aggregation, 
post-translational protein modification, immune response, 
membrane and intracellular trafficking, lipid metabolism, 
synaptic transmission, endosomal–lysosomal dysfunction 
and apoptosis mediated by initiator and executioner caspases 
are among the main contributors to PD etiology.

PD heritability remains incompletely deciphered by the 
genes and variants identified to date [17]. Here, we dem-
onstrate that some of these significant gene-sets contribute 
to the heritability of PD outside of what is explained by 
current GWAS [17]. Notably, our genetic analyses provide 
definitive evidence for the role of several signal transduction 
mechanisms affecting adaptive and innate immune response, 
vesicular-mediated transport, and lipid metabolism on the 
risk for PD even after excluding PD known GWAS loci. The 
present study suggests that additional targets within these 

Fig. 2  (continued)
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pathways are yet to be identified and prioritizes genes for 
follow-up functional studies.

A novel aspect of our study is that we nominate pathways 
whose implication on PD pathology has been poorly studied 
or debatable before. Our results support the hypothesis that 
chromatin remodeling and epigenetic mechanisms contribute 
to the development of PD [13]. An appropriate balance and 
distribution of active and repressed chromatin is required 
for proper transcriptional control, maintaining nuclear archi-
tecture and genomic stability, as well as regulation of the 
cell cycle [10]. Dysfunction in the epigenetic machinery has 
been shown to play a role in the etiology of a number of 
neurodegenerative and neurodevelopmental disorders either 
by genetic variation in an epigenetic gene or by changes in 
DNA methylation or histone modifications [13]. Similarly, 
our approach supports a role for vitamin metabolism on PD 
risk. Vitamins are crucial cofactors in the metabolism of 
carbohydrates, fat, and proteins, and vitamin deficiency has 
been widely proven to promote oxidative stress and neuro-
inflammation [16].

Interestingly, some of the nominated gene-sets seem to 
span the etiological risk spectrum in which both common 
and rare variation contribute to PD susceptibility. In con-
cordance with previous studies [21], our study identified an 
increased collective effect of rare lysosomal related vari-
ants in PD etiology. Additionally, we found evidence for a 
burden of rare damaging alleles in a range of specific pro-
cesses, including neuronal transmission-related pathways 
and immune response.

The present study represents a significant step forward 
in our understanding of important connections between 
genetic factors, functional consequences and PD etiology. 
We constructed a transcriptome map by clustering de novo 
pathways relevant to disease pathology. Functional charac-
terization analysis of these expression communities revealed 
that dysregulation of the immune system and inflammatory 
response including neutrophil degranulation, interferon 
alpha beta signaling, and other cytokine-related signaling 
pathways are key disease processes. Strikingly, when look-
ing at molecular mechanisms significantly associated with 
PD risk, a cumulative effect of rare loss of function vari-
ants was found to be linked to disease through the adaptive 
immune system pathway. Both inflammation and autoim-
mune response have been widely studied with regard to PD 
etiology. Previous genetic studies have identified risk loci 
spanning key immune-associated genes such as BST1 (bone 
marrow stromal cell antigen 1), a gene known to play role 
in neutrophil adhesion and migration, and HLA (human 
leukocyte antigen) [17, 23]. In support of this, it has been 
reported that α-synuclein-derived fragments act as antigenic 
epitopes displayed by HLA receptors, where both helper and 
cytotoxic T-cell responses are present in a high percentage 
of patients when tested [27].Ta
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Table 3  Association of canonical pathways and PD risk through rare variation

Gene set Functional subcategory MAF < 3 MAF < 1

Num SNP SKAT-O P Num SNP SKAT-O P

Activation of AMPK downstream of NMDARS (REACTOME) Missense 84 0.633 73 0.680
Loss of function 31 0.015 28 0.892
CADD > 12% 2 0.491 2 0.491

Adaptive immune system (REACTOME) Missense 3369 0.061 3128 9.38E−02
Loss of function 1724 0.003 1589 6.79E−03
CADD > 12% 93 0.332 86 1

Alpha synuclein pathway (PID) Missense 130 0.654 121 0.653
Loss of function 82 0.023 77 1.32E−02
CADD > 12% 3 0.006 3 5.95E−03

