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Abstract Hierarchical temporal dynamics are a fundamental computational property of the brain; 
however, there are no whole brain, noninvasive investigations into timescales of neural processing 
in animal models. To that end, we used the spatial resolution and sensitivity of ultrahigh field func-
tional magnetic resonance imaging (fMRI) performed at 10.5 T to probe timescales across the whole 
macaque brain. We uncovered within-species consistency between timescales estimated from fMRI 
and electrophysiology. Crucially, we extended existing electrophysiological hierarchies to whole-
brain topographies. Our results validate the complementary use of hemodynamic and electrophys-
iological intrinsic timescales, establishing a basis for future translational work. Further, with these 
results in hand, we were able to show that one facet of the high-dimensional functional connectivity 
(FC) topography of any region in the brain is closely related to hierarchical temporal dynamics. We 
demonstrated that intrinsic timescales are organized along spatial gradients that closely match FC 
gradient topographies across the whole brain. We conclude that intrinsic timescales are a unifying 
organizational principle of neural processing across the whole brain.

Editor's evaluation
Neural activity measured in both electrophysiological and functional neuroimaging experiments 
are often temporally correlated, and the timescales of such correlation in ongoing neural activity, 
or intrinsic neural timescales, show a hierarchical pattern across the cortical surface. The present 
study establishes a close link between these timescales and functional connectivity in the brains of 
non-human primates, suggesting that temporal autocorrelation is an important organizing feature of 
large-scale neural activity.

Introduction
Recent work supports the idea that the neural processing is organized over multiple timescales (Cava-
nagh et al., 2020; Hasson et al., 2008; Honey et al., 2012; Kiebel et al., 2008; Murray et al., 
2014; Raut et al., 2020; Soltani et al., 2021). Hierarchical temporal dynamics are a fundamental 
computational property of the brain—fast-changing sensory input is encoded by the fast dynamics 
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of sensory areas, which is in turn integrated into temporally extended representations encoded by 
the slower dynamics of higher-order areas (Cavanagh et al., 2020; Raut et al., 2020; Soltani et al., 
2021). Temporal integration and information processing over multiple timescales are crucial for under-
standing how the brain deals with the complexity of the real world (Zimmermann et al., 2018); hence, 
understanding whole-brain temporal dynamics is highly important.

As one moves from sensory to associative areas, neural processing reflects a hierarchy of progres-
sively longer ‘temporal receptive windows’ (TRWs)—defined as the length of time during which an 
area accumulates information during task performance (Hasson et  al., 2008). In other words, the 
range of the TRW of each area reflects its functional role, with sensory areas having short TRWs, to 
enable fast sensory processing, and associative areas having longer TRWs, allowing them to process 
information unfolding over longer periods of time. Not only does neural processing display these 
timescales during task performance, but we now know that temporal specialization arises from a 
region’s intrinsic dynamics, that is, temporal dynamics that are present even in the absence of direct 
sensory stimulation. This was first described by Murray et al., 2014 analyzing action potentials of 
single neurons in the macaque. They showed that timescales of baseline neuronal activity vary across 
cortical areas, revealing a hierarchical progression from fast timescales in sensory areas, to slower 
timescales in association areas. These intrinsic fluctuations in the neural signal, also described as 
intrinsic neural timescales (INTs), are thought to set the duration over which brain regions integrate 
inputs (Murray et al., 2014). They are hypothesized to be the result of multiple neuronal mechanisms, 
including local dynamics and recurrent connectivity (Murray et al., 2014; Soltani et al., 2021; Wata-
nabe et al., 2019; Demirtaş et al., 2019).

Additional studies have replicated and extended the INT hierarchy, reinforcing the idea that brain 
regions exhibit unique timescales in their intrinsic activity, which reflect functional specialization in 
terms of temporal integration (Cavanagh et al., 2016; Cirillo et al., 2018; Fascianelli et al., 2019; 
Murray et al., 2014; Ogawa and Komatsu, 2010; Rossi-Pool et al., 2021; Maisson et al., 2021). 
The concept of INT hierarchy has even been extended to subcortical regions—specifically the basal 
ganglia (Nougaret et al., 2021). Moreover, a large-scale network model, based on anatomical connec-
tivity (AC) and the strength of local recurrent connectivity, has been used to successfully reproduce the 
temporal hierarchy (Chaudhuri et al., 2015). This suggests that AC is closely related to INTs.

Alterations in hierarchical INT patterns can result in cognitive and behavioral abnormalities (Wata-
nabe et al., 2019; Wengler et al., 2020; Zilio et al., 2021). For example, abnormal INT patterns 
have been associated with core symptoms of high-functioning individuals with Autism Spectrum 
Disorder (Watanabe et  al., 2019). Likewise, delusions and hallucinations are associated with INT 
alterations at different hierarchical levels, leading to symptom-specific changes in hierarchical INT 
gradients (Wengler et al., 2020). Hence, investigations into INTs have the potential to clarify hierar-
chical dysfunction in whole-brain dynamics in neuropsychiatric disorders.

Traditionally, INTs have been investigated using invasive electrophysiology, which is not suited 
to uncover whole-brain dynamics. It is also challenging to collect in humans, particularly for large 
data sets (as would be needed to assess differences across populations). One way to overcome this 
problem is using functional magnetic resonance imaging (fMRI), which offers whole-brain coverage 
and can be performed across species and in larger sample sizes. However, it is not yet clear whether 
hemodynamic INTs derived from fMRI reflect similar neural phenomena as those derived from elec-
trophysiology. To clarify this issue, electrophysiological and hemodynamic INTs must be compared 
directly within the same species. To that end, recent advancements in nonhuman primate (NHP) 
neuroimaging, based on the use of very high magnetic fields (10.5 T) for significantly boosting signal-
to-noise ratios (SNRs) (Lagore et al., 2021; Yacoub et al., 2020), make it possible to study hemody-
namic INTs in the macaque brain. Moreover, taking advantage of the whole-brain coverage of fMRI, 
we are investigating INT topography. This is important since more recent work has shown that there is 
significant heterogeneity within regions (Cavanagh et al., 2020; Cirillo et al., 2018; Nougaret et al., 
2021), even though initially INTs were assigned to cortical regions as a whole.

