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Abstract

Oral squamous cell cancer of the oral cavity and oropharynx (OSCC) is associated with
high case-fatality. For reasons that are largely unknown, patients with the same clinical and
pathologic staging have heterogeneous response to treatment and different probability of
recurrence and survival, with patients with Human Papillomavirus (HPV)-positive oropha-
ryngeal tumors having the most favorable survival. To gain insight into the complexity of
OSCC and to identify potential chromosomal changes that may be associated with OSCC
mortality, we used Affymtrix 6.0 SNP arrays to examine paired DNA from peripheral blood
and tumor cell populations isolated by laser capture microdissection to assess genome-
wide loss of heterozygosity (LOH) and DNA copy number aberration (CNA) and their asso-
ciations with risk factors, tumor characteristics, and oral cancer-specific mortality among 75
patients with HPV-negative OSCC. We found a highly heterogeneous and complex geno-
mic landscape of HPV-negative tumors, and identified regions in 4q, 8p, 9p and 11q that
seem to play an important role in oral cancer biology and survival from this disease. If con-
firmed, these findings could assist in designing personalized treatment or in the creation of
models to predict survival in patients with HPV-negative OSCC.
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Introduction

Oral squamous cell cancer (OSCC), which includes malignancies of the oral cavity and the oro-
pharynx, proves fatal in many instances. The tumor and/or its treatment often lead to orofacial
dysfunction and disfigurement. Oral cavity cancers are largely caused by tobacco and alcohol
use, while infection with oncogenic Human Papillomavirus (HPV) often plays a role in the
genesis of oropharyngeal cancer. Patients with HPV-positive oropharyngeal tumors generally
have better treatment response and survival than do patients with HPV-negative oropharyn-
geal tumors. HPV status in oral cavity tumors does not seem to impact treatment response and
survival. It is unclear whether this is a reflection of the underlying biology of oral cavity tumors,
or rather because the low frequency of HPV-positive tumors in oral cavity cancer patients
(reported to be 5-15%) has prevented a robust investigation. HPV-negative OSCC patients
with tumors of the same clinical and pathologic stage have a heterogeneous response to treat-
ment and likelihood of recurrence and survival. However, the molecular basis for this heteroge-
neity is also largely unknown.

Loss of heterozygosity (LOH) and DNA copy number aberration (CNA, defined as having
an altered DNA copy number at a specific locus in the tumor compared to that in the periph-
eral blood leukocytes) that are associated with the inactivation of tumor suppressor genes
(TSG) and the activation of oncogenes occur with various frequencies in squamous cell carci-
noma of the oral cavity and oropharynx (OSCC) and other types of squamous head and neck
cancer (HNSCC) [1, 2]. LOH and CNA patterns appear to differ at different points in the natu-
ral history of OSCC, and these patterns are, to some extent, correlated with clinical disease out-
comes [3]. Furthermore, there is some evidence to suggest that LOH/CNA may be superior
predictors of disease outcomes compared to the traditional TNM staging system [4, 5]. There
is evidence that LOH on 2q, 3p, 6q25-27, 8p, 8p21.2, 8p23, 9p21-22, 10q, 11923, 13q, 14q, 17p
or 18q are associated with recurrence and/or poor survival of OSCC and/or HNSCC patients
[6-9]. Other studies showed that DNA amplification, and DNA copy number gains and losses
predict recurrence and/or survival of OSCC and/or HNSCC patients [6, 10-24]. Array CGH
(aCGH) studies have reported that HPV-positive and HPV-negative HNSCC have both com-
mon and distinct CNA [25], and have also observed that gains and losses at various chromo-
some arms are associated with recurrence and/or length of survival [4, 5, 26, 27].