Alzheimers disease (KEGG) Missense 594 2.15E−10 563 1.02E−06
Loss of function 375 0.739 343 0.326
CADD > 12% 13 0.075 13 0.075

Amyloid fiber formation (REACTOME) Missense 308 0.026 289 0.204
Loss of function 120 0.086 112 4.86E−02
CADD > 12% 6 1 4 1

Apoptotic cleavage of cellular proteins (REACTOME) Missense 356 0.073 332 0.686
Loss of function 122 0.791 115 0.796
CADD > 12% 5 0.616 5 0.616

Apoptotic execution phase (REACTOME) Missense 397 0.111 372 0.631
Loss of function 128 0.475 120 0.572
CADD > 12% 7 0.794 7 0.794

Asparagine N linked glycosylation (REACTOME) Missense 2956 0.021 2728 6.14E−04
Loss of function 1226 0.233 1123 0.448
CADD > 12% 69 0.544 68 0.427

Caspase mediated cleavage of cytoskeletal proteins (REACTOME) Missense 159 0.313 151 0.516
Loss of function 33 0.737 29 0.534
CADD > 12% 1 0.691 NA NA

Chromatin organization (REACTOME) Missense 1213 0.284 1134 0.622
Loss of function 680 0.813 628 0.777
CADD > 12% 24 0.794 23 0.594

Class B 2 secretin family receptors (REACTOME) Missense 327 0.452 298 0.080
Loss of function 109 0.297 97 0.157
CADD > 12% 15 0.525 13 0.592

Clathrin mediated endocytosis (REACTOME) Missense 668 0.196 632 0.240
Loss of function 410 0.256 363 0.892
CADD > 12% 15 0.295 15 0.295

Copi dependent GOLGI to ER retrograde traffic (REACTOME) Missense 576 0.474 525 0.237
Loss of function 234 0.369 202 0.896
CADD > 12% 8 0.081 8 0.081

COPI mediated anterograde transport (REACTOME) Missense 595 0.711 547 0.568
Loss of function 232 0.671 216 1
CADD > 12% 13 1 13 1

COPII mediated vesicle transport (REACTOME) Missense 327 0.742 300 3.13E−01
Loss of function 149 0.729 140 0.417
CADD > 12% 5 0.644 5 0.644

ER to Golgi anterograde transport (REACTOME) Missense 900 0.307 826 3.42E−02
Loss of function 378 0.426 356 0.808
CADD > 12% 16 1 16 1
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Table 3  (continued)

Gene set Functional subcategory MAF < 3 MAF < 1

Num SNP SKAT-O P Num SNP SKAT-O P

Glutamate binding activation of AMPA receptors and synaptic plas-
ticity (REACTOME)

Missense 83 0.222 75 0.399

Loss of function 87 0.493 80 0.224
CADD > 12% 5 0.236 5 0.236

GOLGI associated vesicle biogenesis (REACTOME) Missense 277 0.224 260 0.428
Loss of function 118 0.315 110 0.771
CADD > 12% 8 1 8 1

GPCR ligand binding (REACTOME) Missense 1769 2.12E−06 1632 2.16E−10
Loss of function 438 0.185 395 0.445
CADD > 12% 49 0.540 45 0.605

Innate immune system (REACTOME) Missense 7162 0.009 6663 2.56E−03
Loss of function 2965 0.122 2714 0.212
CADD > 12% 178 0.819 169 0.521

Intra GOLGI and retrograde GOLGI to ER traffic (REACTOME) Missense 1052 0.241 969 0.065
Loss of function 441 0.853 389 0.405
CADD > 12% 20 0.857 18 0.873

Intra GOLGI traffic (REACTOME) Missense 213 0.284 199 0.077
Loss of function 76 1 69 0.870
CADD > 12% 5 0.801 5 0.801

Lkb1 pathway (PID) Missense 233 0.114 224 0.440
Loss of function 148 0.576 140 0.928
CADD > 12% 6 0.270 4 1

Long-term depression (KEGG) Missense 334 0.073 309 0.444
Loss of function 195 0.164 166 0.818
CADD > 12% 8 0.003 7 8.86E−03

Lysosome (KEGG) Missense 673 0.034 628 0.528
Loss of function 356 0.400 332 0.390
CADD > 12% 29 0.272 28 0.837