In addition to INTs, gradients of functional connectivity (FC) can also describe the functional archi-
tecture of neural processing (Haak et al., 2018; Vos de Wael et al., 2020). Gradient approaches map 
macroscale brain features to low-dimensional manifold representations (Vos de Wael et al., 2020). 
Gradient mapping has the potential to uncover overlapping functional topographies by treating the 
high-dimensional connectivity structure as a spatial variance decomposition problem. Notably, this 
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approach finds patterns in the high-dimensional FC similarity structure that describe the spatial direc-
tion of maximum FC variance. For example, areas in the early visual cortex are known to exhibit at 
least two gradual modes of functional change (i.e., eccentricity and polar angle maps), which can be 
successfully retrieved from resting-state FC via gradient mapping (Haak et al., 2018). The existence 
of multiple overlapping principles of topographic organization is likely a general property of the whole 
brain (Haak et al., 2018; Harvey et al., 2020; Jbabdi et al., 2013; Marquand et al., 2017; Przezdzik 
et al., 2019). Here, we carry out an investigation into the multidimensional functional architecture of 
the macaque brain by probing its spatial and temporal intrinsic dynamics. This allows us to achieve 
several significant goals. First, we are able to relate fMRI hemodynamic timescales to the gold stan-
dards of electrophysiology within the same species. Second, with these results in hand, we are able to 
show that one facet of the high-dimensional FC topography of any region in the brain is closely related 
to INT topography. We show that the hierarchical intrinsic dynamics of neural processing manifest into 
gradients of INTs and FC which follow the same gradual topographical arrangement. In sum, we reli-
ably describe one facet of the macroscale functional organization of the brain, with respect to spatial 
and temporal dynamics.

Results
INT hierarchies
First, we set out to replicate and validate findings from electrophysiological INT estimation with ultra-
high field fMRI. Murray et al., 2014 initially described (in macaques) a visual cortical hierarchy of 
seven cortical areas: middle temporal (MT) area, lateral intraparietal (LIP) area, orbitofrontal cortex 
(OFC), lateral PFC (LPFC), anterior cingulate cortex (ACC); and a somatosensory hierarchy including 
primary somatosensory (S1) and secondary somatosensory (S2) cortex (Figure 1A–B, left). This cortical 
hierarchy has been replicated and further extended by assigning INTs to the dorsal premotor (PMd) 
cortex, frontopolar cortex (PFp), ventral and dorsal LPFC (VLPFC and DLPFC) (Cavanagh et al., 2016; 
Cirillo et al., 2018; Fascianelli et al., 2019; Figure 1C–D, left). Recently, INTs have been estimated 
in the medial wall of the PFC, including the ventromedial PFC (vmPFC), subgenual ACC (sgACC), 
pregenual ACC (pgACC), and dorsal ACC (dACC) (Maisson et al., 2021; Figure 1E, left). Finally, a 
subcortical INT hierarchy has been described for regions of the basal ganglia: external segment of the 
globus pallidus (GPe), subthalamic nucleus (STN), and the striatum (Nougaret et al., 2021; Figure 1F, 
left).

The electrophysiology-based (Figure 1, left) and fMRI-based (Figure 1, right) INTs reveal similar 
hierarchies across the brain. By replicating these physiological hierarchies, we demonstrate that fMRI 
is well-suited to investigate aspects of whole-brain temporal dynamics. Minor deviations from hier-
archies estimated from single-unit recordings (e.g., in STN, sgACC, and pgACC) can be attributed 
to several factors such as a high degree of INT heterogeneity within these regions, and differences 
between studies in the atlases used and size of the areas under investigation (see Figure 1—figure 
supplement 3 for the INT stability analysis).

Our definition of INTs combines the effects of ACF magnitude and timescale (i.e., the 0-crossing 
lag). Since it has previously been shown that the magnitude of the ACF values, parameterized as 
the lag-1 ACF value, differs across brain areas (Shinn et al., 2021), we further examined whether 
the observed hierarchies are driven by magnitude, timescale, or both. In line with previous results, 
the lag-1 ACF values systematically varied across the brain (Shinn et al., 2021). Moreover, the lag-1 
ACF values and the 0-crossing lag were linearly related to INTs as operationalized in this study (see 
Figure 1—figure supplement 1 for voxel-wise whole-brain maps of the lag-1, 0-crossing lag, and 
INTs). The maps suggest that magnitude and timescale are closely related. To exclude the possibility 
that the observed hierarchies are driven by magnitude, rather than timescale, we re-computed them 
by using the 0-crossing lag as a proxy for INT. To obtain a time estimate of hemodynamic timescales, 
the 0-lag crossing lag was multiplied by the TR (i.e., 1.1 s). The hierarchical ordering of both cortical 
and subcortical areas is consistent (see Figure 1—figure supplement 2) with that based on our INT 
measure (see Figure 1). Hence, while the ACF magnitude is closely related to our INT index and the 
0-crossing lag, temporal hierarchies are not driven by heterogeneity in the ACF magnitude.

We next investigated previously unexamined regions, making unique use of our high resolution, 
whole-brain coverage. Specifically, we reveal a hierarchy of INTs in the dorsal visual pathway (Goodale 
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Figure 1. Intrinsic neural timescales estimated from functional magnetic resonance imaging (fMRI) and electrophysiology reveal a similar hierarchical 
ordering of cortical and subcortical areas. Group-averaged (N=9) INTs were estimated for each area of interest by averaging across voxels. Each color 
represents a hierarchy estimated from a different electrophysiology data set (Left). The hierarchies estimated from spiking data were replicated via fMRI 
(Right). Somatosensory (A) and visual (B) hierarchies reported by Murray et al., 2014. Note: Each symbol represents a different data set as originally 

Figure 1 continued on next page
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et al., 1994; Goodale and Milner, 1992; Figure 2). INTs gradually increase from the entry point of 
visual information to higher-order areas involved in visuo-motor integration (Figure 2, inset). INTs are 
hierarchically organized within the occipito-parietal, parieto-premotor, and parieto-prefrontal compo-
nents of the dorsal pathway (Kravitz et al., 2011). Also, in line with the occipito-parietal pathway 
being the source of the other two pathways, it is lower in the hierarchy. Taken together, we replicate 
electrophysiological INT hierarchies and demonstrate the invaluable contribution of using whole-brain 
fMRI to extend this research by describing a previously uncharacterized fine-grained temporal hier-
archy along the visual pathway as an example.