Although these efforts greatly advanced our understanding of genetic alterations relating to
oral cancer, signal contamination caused by the presence of non-malignant cell populations,
the low resolution, and the inability to identify balanced chromosomal changes such as copy-
neutral LOH [28, 29] where LOH in one allele is compensated by the copy gain in the alternate
allele in the paired chromosome, are the major limitations to the above mentioned studies. To
improve upon these aspects in our efforts to identify potential chromosomal changes that may
be associated with survival in HPV-negative OSCC, which accounts for the majority of OSCC
worldwide, we interrogated paired peripheral blood DNA and DNA from tumor cells isolated
by laser capture microdissection (LCM) using Affymetrix Human SNP Array 6.0 to examine
the genome-wide landscape of LOH and CNA and to explore whether LOH and CNA are asso-
ciated with OSCC-specific mortality.

Materials and Methods
Ethics statement

This work was conducted with written informed consent of study participants and was
approved by the Institutional Review Offices of the Fred Hutchinson Cancer Research Center
and the Veterans Puget Sound Healthcare System.
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Study population

Eligible study participants were those who were >18 years of age, could communicate in
English, were without prior treatment with radiation and/or chemotherapy, who underwent
surgical resection or biopsy at the University of Washington Medical Center, Harborview Med-
ical Center or the VA Puget Sound Health Care System in Seattle, Washington for their first
primary OSCC between 2003 and 2010 [30]. Eligible participants were asked to donate tumor
tissue and peripheral blood at or before the time of resection or biopsy. Tumor DNA was tested
for HPV as previously described [31]. Participants were interviewed in person regarding demo-
graphic, lifestyle (including tobacco and alcohol use), medical, functional, and quality of life
information. Tumor characteristics were obtained from medical records. Patients were fol-
lowed actively through periodic telephone interviews to ascertain recurrence and changes in
lifestyle characteristics, and passively through medical record reviews and linkages to the U.S.
Social Security Death Index and the FHCRC’s Cancer Surveillance System (one of NCI’s SEER
registries), which is updated semi-annually with the Washington State Death Certificate data-
base and annually with the National Death Index. Classification of death as due to OSCC was
based on information on the medical records and death certificates and independent adjudica-
tion by two otolaryngologists. This study was conducted with written informed consent and
approvals by the Institutional Review Boards of the Fred Hutchinson Cancer Research Center,
University of Washington and the VA Puget Sound Health Care System.

Isolation of tumor cells by laser capture microdissection (LCM)

Tumors retrieved from liquid nitrogen storage were embedded on dry ice using Tissue-Tek
OCT Compound (Sakura Fineteck U.S.A., Torrance, CA) in 2-methylbutane. A 10-um section
was stained with hematoxilin and eosin for the pathologist (MP Upton) to identify regions rich
in tumor. The same tumor-rich regions in successive sections were isolated by LCM using an
Arturus™" Microdissection System (MDS Analytical Technologies, Sunnyvale, CA) to yield
enough tumor cells for 500 ng DNA for LOH/CNA detection.

Isolation of DNA from paired tumor cells and peripheral white blood cells

DNA from tumor cells was extracted using the Qiagen DNA Micro Kit; DNA from the white
blood cells was isolated by salt precipitation [32]. The purity of DNA was high as judged by
spectrophotometric A260 to A280 ratio of >1.8.

Interrogation of LOH and CNA using Affymetrix Genome-wide Human
SNP Array 6.0

DNA samples were further processed per Affymetrix protocols and interrogated using the
Affymetrix 6.0 SNP array. Affymetrix software tool and Genotyping Console 3.0.2 were used to
determine signal intensities and whether samples passed the Affymetrix QC threshold of Con-
trast QC> 0.4 and a QC Call Rate>86%. The respective corresponding values for our 75 sam-
ples were 1.87 and >97.1%. Genotype calls were made using Birdseed v2 (Affymetrix Power
Tools (APT), http://media.affymetrix.com/). Across the 19 replicate arrays of a reference sam-
ple assayed in different batches, ~98.8% of the probes had identical SNP calls. For quality con-
trol, we filtered out 3% SNPs that, in majority of subject DNA samples had poor APT
confidence scores, or had high genotyping call discrepancy over the 19 reference arrays. To
normalize raw allele intensity, we used the R package AROMA [33], which can adjust for allelic
crosstalk, probe affinity, PCR fragment length and probe sequence effects. The Affymetrix.cel
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files and associated patient characteristics can be found in the GEO database with Accession
No.GSE68717.