Mapk signaling pathway (KEGG) Missense 1156 0.091 1088 0.332
Loss of function 669 0.691 616 1
CADD > 12% 28 0.066 25 0.111

Metabolism of lipids (REACTOME) Missense 3975 0.287 3701 0.204
Loss of function 1881 0.713 1703 0.874
CADD > 12% 149 0.782 138 0.640

Metabolism of vitamins and cofactors (REACTOME) Missense 1252 0.210 1161 0.105
Loss of function 593 0.765 527 0.872
CADD > 12% 45 0.151 40 0.196

Metabolism of water soluble vitamins and cofactors (REACTOME) Missense 740 0.487 688 0.187
Loss of function 405 0.367 366 0.396
CADD > 12% 29 0.287 26 0.114

Neuroactive ligand receptor interaction (KEGG) Missense 1270 1.33E−09 1172 2.15E−10
Loss of function 378 0.489 344 0.594
CADD > 12% 37 0.260 33 0.814

Neuronal system (REACTOME) Missense 1848 0.374 1704 0.606
Loss of function 872 0.222 787 0.858
CADD > 12% 47 0.011 40 9.62E−03

Neurotransmitter receptors and postsynaptic signal transmission 
(REACTOME)

Missense 753 0.931 696 0.870

Loss of function 396 0.115 364 1
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Table 3  (continued)

Gene set Functional subcategory MAF < 3 MAF < 1

Num SNP SKAT-O P Num SNP SKAT-O P

CADD > 12% 16 0.006 15 7.76E−03
Neutrophil degranulation (REACTOME) Missense 2715 0.353 2525 0.111

Loss of function 1207 0.766 1088 0.942
CADD > 12% 98 0.572 91 0.613

P38 gamma delta pathway (PID) Missense 62 0.386 56 0.391
Loss of function 40 0.813 36 0.680
CADD > 12% 2 0.664 2 0.664

Parkinsons disease (KEGG) Missense 301 2.15E−10 276 2.72E−09
Loss of function 185 0.024 175 9.14E−03
CADD > 12% 11 0.289 11 0.289

Post-translational protein modification (REACTOME) Missense 9055 0.011 8385 1.54E−03
Loss of function 3643 0.675 3315 0.638
CADD > 12% 213 0.471 199 0.467

PTK6 promotes HIF1A stabilization (REACTOME) Missense 42 0.047 39 5.87E−03
Loss of function 16 0.309 14 0.256
CADD > 12% 2 0.170 2 0.170

Retrograde transport at the trans GOLGI network (REACTOME) Missense 241 0.044 230 1.70E−02
Loss of function 94 0.902 80 0.854
CADD > 12% 3 0.499 2 0.792

Signaling by GPCR (REACTOME) Missense 5789 0.002 5312 1.39E−05
Loss of function 1623 0.388 1464 0.688
CADD > 12% 138 0.445 128 0.306

Snare interactions in vesicular transport (KEGG) Missense 108 0.316 101 0.087
Loss of function 40 0.531 35 0.590
CADD > 12% 3 0.034 2 0.072

Trafficking of GLUR2 containing AMPA receptors (REACTOME) Missense 48 1 45 1
Loss of function 49 0.095 43 0.920
CADD > 12% NA NA

Trans GOLGI network vesicle budding (REACTOME) Missense 330 0.118 313 0.229
Loss of function 160 0.197 148 0.728
CADD > 12% 11 1 11 1

Transmission across chemical synapses (REACTOME) Missense 1117 0.441 1028 0.731
Loss of function 572 0.134 518 0.771
CADD > 12% 23 9.99E−04 21 7.88E−03

Transport to the GOLGI and subsequent modification (REACTOME) Missense 1018 0.180 933 2.75E−02
Loss of function 435 0.505 404 0.865
CADD > 12% 19 0.672 19 0.672

Vasopressin-regulated water reabsorption (KEGG) Missense 196 0.318 185 0.199
Loss of function 84 0.650 78 0.439
CADD > 12% 2 0.239 2 0.239

Vesicle-mediated transport (REACTOME) Missense 3655 1 3395 0.484
Loss of function 1757 1 1584 0.165
CADD > 12% 87 0.818 80 1