INT hierarchies are closely related to FC gradients across the brain
We next examined the relationship between INTs and gradients of FC at different levels of descrip-
tion, starting with the frontal and parietal lobes (see Figure 3, gradients computed twice, once using 
within-lobe FC and again using frontal-parietal FC). In the frontal lobe, the first component (i.e., G1) 
shows an overall anterior-posterior organization spanning from sensory to motor areas. This aligns 
with previous studies showing a global anterior-posterior functional gradient in the frontal lobe 
(Badre, 2008; Riley et al., 2018; Tan et al., 2020). The second component (i.e., G2) shows an overall 
lateral-medial organization, extending from the PMv to the medial wall. The INT map was correlated 
with G2 for both within-area (r=0.47) and fronto-parietal (r=–0.26) connectivity. In the parietal lobe, 
G1 showed a medial-lateral and G2 a ventro-dorsal overall organization. The INT map was correlated 
with G1 for both within-area (r=0.56) and fronto-parietal (r=0.47) connectivity. (Note that the sign of 
the gradients is arbitrary as a byproduct of the decomposition method [Haak and Beckmann, 2020]; 
hence, only the magnitude but not the direction of the INT-FC gradient correlation is relevant.)

We then selected functionally meaningful subdivisions of the frontal lobe to probe finer-grained 
connectivity profiles and interrogate the existence of multiple hierarchical gradients of function (see 
Figure 4). In all cases, the INT maps were highly correlated with one of the principal components esti-
mated from within-area connectivity (i.e., LPFC G1: r=0.35; Motor G1: r=0.68; OFC G2: r=0.45; MPFC 
G1: r=0.49). For example, the motor cortex has a well-established hierarchy, with premotor regions at 
the top and M1 at the bottom (Binkofski and Buxbaum, 2013; Wong et al., 2015). Accordingly, the 
maps reflected this functional hierarchy, with M1 being at one end and the PMv at the other. The OFC 
shows a predominantly anterior-posterior axis of change, which agrees with anatomical findings—the 
caudal and lateral regions are more input-like unimodal regions while more anterior areas integrate 
these multimodal signals (Carmichael and Price, 1994; Carmichael and Price, 1996; Ongür and 
Price, 2000; Price, 1999). The lateral and medial subdivisions of the PFC revealed a predominately 
anterior-posterior organization. The same pattern of results was observed at the single-subject level 
(see Figure 4—figure supplement 2).

reported by the respective authors. Frontal hierarchy reported by Fascianelli et al., 2019 and Cirillo et al., 2018 (C). Frontal hierarchy reported by 
Cavanagh et al., 2016 (D). Medial prefrontal hierarchy reported by Maisson et al., 2021 (E). Subcortical hierarchy reported by Nougaret et al., 2021 
(F). The areas were defined bilaterally for each panel to match the recording sites of the data set—the Cortical Hierarchy Atlas of the Rhesus Macaque 
(Jung et al., 2021) and Subcortical Atlas of the Rhesus Macaque (Hartig et al., 2021) were used when possible (see Supplementary file 1). The 
hemodynamic INTs were estimated as the sum of the autocorrelation function (ACF) values in the initial positive period—that is, this measurement 
considers both the number of lags and the magnitude of the ACF values. Hence, the INT does not have a time unit and it is used as a proxy of the 
timescale of that area, with higher values reflecting longer timescales. See Figure 1—figure supplement 2 for an estimate of the time constant of each 
area. The INT of individual areas was estimated by taking the average of the voxels’ INT values. The analysis was performed at the group level (N=9). 
Abbreviations: S1/S2 (primary/secondary somatosensory cortex), MT (middle temporal area), LIP (lateral intraparietal area), OFC (orbitofrontal cortex), 
LPFC (lateral prefrontal cortex), ACC (anterior cingulate cortex), PMd (dorsal premotor cortex), LOFC (lateral OFC), DLPFC (dorso-lateral PFC), VLPFC 
(ventro-lateral PFC), PFp (polar prefrontal cortex), vmPFC (ventro-medial PFC), sgACC (subgenual ACC), pgACC (pregenual ACC), dACC (dorsal ACC), 
GPe (external globus pallidus), STN (subthalamic nucleus). Figure 1—figure supplement 3 depicts single-subject INT stability and similarity and the 
group-level stability of the INT hierarchies.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Whole-brain hemodynamic intrinsic neural timescales (INTs), lag-1 and 0-crossing lag.

Figure supplement 2. The time constants of hemodynamic intrinsic neural timescales (INTs).

Figure supplement 3. Stability and similarity analysis of whole-brain intrinsic neural timescales (INTs).

Figure 1 continued
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Although we were mainly interested in the fine-grained functional organization of individual areas, 
we also asked whether the INT-FC relationship holds at the whole-cortex level (see Figure 3—figure 
supplement 1). It is important to note that the whole-cortex estimation reflects overall inter-areal 
FC differences rather than the fine-grained FC patterns in smaller areas; that is because inter-areal 
connectivity differences are more pronounced than intra-areal differences. The whole-cortex INT map 
was highly correlated with the second gradient estimated from the cortical FC matrix (r=0.70). With 
these results in hand, we conclude that INTs and FC gradients are closely related and represent a 
functional principle of organization across the whole brain.

We then investigated cortical-subcortical hierarchical gradients of function. Cortico-striatal AC has 
been extensively studied in NHPs, however, striatal-cortical FC and INTs have not. The striatal INT 
map was correlated with the FC gradient estimated from cortico-striatal (r=0.38) connectivity (see 
Figure  5). The cortico-striatal FC topography exhibited a gradual pattern of connectivity change 
corresponding to the anterior-posterior, dorsal-ventral, and medial-lateral anatomical gradient of 
connectivity derived from tract-tracing studies in NHPs (Haber, 2016; Haber and Knutson, 2010; 
Friedman et al., 2002; Alexander et al., 1986). INTs followed a similar pattern. Moreover, the FC 
gradients were similar to those estimated from human neuroimaging data (Marquand et al., 2017). 
To examine the underlying FC patterns, we projected the striatal gradient onto the cortex (see 
Figure  5A). This analysis not only validated the meaning of the gradients, but also revealed that 
the cortico-striatal FC closely matched AC. To further investigate the link between FC and INTs, we 