Statistical methods for inferring LOH and CNA based on genotype calls
and normalized probe intensities

We inferred the LOH status at each locus of each patient based on the genotype calls at that
locus from the paired tumor and blood samples. We excluded any SNP that was homozygous
in all tumors, which are non-informative to infer LOH, leaving 223,357 SNPs for further analy-
ses. LOH positive loci may have copy number loss (CN < 1), be copy number neutral (CN = 2)
or show copy number gain (CN > 3). LOH negative loci may also show copy number loss,
gain, or neutrality. To determine the CNA segment, we used Parent/allele specific copy number
estimation method (R package pscn [34]) which smoothes and estimates DNA copy number
using maximizing likelihood and segments the results into regions with constant copy number.
The 900K CNA probe data were thus downsized to 131K segments. Then based on the seg-
mented data, we use the paired tumor and blood samples to estimate the FDR on CNV gain/
loss calls in tumor samples at a given magnitude cutoff. Specifically, we assumed that there is
no true copy number variation in the blood sample, and estimated FDR as the ratio of the num-
ber of probes surviving the cutoff in the blood sample versus that in the tumor sample. The
final CNA gain/loss calls were made by controlling the FDR of the results at an average targeted
level of 10% (the FDR across subjects ranged from 0 to 12%, with a median of 0.96%).

To assess the association between individual SNP’s LOH/CNA status and patient survival,
we focused on OSCC-specific death (n = 24) and employed a multivariable Cox regression
model adjusting for age, sex, and smoking history to evaluate the strength of the associations.
The association of LOH/CNA events with OSCC-specific survival was determined with hazard
ratios (HRs), and the corresponding 95% confidence intervals (CIs). There are possible models
including univariate model with CNA only, univariate model with LOH only, multivariate
model with both CNA and LOH, and the full model with CNA, LOH and a term representing
the multiplicative interaction of CNV and LOH (CNA*LOH). Sex, age and smoking status
were included in all the above models. We conducted the log-likelihood ratio test comparing
the full model and the nested model to find out the significance of association. To account for
multiple hypotheses testing, we further estimated False Discovery Rate using the R package q-
value [35].

Results

We generated genome-wide LOH and CNA data on 75 patients with first, newly-diagnosed
HPV-negative OSCC. S1 Table shows selected characteristics of these patients who were mostly
white, male, current smokers and alcohol drinkers. The median follow-up was 75.7 months in
patients alive at last follow-up (range 32.7-111.4), and 46.9 months (range 1.1-111.4) for all 75
patients. About 58.7% had late stage (AJCC stage III & IV) OSCC and 46.7% had lymph node
involvement. Forty patients were deceased as of March 2014, among whom 24 patients had
died of OSCC.

Genome-wide LOH events and copy number gains/losses in tumor
tissue
The percentage of samples showing LOH at each probe from autosomes ranged 0%-90%

(mean + sd: 14.2 £ 13.3%) (Fig 1A). Frequent LOH events (appearing in >20% of the samples)
were observed in all autosomes. Some segments on 3p and 9p along with one SNP in 8q24
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Fig 1. Consensus plot of genome-wide LOH events. (A) and copy number gains and losses (B) for each autosome. The height and the color of the vertical
lines represent the percentage of samples in which the corresponding probes have LOH (A) or copy number gains (red)/losses (green) (B). Horizontal gray
lines indicate percentages ranging from 0, 20%, 40%, 60%, 80% to 100% The p arm (left) and q arm (right) in each chromosome are delineated by a vertical

purple bar.