MAF minor allele frequency, SKAT SNP-set Sequence Kernel Association Test, P P-value, CADD combined annotation dependent depletion, NA 
non applicable
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Our analysis provides compelling evidence that dysreg-
ulation in genes that play a pivotal role in mitochondrial 
homeostasis exists in genetically complex PD. Despite not 
identifying these pathways as part of the stringent large-
scale PRS analysis, our transcriptome community map 
showed an enrichment for the respiratory electron transport 
ATP synthesis by chemiosmotic coupling process and mito-
chondrial oxidative phosphorylation, in concordance with 
other reports [36]. Among the expression networks to high-
light, it should be pointed out an enrichment in cell cycle and 
cell death machinery related processes and ribosome RNA 
processing to the nucleus and cytosol.

Our study aimed at pinpointing the specific drivers 
underlying these significant networks. Focusing on gene-
sets linked to PD risk, SMR was applied to prioritize genes 
whose variation was found to be associated with expression 
changes linked with PD risk. Interestingly, we managed to 
replicate 88 of these genes after validating the functional 
consequence within our transcriptome community map.

Despite genetic efforts, it remains a matter of study in 
what cell types risk variants are active, which is essential for 
understanding etiology and experimental modeling. By inte-
grating genetics and single-cell expression data, we found 
that PD risk is linked to expression specificity patterns in 
dopaminergic neurons, serotonergic neurons, hypothalamic 
GABAergic neurons, and neural progenitors, suggesting that 
these cell types disrupt biological networks that impact PD 
risk. Although our study failed at replicating specific enrich-
ment patterns for oligodendrocytes and microglia as previ-
ously reported using other approaches [20], our results are 
in concordance with previous literature that applies various 
methodologies to gain similar conclusions [4].

The strengths of this study include an unbiased effort to 
link risk variants to biological pathways and characterize the 
functional consequence. While this study marks major pro-
gress in integrating human genetic and functional evidence, 
much remains to be established. A caveat of this study is 
that our approach was limited by the canonical gene sets 
publicly defined that were used for pathway analysis, and 
the relatively few brain regions studied for cell type analysis, 
which was based on mice data. We are aware that additional 
molecular networks and cell types from unsampled regions 
could contribute to PD. In addition, PRS analyses considered 
that all the variants conferred risk under the additive model 
and did not cover regulatory regions adjacent to the up or 
downstream of the genes or intergenic variants, which may 
be crucial for the disease. A further limitation of our study 
is that although we used state-of-the-art methodologies such 
as SMR to nominate candidate pathways and genes related 
to PD etiology, QTL datasets and associations are affected 
by both small sample size and low cis-SNP density. In addi-
tion, trans-QTL could not be assessed. Furthermore, our 
study focused on individuals of European ancestry, given 
that large sample sizes were required to create this resource. 
Replication in ancestrally diverse populations would be nec-
essary for future studies. We also assume the limitation that 
gene redundancy might exist across the tested gene-sets and 
therefore overrepresentation of certain genes might lead to 
missing important gene-sets that in turn are associated with 
PD etiology. We anticipate that substantial collaborative 
efforts will lead to an improvement in statistical power and 
accuracy to define gene-sets linked to PD.

In conclusion, our high-throughput and hypothesis-free 
approach exemplifies a powerful strategy to provide valuable 

Fig. 3  Functional enrichment analyses of transcriptomic community 
maps. The x-axis represents the gene set enrichment (%) based on the 
community map gene lists. Intersection size denotes the number of 

input genes within an enrichment category. Blue color indicates the 
adjusted association p-values on a − log10 scale. ***By chemiosmotic 
coupling and heat production by uncoupling proteins
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mechanistic insights into PD etiology and pathogenesis. We 
highlight several promising pathways, cell types, and genes 
for further functional prioritization, aware that further in-
depth investigation will be required to prove a definite link. 
As part of this study, we created a foundational resource for 
the PD community that can be applied to other neurode-
generative diseases with complex genetic etiologies (https 
://pdgen etics .shiny apps.io/pathw aysbr owser /). In future 
studies, linking specific phenotypic aspects of PD to path-
ways will constitute a critical effort using large longitudinal 
cohorts of well clinically characterized PD patients, with the 
hope of yielding disease-modifying therapeutic targets that 
are effective across PD subtypes.
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