Figure 2. Functional magnetic resonance imaging (fMRI) reveals a hierarchical ordering of timescales in the dorsal pathway for visuospatial processing. 
Group-averaged (N=9) intrinsic neural timescales (INTs) were estimated for each area of interest by averaging across voxels. The areas were defined 
bilaterally based on the Cortical Hierarchy Atlas of the Rhesus Macaque (Jung et al., 2021) (see Supplementary file 2). The dorsal pathway reveals a 
gradual progression of INTs from sensory to association and motor cortices. The hierarchical pattern of INTs can be observed in the original description 
of the dorsal pathway (inset), but also in more recently described subdivisions. Every color represents a subdivision of the dorsal pathway as described 
in Kravitz et al., 2011. Note: Since the hemodynamic INTs were estimated as the sum of ACF values in the initial positive period, this measurement 
considers both the number of lags and the magnitude of the ACF values. As a result, the INT measure does not have a time unit and it is used as a 
proxy of the timescale of that area, with larger values reflecting longer timescales. Abbreviations: DLPFC (dorso-lateral prefrontal cortex), VIP (ventral 
intraparietal area), MIP (medial intraparietal area), rIPL (rostral inferior parietal lobule), MT (middle temporal area), MST (medial superior temporal area), 
LIP (lateral intraparietal area), A46 (area 46), A8A (area 8A), PMd (dorsal premotor cortex), PMv (ventral premotor cortex).

https://doi.org/10.7554/eLife.75540
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Figure 3. Functional connectivity gradients are related to intrinsic neural timescale (INT) topographies. INT maps (Middle) and functional connectivity 
(FC) gradients were computed at the group level (N=9). Gradient 1 (G1) and Gradient 2 (G2) were estimated using a cosine similarity affinity 
computation of the within-area FC (Left) and frontal-parietal FC (Right), followed by diffusion mapping (Note: G1 and G2 are the first components that 
describe the axes of largest variance). (A) Frontal INTs were correlated with G2 for both within-area (r=0.47) and frontal-parietal connectivity (r=–0.26). (B) 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.75540
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reconstructed the striatal INT map by replacing the INT of every voxel with the average INT value of 
the cortical voxels (i.e., 10 voxels) with which they are most correlated (see Figure 5B). In accordance 
with the above-mentioned results, the striatal INTs and reconstructed cortico-striatal INT maps were 
correlated (r=0.45). At the voxel level, the INT values closely matched the average INTs of their top 
10 strongest cortical connections.

Overall, we demonstrated that INTs are organized along spatial gradients that closely match FC 
gradients.

Discussion
Temporal integration is a fundamental property of neural processing (Cavanagh et al., 2016; Hasson 
et al., 2008; Honey et al., 2012; Soltani et al., 2021), both during task performance and in the 
absence of external stimulation (Cirillo et al., 2018; Hasson et al., 2008; Murray et al., 2014; Raut 
et al., 2020; Ito et al., 2020). However, until this point, there have been major gaps in investigating 
temporal integration across the brain, across species, and across populations. This is because, tradi-
tionally, temporal integration has been studied primarily using single-unit electrophysiology in NHPs 
(see Gao et al., 2020). Although there is some evidence that BOLD signals from fMRI may allow for 
whole-brain interrogation of timescales in humans (Watanabe et al., 2019; Wengler et al., 2020), 
such an approach had not yet been validated. Here, we focused on investigating whole-brain INT and 
FC topographies at different levels of description, to first validate, within-species, the study of INTs 
using BOLD fMRI, and then investigate the relationship between temporal and spatial dynamics of the 
resting brain with ultrahigh resolution fMRI across the whole macaque brain.

We have demonstrated the feasibility of estimating INTs from fMRI in the NHP brain. We did so by 
showing that hemodynamic INT hierarchies closely match those derived from NHP electrophysiology. 
While some recent human neuroimaging studies have investigated whole-brain hemodynamic INTs 
(Raut et al., 2020; Watanabe et al., 2019; Wengler et al., 2020), temporal hierarchies derived from 
electrophysiology have not been replicated via fMRI, nor within species. Furthermore, in a previous 
paper, INTs derived from fMRI data in human subjects were elegantly validated with EEG (Watanabe 
et al., 2019). The present findings are in agreement with these results, finding slower and faster INTs 
in frontoparietal areas and sensory-related areas, respectively. This points toward cross-species homol-
ogies in cortical INTs, hence, laying the groundwork for future translational work. Nevertheless, the 
step presented here is essential, because we were able to demonstrate the equivalence of the fMRI 
estimates of INT hierarchies with single-neuron spiking results within the same species. This finding 
provides validation for the complementary use of hemodynamic and electrophysiological INTs. Using 
fMRI in this context has several advantages. First, it can be performed on the whole brain. Second, it 
can easily be employed across different human populations in the future, dramatically expanding the 
possible uses of INT investigations.

We did observe minor deviations from electrophysiological INTs in our data. These may be in large 
part attributable to a high degree of INT heterogeneity within individual anatomical regions. This 
observation is in line with previous reports of heterogeneity within neural populations in single-unit 
recordings (Cirillo et  al., 2018; Nougaret et  al., 2021). This suggests that averaging INTs within 
anatomical regions might not provide a full description of macroscale organization.

It is worth noting that the current study could not resolve the exact correspondence between the 
time constants estimated from spiking activity and BOLD. The relationship between neural activity 
and the BOLD signal has been revealed via simultaneous electrophysiological-fMRI recording—that 

Parietal INTs were correlated with G1 for both within-area (r=0.56) and parietal-frontal connectivity (r=0.47). The color bar indicates the position along 
the FC gradient (Note: values are on an arbitrary scale) or INT values (Note: since the hemodynamic INTs were estimated as the sum of ACF values in 
the initial positive period, this measurement considers both the number of lags and the magnitude of the ACF values. As a result, the INT does not have 
a time unit and it is used as a proxy of the timescale of that area, with larger values reflecting longer timescales). The value ranges differ across panels 
unless otherwise stated.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Intrinsic neural timescales (INTs) are topographically organized along functional connectivity (FC) gradients across the whole 
cortex.