doi:10.1371/journal.pone.0135074.g001

(rs16904097) and one SNP in 17p (rs2042004) exhibit extremely frequent LOH (in >80% of
samples) (Fig 1A). The region on Chr. 9p with extremely frequent LOH contains 30 SNPs, cor-
responding to eight genes (FLJ35024, KDM4C, CCDC171, IL33, PTPRD, TTC39B, SH3GL2,
FREM1) and 15 inter-genic positions (rs1947447, rs10976390, rs1538718, rs10757623,
rs7864275, rs4512431, rs1328001, rs10967005, rs10733410, rs4740766, rs12346508, rs726353,
rs10125418, rs2375075, rs882092, rs10811970) within 9p21.2-9p24.3. The neighboring region
of these 30 SNPs harbor several known TSG, including p16/CDKN2 gene cluster, TUSCI,
SH3GL2 and DMRT?2, which also exhibit frequent LOH events: one SNP in p16 showed LOH
in 37% of the samples; 20 SNPs in SH3GL2 showed LOH in 36% of the samples, and one SNP
in DMRT?2 showed LOH in 41% of the samples. The respective top 100 SNPs showing the most
frequent LOH (including copy number gain LOH copy number loss LOH and copy number
neutral LOH), DNA copy number gain, and DNA copy number loss are listed in S2 Table.

Frequent copy number gain events (appearing in >20% of the samples) were observed in 20
autosomes (except Chr. 4 and 21, Fig 1B); while frequent copy number loss events (similarly
defined) were observed in 14 autosomes (except Chr. 1, 6, 7, 12, 16, 19, 20, 22). Among onco-
genes and TSG that have been implicated in HNSCC, we found copy number gain and loss of
EGFR (36% and 1.3% of the samples, respectively), ERBB2 (21.3% and 4% of the samples,
respectively), FATI (5.3% and 27% of the samples, respectively), SMAD4 (1.3% and 41% of the
samples, respectively); and CDKN2A (8% and 54.7% of the samples, respectively).
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Fig 2. Percentage of OSCC having large-region-gain/loss/LOH for each chromosome arm. Large-region-gain/loss/LOH is defined as gain/loss/LOH
events occurring at more than 50% of probes of one chromosome arm in a sample.

doi:10.1371/journal.pone.0135074.9002

Percentage of probes in 22 autosomes showing CNA and LOH events varies among differ-
ent samples (S1 Fig). The percentage of probes showing LOH in each sample ranges 0.33% to
43% (mean =+ sd: 14.19 * 10.75%). The percentage of probes showing CNA in each sample
ranges from 0.03% to 82.6% (mean + sd: 30.1% * 18.4%). Copy number gain events range from
0% to 52% (mean * sd: 17.1% + 11.6%); copy number loss ranges from 0% to 33.9%

(mean + sd: 13 + 9.1%). Tumors with more LOH also are more likely to have more CNA.

Chromosome arms 3p, 8p, 9p, 99, 13q and 17p contain large-region-LOH events, as defined
by having more than 50% of probes on the chromosome arm showing LOH, in at least 27 of
the 75 samples (36%) (Fig 2). Similarly, frequent large-region-gain was seen for 3q (38.7% of
the samples), 5p (50.7%), and 8q (53.3%), and frequent large-region-loss was seen in 3p
(69.3%), 8p (54.7%) and 9p (40%).

Association of genome-wide LOH/CNA events with tumor
characteristics, lifestyle factors and OSCC-specific mortality

We clustered samples into two groups using genome-wide autosome CNA and LOH events
and examined the association between the resulting clusters and tumor characteristics, OSCC-
specific mortality and two major OSCC risk factors (cigarette smoking and alcohol use). The
genome-wide hierarchical clustering on CNA/LOH events did not reveal associations with
tumor characteristics or mortality (S3 Table, S2 Fig for CNA; S3 Fig for LOH). However, LOH
clusters showed a statistically significant difference in smoking status (S3 Table, Fisher Exact
test p = 0.0069).