Figure 3 continued

https://doi.org/10.7554/eLife.75540
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Figure 4. The relationship between functional connectivity (FC) and intrinsic neural timescales (INTs) in the frontal lobe. Group-averaged INT maps 
(Right) and FC gradients (Left) were estimated at the group level (N=9). Gradient 1 (G1) and Gradient 2 (G2) were estimated using a cosine similarity 
affinity computation of the within-area followed by diffusion mapping (Note: G1 and G2 are the first components that describe the axes of largest 
variance). The FC gradient with the highest correlation to INTs was plotted. (A) INTs in medial prefrontal cortex were correlated with G1 (r=0.49). (B) INTs 
in the orbitofrontal cortex were correlated with G2 (r=0.45). (C) INTs in the motor cortex were correlated with G1 (r=0.68). (D) INTs in the lateral prefrontal 
cortex were correlated with G1 (r=0.35). The color bar indicates the position along the FC gradient (values are on an arbitrary scale) or INT values (Note: 
since the hemodynamic INTs were estimated as the sum of ACF values in the initial positive period, this measurement considers both the number of 
lags and the magnitude of the ACF values. As a result, the INT does not have a time unit and it is used as a proxy of the timescale of that area, with 
larger values reflecting longer timescales). The value ranges differ across panels unless otherwise stated. For a more in-depth analysis of the relationship 
between INTs and FC, see Figure 4—figure supplement 1. For the single-subject analysis, see Figure 4—figure supplement 2.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Intrinsic neural timescales (INTs) and functional connectivity (FC) gradients are monotonically related in the frontal lobe.

Figure supplement 2. Intrinsic neural timescales (INTs) closely match functional connectivity (FC) gradients at the single-subject level.

https://doi.org/10.7554/eLife.75540
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Figure 5. Cortico-striatal functional connectivity (FC) is related to intrinsic neural timescales (INTs). Group-averaged INT maps and FC gradients 
(Left) were estimated at the group level (N=9). Gradient 1 (G1) and Gradient 2 (G2) were estimated using a cosine similarity affinity computation of 
the cortico-striatal FC followed by diffusion mapping (Note: G1 and G2 are the first components that describe the axes of largest variance). Only the 
gradient with the highest correlation to the striatal INT map was plotted. (A) The striatal FC gradient estimated from cortico-striatal connectivity (Top) 
and its projection onto the cortex (Bottom) (Note: the same value range was used). The FC patterns underlying the cortico-striatal gradient matched the 
anatomical connectivity derived from animal invasive tracing. (B) Striatal INTs (Top) and cortical INTs projection based on cortico-striatal FC (Bottom). 
The striatal and cortico-striatal INT maps were related (r=0.45). Striatal INTs were related to G1 estimated from cortico-striatal connectivity (r=0.38). The 

Figure 5 continued on next page
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is, a spatially localized increase in the fMRI signal directly and monotonically reflects an increase in 
neural activity, with the mean onset time of the BOLD signal relative to the neural activation being 
2 s (Logothetis et al., 2001). As a result of sensory stimulation, BOLD signal is delayed by ~2–3 s, 
followed by a ramp of 6–12 s to a plateau or peak value. Local field potentials (LFPs), and to a lesser 
extent multiunit activity, can predict the BOLD signal when convolved with the neuro-vascular impulse 
response function. In sum, the hemodynamic response is roughly a low-pass-filtered expression of the 
total neural activity; with LFPs, however, having a greater contribution to the signal. This has several 
implications for the interpretation of hemodynamic timescales: (1) they are more likely to reflect times-
cales related to LFPs rather than spiking activity; (2) the time constants estimated from spiking activity 
might not be linearly related to those estimated from fMRI. A further complication for the inter-
pretability of hemodynamic timescales is that INTs have only been estimated from spiking activity, 
but not LFPs. The exact relationship between timescales derived from spiking activity, LFPs and the 
BOLD signal remains an empirical question. We hypothesize that hemodynamic timescales generally 
increase monotonically with those estimated from electrophysiology. In that respect, Watanabe et al., 
2019 bring preliminary evidence—that is, timescales derived from electroencephalography (EEG) and 
fMRI have been shown to differ by 2 orders of magnitude. This is reasonable considering the BOLD 
time course—when convolved with the hemodynamic response function, the INTs estimated from 
EEG were similar in magnitude to those estimated from fMRI. Nevertheless, we show that temporal 
hierarchies are a general principle of organization, irrespective of the method used to estimate them.

To further demonstrate the potential of INTs estimated from fMRI, we extend the current liter-
ature by providing a finer description of the hierarchy of visual INTs compared to those previously 
described with electrophysiology (Murray et al., 2014). Remarkably, areas along the dorsal visual 
pathway follow the INT hierarchical ordering predicted by functional specialization and connectivity 
(Kravitz et al., 2011), with primary visual areas showing the fastest timescales and prefrontal areas 
showing the longest. Our findings bring further evidence that the dorsal pathway is not a unitary 
system, but rather subdivided into multiple parallel pathways (Binkofski and Buxbaum, 2013; Kravitz 
et al., 2011). This demonstrates the importance of fine-grained, large-scale descriptions of the brain 
for uncovering multiple hierarchies.

We investigated timescales and connectivity topographies at different levels of description to 
probe whether one aspect of the multidimensional functional architecture of the brain is related to 
temporal structure. We show that INT topographies are closely related to the overlapping FC gradient 
dimensions. Previous studies have demonstrated that FC gradient dimensions in sensory cortex corre-
sponded with known organizational principles such as eccentricity and polar angle (Haak et al., 2018). 
Moreover, FC gradients followed M1’s somatotopic map. Our findings put forward a significantly more 
unified framework that generalizes over the entire brain. INTs form a topographic organizational prin-
ciple ranging from sensory to associative cortex. While other organizational principles can and likely 
always will be represented across topographic networks of the brain, intrinsic timescales appear to be 
special in their general extent.

It is noteworthy that there are crucial methodological differences between the gradient and INT 
estimation approaches: (1) the gradient estimation pipeline consists of multiple steps to reduce the 
dimensionality of the data, and consequently, the amount of noise (e.g., the FC matrix was made 
sparse; applying the cosine similarity kernel to build an affinity matrix; and applying a nonlinear dimen-
sionality reduction technique to estimate the gradients); (2) the gradients were estimated bilaterally. In 
comparison to gradients, where the spatial correlation between the voxels’ time series is just the initial 
step in the pipeline, the INT measure consists of the temporal autocorrelation of individual voxels. No 
extra steps have been taken for noise reduction. Hence, while gradients are the result of a complex 
processing pipeline, INTs are a relatively simple calculation. As a result, there is a higher amount of 

color bar indicates the position along the FC gradient (values are on an arbitrary scale) or INT values (Note: since the hemodynamic INTs were estimated 
as the sum of ACF values in the initial positive period, this measurement considers both the number of lags and the magnitude of the ACF values. As a 
result, the INT does not have a time unit and it is used as a proxy of the timescale of that area, with larger values reflecting longer timescales). The value 
range differs across panels unless otherwise stated.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Intrinsic neural timescales (INTs) and functional connectivity (FC) gradients are monotonically related in the striatum.