Association of CNA/LOH at specific genome regions with tumor
characteristics and OSCC-specific mortality

For CNA, we focused on regions with high-level copy number amplification (defined as the dif-
ference between estimated copy number in the tumor sample vs. that in the matched blood
sample being >5) (Fig 3A). Two regions on Chr. 11 (Fig 3B) have frequent high-level copy
number amplification; region 1: 11q13.1-14.3, nt68683098 to nt70375682, with CNA>5
observed in MYEOV, CCNDI1, ORAOV1, FGF19, FGF4, FGF3, ANO1, FADD, PPFIAI, CTTN
and SHANK?2; and region 2: 11q22-24, nt99440128 to nt102804260, with CNA>5 observed in
MMP-1, -3, -7, -8, -10, -12, -13, -20, and -27; ARHGAP42; YAP1; TRPC6; CNTN5; DYNC2H1;
TMEM123; WTAPPI; LOC10105; BIRC3; KIAA1377; Cllorf70; DCUN1D5; PGR; and
ANGPTLS. The percentages of samples showing high-level CN amplification in these two
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Fig 3. Results on copy number amplification. A) High-level copy number amplifications. Each dot represents one probe. X-axis: genome order of probes
from 22 autosomes. Y-axis: Percentage of samples showing high copy number amplification at each probe. High copy number amplification is defined as the
difference between copy number in a tumor sample vs. that in the corresponding blood sample being greater than or equal to 5. B) Chromosome 11 tumor
copy number data. The top panel shows the heatmap of tumor CN data with probes in columns and 75 subjects in rows. The blue dashed lines label the high-
level amplification regions 1 and 2. The bottom panel shows the percentage of samples having high-level copy number amplifications (CNA> = 5) at each
probe.

doi:10.1371/journal.pone.0135074.9003

1111

regions are approximately 20% and 10%, respectively (Fig 3B). Heatmaps illustrating the LOH
and CNA data of these two regions are shown in Fig 4 and 54 Fig, respectively. Interestingly,
while 8-29% of the study participants have LOH in region 1, most of the copy number gain
events in region 1 are also accompanied with LOH (Fig 4). Applying hierarchical clustering on
CNA data in this region further divided the patients into two major groups: 23 patients with
numerous copy-number-gain-LOH events; and 52 with few LOH or CNA events (Fig 4 left top
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Fig 4. CNA and LOH data for the high-level amplification region 1 in 11q 13.1-14.3 (85 probes from nucleotide position nt68683098 to nt70375682).
The top left panel shows the heatmap of tumor CNA data, and the color key indicates the estimated copy number. The bottom left panel shows the heatmap
of LOH data (magenta, LOH present; blue, no LOH; white, not informative). In both heatmaps, the rows stand for SNPs and the columns stand for samples.
Based on the CNV data, we clustered the samples into two groups (23 patients in the magenta group and 52 patients in the blue group) using hierarchical
clustering algorithm. The right panel shows the cumulative incidence curves of the OSCC-specific death of the patients in the two clusters. The X-axis
indicates the years between surgery and last follow-up or death. The Y-axis indicates the cumulative incidence of death due to OSCC. OSCC-specific
mortality of the two clusters of patients was significantly different (p = 0.0445) according to log rank test.

doi:10.1371/journal.pone.0135074.9004

panel). Cumulative incidence analyses indicate that the group of 23 patients had a greater like-
lihood of OSCC-specific mortality (log rank test p = 0.0445 comparing 11 deaths of 23 patients
vs. 13 deaths of 52 patients, Fig 4, right panel). Patients in these two groups do not appear to
differ by TNM staging, tumor site and history of tobacco smoking and alcohol use (54 Table).
When the patients were clustered into two groups based on their LOH events in this region,
the cumulative incidence curves did not show a statistically significant difference between the
two groups (data not shown). When hierarchical clustering on CNA data in region 2 subdi-
vided the patients into two subgroups, no statistically significant difference in OSCC-specific
mortality between the subgroups was observed (54 Fig). There was a small suggestion that
CNA events in this region might be related to history of tobacco use (S4 Table, Fisher Exact
test p = 0.067). There were greater percentages of smokers, especially current smokers, than
non-smokers in cluster 1, which had fewer CNA events than cluster 2; the percentages of cur-
rent, former and never smokers were 48%, 36% and 16%, respectively. Current and former
smokers were less likely than non-smokers to be in cluster 2, which had greater number of
CNA events; the respective percentages of current, former and never smokers were 23%, 31%
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Fig 5. Manhattan plot of p-values for testing interaction effects between each probe’s LOH status and its DNA copy number in Cox regression
models for OSCC-specific survival. The X-axis shows the genome order with different chromosomes separated by vertical dashed grey lines. The Y-axis
shows the negative log4o p-values from log-likelihood ratio test for testing the interaction term (CNV*LOH) in the Cox model that included terms for sex, age,
and smoking history. The horizontal grey line corresponds to Bonferroni cutoff 0.05/66875.

doi:10.1371/journal.pone.0135074.9005

and 46%. Thus, these results suggest that smokers are less likely to have abnormal CNA in
region 2.