Figure 5 continued
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variability in the INT maps which could potentially lead to the underestimation of the FC-INT rela-
tionship. With respect to the second point, the symmetry of the gradients could be a byproduct of 
estimating the gradients bilaterally. Other studies e.g., Haak et al., 2018; Przezdzik et al., 2019 have 
derived gradients for each hemisphere individually and no major asymmetries have been reported. 
We estimated the gradients bilaterally because of an issue that is inherent with experimental ultrahigh 
fields. Specifically, RF transmit field (or B1) inhomogeneities lead to asymmetric signal intensities. We 
were worried that these effects might introduce asymmetries between the two hemispheres. We have 
reason to believe that this issue is partially being taken care of by estimating the gradients bilaterally, 
but the INTs are still susceptible to these effects. This could also result in the underestimation of the 
FC-INT relationship since there are visible asymmetries in the INT maps.

One potential limitation of the current study is using anesthetized subjects. Although obtaining 
high-resolution images of awake NHPs at ultrahigh fields would be ideal, it is still an enormous tech-
nical challenge that the field is working to overcome. Using our low anesthesia strategy, we were 
able to obtain a relatively large sample size of NHPs (because extensive training was not required). 
It is important to note that it was previously shown that our anesthesia protocol demonstrates no 
observable biases to whole-brain connectivity analysis (Yacoub et al., 2020). Moreover, it has been 
shown that this protocol has a relatively low impact on reproducibility (Autio et al., 2021). To our 
knowledge, the largest effect of vasodilative anesthetics (such as isoflurane) is an overall blunting of 
responses which is counteracted by ultrahigh field MRI. Finally, besides the possible effects on the 
hemodynamic response, anesthesia introduces a crucial difference between the current study and 
previous research—while in previous studies, it was not controlled for the subjects engaging in various 
cognitive processes, in anesthetized subjects, this confound is potentially removed. Overall, future 
research should replicate current results to exclude a possible effect of anesthesia.

We show that resting-state fMRI in NHPs is crucial for bridging the gap between human and animal 
models, but also across the various techniques of investigating the brain. Nevertheless, macaques 
have a disadvantage as a model organism for fMRI because of their small head size (~6% of the 
human brain) which makes the use of standard field strength magnets problematic for acquiring high-
resolution data. As a result, collecting high-resolution, high SNR whole-brain data has been extremely 
difficult (Yacoub et  al., 2020). We show here that one way of overcoming this problem is to use 
ultrahigh field strengths in combination with high channel count receiver arrays (Lagore et al., 2021; 
Uğurbil et al., 2019; Yacoub et al., 2020). Ultrahigh magnetic fields not only enhance SNR but also 
increase the BOLD contrast, especially for the microvascular BOLD contributions—which leads to 
mapping signals with higher precision to sites of neuronal activity (Ugurbil, 2016; Uğurbil, 2018). In 
conclusion, our unique approach made it possible to obtain whole-brain high-resolution data to inves-
tigate FC and INTs across both cortical and subcortical structures.

INTs, like AC and FC, are one way of characterizing the organization of the brain. Critically, combined 
maps of all three will require a nonhuman animal model such as the macaque, as AC cannot be directly 
measured in humans (Grier et al., 2020). It is clear that AC, FC, and INTs are related, although the 
precise nature of the relationships is somewhat speculative. For instance, vertex FC strength is related 
to human INTs estimated from fMRI (Raut et al., 2020). Our own results show that cortico-striatal INTs 
and FC gradients broadly track AC. AC establishes the pathways which the signals underpinning FC 
use. However, the fact that the pathways exist and are used does not tell us what types of information 
transformations occur along the way. Through cascaded processing, longer and longer TRWs can be 
built, measured as longer INTs. Thus, we expect that the space of potential INTs is constrained by both 
AC and FC. Future exploration of these organizational principles, including using pharmacological 
interventions and electrical stimulation, will likely clarify the causal relationships at play.

We show that INTs are topographically organized along FC gradients throughout the NHP brain. 
Although we focused our analysis on the frontal and parietal lobes, and the striatum, we also showed 
that a whole-brain analysis recapitulates the same conclusion: resting-state temporal and spatial 
dynamics are closely related. Future investigations should examine this relationship in other cortical 
and subcortical brain areas. A promising avenue would be to examine the FC-INT link throughout 
the brain across different levels of parcellation (and different types of parcellations). While we show 
that intrinsic timescales are related to FC, other studies have related them to other anatomical and 
functional markers (e.g., see Ito et al., 2020; Watanabe et al., 2019). Hence, further investigations 
and careful experimentation are needed to understand (1) how temporal dynamics relate to other 
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functional and anatomical characteristics across the brain; (2) their functional relevance and transla-
tional potential.

Materials and methods
Animal preparation
We obtained data from nine adult macaque monkeys (Macaca fascicularis: five female, and Macaca 
mulatta, three male and one female). Weights ranged from 3.0 kg to 9.4 kg. Experimental procedures 
were carried out in accordance with the University of Minnesota Institutional Animal Care and Use 
Committee and the National Institute of Health standards for the care and use of NHPs. All subjects 
were fed ad libitum and pair-housed within a light and temperature-controlled colony room. Animals 
were not water restricted. None of the subjects had any prior implant or cranial surgery. Animals were 
fasted for 14–16 hr prior to imaging.

On scanning days, anesthesia was first induced by intramuscular injection of atropine (0.5 mg/kg), 
ketamine hydrochloride (7.5 mg/kg), and dexmedetomidine (13 µg/kg). Subjects were transported to 
the scanner anteroom and intubated using an endotracheal tube. Initial anesthesia was maintained 
using 1.0%–2% isoflurane mixed with oxygen (1 L/m during intubation and 2 L/m during scanning to 
compensate for the 12-m length of the tubing used). For functional imaging, the isoflurane level was 
lowered to 1%.

Subjects were placed onto a custom-built coil bed with integrated head fixation by placing stereo-
tactic ear bars into the ear canals. The position of the animal corresponds to the sphinx position. 
Experiments were performed with animals freely breathing. An initial bolus injection of 1.5 µg/kg 
fentanyl was administered IV followed by a continuous administration of 3 µg/kg/hr using a syringe 
pump. Rectal temperature (~99.6F), respiration (10–15 breaths/min), end-tidal CO2 (25–40), electro-
cardiogram (70–150 bpm), and SpO2 (>90%) were monitored using an MRI compatible monitor (IRAD-
IMED 3880 MRI Monitor, USA). Temperature was maintained using a circulating water bath as well as 
chemical heating pads and padding for thermal insulation.

Data acquisition
All data were acquired on a passively shielded 10.5 T, 88-cm diameter clear bore magnet coupled 
to Siemens gradients (‘SC72’ body gradients operating at a slew rate of 200 mT/m/s, and 70 mT/m 
maximal strength), and electronics (Magnetom 10.5 T Plus) (Siemens, Erlangen, Germany). Within the 
gradient set and the bore-liner, the space available for subject insertion had a 60-cm diameter.

The 10.5-T system operates on the E-line (E12U) platform which is directly comparable to clinical 
platforms (3 T Prisma/Skyra, 7 T Terra). As such, the user interface and pulse sequences were identical 
to those running on clinical platforms. A custom in-house built and designed RF coil with an 8-channel 
transmit/receive end-loaded dipole array of 18-cm length (individually) combined with a close-fitting 
16-channel loop receive array head cap, and an 8-channel loop receive array of 50×100 mm2 size 
located under the chin (Lagore et al., 2021). The size of 14 individual receive loops of the head cap 
was 37 mm with two larger ear loops of 80 mm—all receiver loops were arranged in an overlapping 
configuration for nearest neighbor decoupling. The resulting combined 32 receive channels were 
used for all experiments and supported threefold acceleration in phase encoding direction. The coil 
holder was designed to be a semi-stereotaxic instrument holding the head of the animal in a centered 
sphinx position via customized ear bars. The receive elements were modeled to adhere as close to 
the surface of the animal’s skulls as possible. Transmit phases for the individual transmit channels were 
fine-tuned for excitation uniformity for one representative mid-sized animal and the calculated phases 
were then used for all subsequent acquisitions. Magnetic field homogenization (B0 shimming) was 
performed using a customized field of view with the Siemens internal 3D mapping routines. Multiple 
iterations of the shims (using the adjusted FOV shim parameters) were performed, and further fine 
adjustment was performed manually on each animal. Third-order shim elements were ignored for 
these procedures.

In all animals, a B1+ (transmit B1) fieldmap was acquired using a vendor provided flip angle 
mapping sequence and then power calibrated for each individual. Following B1+ transmit calibra-
tion, 3–5 averages (23 min) of a T1 weighted magnetization prepared rapid acquisition gradient echo 
protocol (3D MP-RAGE) were acquired for anatomical processing (TR=3300 ms, TE=3.56 ms, TI=1140 

https://doi.org/10.7554/eLife.75540


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Manea et al. eLife 2022;11:e75540. DOI: https://doi.org/10.7554/eLife.75540 � 14 of 20

ms, flip angle=5°, slices=256, matrix=320×260, acquisition voxel size=0.5×0.5×0.5 mm3). Images 
were acquired using in-plane acceleration GRAPPA=2. A resolution and FOV matched T2 weighted 
3D turbo spin-echo sequence (variable flip angle) was run to facilitate B1 inhomogeneity correction.

Before the start of the functional data acquisition, five images were acquired in both phase-
encoding directions (R/L and L/R) for offline EPI distortion correction. Five to six runs of fMRI time 
series, each consisting of 700 continuous 2D multiband (MB)/Simultaneous Multi SLice (SMS) EPI 
(Moeller et al., 2010; Setsompop et al., 2012; Uğurbil et al., 2013) functional volumes (TR=1110 
ms; TE=17.6 ms; flip angle=60°, slices=58, matrix=108×154; FOV=81×115.5 mm2; acquisition voxel 
size=0.75×0.75×0.75 mm3) were acquired. Images were acquired with a left-right phase encoding 
direction using in plane acceleration factor GRAPPA=3, partial Fourier=7/8th, and MB or simultaneous 
multislice factor=2 (i.e., the number of simultaneously excited slices=2). Since macaques were scanned 
in sphinx positions, the orientations noted here are what is consistent with a (head first supine) typical 
human brain study (in terms of gradients) but translate differently to the actual macaque orientation.

Image preprocessing
Image processing was performed using a custom pipeline relying on FSL (Jenkinson et al., 2012), 
ANTs (Avants et al., 2014; Avants et al., 2011), AFNI (Cox, 1996), and a heavily modified CONN 
(Whitfield-Gabrieli and Nieto-Castanon, 2012) toolbox. Images were first motion corrected using 
mcflirt (registration to the first image). Motion parameters never exceeded 0.5 mm or 0.4° rotation 
except in one run of one animal, which was discarded (the animal experienced anesthesia-induced 
emesis during the last run). Images were slice-time corrected and EPI distortion corrected using topup. 
High magnetic fields and large matrix sizes are commonly associated with severe EPI distortions. 
Anatomical images were nonlinearly warped into the ‘National Institute of Mental Health Macaque 
Template’ (NMT) (Seidlitz et al., 2018) template using ANTs and 3DQwarp in AFNI. The distortion 
correction, motion correction, and normalization were performed using a single sinc interpolation. 
Images were spatially smoothed (FWHM=2 mm), linear detrended, denoised using a linear regression 
approach including heart rate and respiration, as well as a five-component nuisance regressor of the 
masked white matter and cerebrospinal fluid and band-pass filtering (0.008–0.09 Hz) (Hallquist et al., 
2013).

Intrinsic neural timescales
Based on previous studies (Murray et al., 2014; Watanabe et al., 2019), INTs were calculated by 
estimating the magnitude of the autocorrelation of the preprocessed functional data. At the single-
subject level, the INT of each voxel was quantified as follows. For each run, the ACF of each voxel’s 
fMRI signal was estimated. The ACF is the correlation of yt (time series) and yt+k (lagged time series), 
where k represents the time lag in steps of TR. Next, the sum of ACF values was calculated in the 
initial positive period. The upper limit of this period was set at the point where the ACF first becomes 
negative as the time lag increases. The result was used as an index of the INT of the brain region. At 
the single-subject level, the number of INT maps was dependent on the number of functional runs. 
The maps were not smoothed, because individual variation in FC gradients and INTs has been shown 
to have functional significance (Przezdzik et al., 2019; Watanabe et al., 2019).

To examine the correspondence between fMRI-based and electrophysiology-based INT hierar-
chies, the values of individual voxels were averaged within areas. The areas were defined based on the 
Cortical Hierarchy Atlas of the Rhesus Macaque (CHARM) (Jung et al., 2021) and Subcortical Atlas of 
the Rhesus Macaque (SARM) (Hartig et al., 2021) to closely match the corresponding electrophysio-
logical recording sites (see Supplementary file 1). In some cases, since the CHARM parcellation did 
not match the recording sites, the regions of interest were drawn.

Since the hemodynamic INTs were estimated as the sum of ACF values in the initial positive period, 
this measurement considers both the number of lags and the magnitude of the ACF values. As a 
result, the hemodynamic INTs do not have a time unit and are used as a proxy of the timescale of that 
area, with higher values reflecting longer timescales. We have additionally provided the estimated 
time constants associated with the INT hierarchies that have been previously described with electro-
physiological recordings by multiplying the 0-crossing lag by the TR (see Figure 1—figure supple-
ment 2 for an estimate of the time constants).
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Stability and similarity
The intra-subject stability was quantified by calculating the pairwise correlation (i.e., Pearson’s r) 
between the runs. The individual stability score was computed by averaging the Fisher’s Z-trans-
formed correlation coefficients across pairwise comparisons. For every subject, the maps were aver-
aged across runs to quantify the inter-subject similarity. The individual similarity score was computed 
by averaging the subject’s Fisher’s Z-transformed correlation coefficients with all the other subjects.

To quantify the stability of the hierarchies, they were re-computed for groups of four subjects. The 
resulting ranking was correlated (i.e., Spearman’s rank correlation) with the group-level ordering of 
the cortical/subcortical regions. To estimate the stability score, this procedure was repeated for all the 
possible combinations of subjects (i.e., n=126). The stability score of any hierarchy was computed by 
averaging the correlation coefficients across steps (i.e., n=126).

FC gradients
We computed FC gradients using BrainSpace, a toolbox for the identification, visualization, and anal-
ysis of macroscale gradients in neuroimaging data sets (Vos de Wael et al., 2020).

The input matrix
The input matrix consisted of the voxel-wise FC between or within areas. The Pearson correlation coef-
ficient between the time-series of every pair of voxels within and/or between areas was computed. 
This resulted in a 2D matrix of correlation coefficients, with every voxel being represented by an n-di-
mensional row vector (with n reflecting the number of connections). The connectivity matrices were 
computed for each subject and run.

Generating gradients
The procedure for generating FC gradients was thoroughly described in Vos de Wael et al., 2020. 
The input matrix was made sparse (10% sparsity) and the cosine similarity kernel was applied to build 
the affinity matrix. Next, diffusion mapping was applied using the BrainSpace basic parameters. The 
resulting gradients were plotted on the cortical surface of the NMT template (Seidlitz et al., 2018) 
using AFNI (Cox, 1996) and SUMA (Saad and Reynolds, 2012; Saad et al., 2004). The gradients 
were generated bilaterally. We only report the gradient most correlated with the INT map, assuming 
that ensuing gradients reflect other principles of functional organization.

Cortical projection
To probe the relationship between the striatal FC gradients and the cortex, the striatal FC gradients 
were projected onto the cortex according to the highest-correlated voxels (Haak et al., 2018). To 
reduce noise and improve interpretability, the resulting maps were smoothed using AFNI (Cox, 1996).

Projecting INTs based on FC
To examine the relationship between INTs and FC between areas (e.g., between cortex and stri-
atum), cortical INTs were projected onto a striatal map based on cortico-striatal FC. For every striatal 
voxel, the top 10 highest functionally correlated cortical voxels were identified. Next, the INTs associ-
ated with these cortical voxels were extracted. Finally, the average associated cortical INT value was 
computed for each striatal voxel and represented as a map.
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(Jung et al., 2021) and Subcortical Atlas of the Rhesus Macaque (SARM) (Hartig et al., 2021) 
to closely match the corresponding electrophysiological recording sites. For some of the cortical 
regions of interest, the CHARM parcellation did not match the recording sites. As a result, the areas 
were defined according to the respective descriptions (Note: this is the case whenever “Custom” is 
indicated in the table). Abbreviations: S1/S2 (primary/secondary somatosensory cortex), MT (middle 
temporal area), LIP (lateral intraparietal area), OFC (orbitofrontal cortex), LPFC (lateral prefrontal 
cortex), ACC (anterior cingulate cortex), PMd (dorsal premotor cortex), LOFC (lateral OFC), DLPFC 
(dorso-lateral PFC), VLPFC (ventro-lateral PFC), PFp (polar prefrontal cortex), vmPFC (ventro-medial 
PFC), sgACC (subgenual ACC), pgACC (pregenual ACC), dACC (dorsal ACC), GPe (external globus 
pallidus), STN (subthalamic nucleus).

•  Supplementary file 2. Areas defined based on a cortical atlas. The areas in Figure 2 were defined 
based on the Cortical Hierarchy Atlas of the Rhesus Macaque (CHARM) (Jung et al., 2021) to match 
the hierarchies described by Kravitz et al., 2011. Abbreviations: DLPFC (dorso-lateral prefrontal 
cortex), VIP (ventral intraparietal area), MIP (medial intraparietal area), rIPL (rostral inferior parietal 
lobule), MT (middle temporal area), MST (medial superior temporal area), LIP (lateral intraparietal 
area), A46 (area 46), A8A (area 8 A), PMd (dorsal premotor cortex), PMv (ventral premotor cortex).

•  Transparent reporting form 
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Functional connectivity gradients: https://doi.org/10.6084/m9.figshare.19189331 Intrinsic neural 
timescales: https://doi.org/10.6084/m9.figshare.19197026.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Manea AMG, 
Zilverstand A, Uǧurbil 
K, Heilbronner SR, 
Zimmermann J

2021 Resting-state functional 
connectivity gradients and 
intrinsic neural timescales

https://​doi.​org/​10.​
6084/​m9.​figshare.​
19189331

figshare, 10.6084/
m9.figshare.19189331
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