For LOH, we focused on Chr. 9p (Fig 2), which has the most frequent large-region-LOH in
this data set. The two clusters of patients defined by LOH frequencies on this chromosome
arm, with cluster 2 harboring more LOH events, differed significantly in terms of their smoking
history (S5 Table, p = 0.002). Patients in cluster 2 were more likely to be smokers, especially
current smokers; the respective percentages were 57%, 29% and 14% for current, former and
never smokers. These results suggest that tobacco exposure may result in a large number of
LOH events on Chr. 9p. No statistically significant differences were detected between two
groups’ cumulative probability of OSCC-specific mortality (S5 Fig, p = 0.782).

Association of individual SNPs with OSCC-specific mortality

Cox regression models were fit to assess the association between OSCC-specific mortality and
CNA or LOH of each probe, as well as their interaction, adjusting for sex, age and smoking.
After filtering out probes with LOH events occurring in fewer than 5 samples, there were
66,875 probes considered in the analysis. The Manhattan plots in Fig 5 and Fig 6A show the-
log;o(p value) from the likelihood ratio tests for the interaction effect between CNA and LOH
of each SNP, and the overall contribution of each SNP’s CNA and LOH information in the
Cox regression, respectively. There were eight probes for which the interactions between CNAs
and LOHs appear to be statistically significant in their Cox models based on Bonferroni cor-
rected significance level of 0.05 (p-value <7.48e-07) (Fig 5, Table 1). Among the eight probes,
three have complimentary sequence to FGF14. The corresponding results shown in Table 1
suggest an interesting modifying effect of LOH on the association between CNA of FGF14 and
mortality in that copy number gains of this gene increase the hazard rate in those patients with
LOH at this gene (positive InHR), while decrease the hazard rate in those patients without
LOH (negative InHR).

PLOS ONE | DOI:10.1371/journal.pone.0135074 August 6, 2015 9/283
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OSCC-specific death of the patients in the two clusters. The X-axis indicates the years between surgery and last follow-up or death. And the Y-axis indicates
the mortality rate. Survival of the two clusters of patients was significantly different (p = 0.0199) according to log rank test.

doi:10.1371/journal.pone.0135074.9006
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For each SNP, we tested the joint effect of LOH, CNA and their interaction term in the Cox
models. We found four probes (with one each corresponding to PALLD, DDX60L and
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Table 1. Eight probes with statistically significant interaction effects between CNA and LOH on OSCC-specific mortality.

Cyto-band

3p26
3p26
4q12
4p12
5035
13q34
13934
1334

SNP ID

SNP_A-2231666
SNP_A-8591805
SNP_A-1855888
SNP_A-2196903
SNP_A-1806221
SNP_A-2182075
SNP_A-4289264
SNP_A-8316408

RS position Gene Symbol Nucleotide position p.all’
rs4478080 FAM19A1 68320588 1.12E-06
rs2060023 MAGI1 65974572 2.71E-06

rs17750221 = 55040244 9.91E-06
rs7694862 TEC 48190372 2.11E-06
rs4343835 SNX2 122116630 9.44E-07

rs951348 FGF14 102788188 2.08E-06
rs952645 FGF14 102787731 8.74E-07
rs7994713 FGF14 102789615 1.40E-06

p.CNA*LOH"

1.09E-07
1.13E-07
5.95E-07
5.54E-07
3.27E-08
4.44E-07
1.13E-07
1.99E-07

Direction of CNA association

No LOH

*

*

LOH present

4L
+

+ 4+ o+ o+

1 p-values from the log-likelihood ratio test for terms for CNA, LOH, and the multiplicative interaction of CNA and LOH (LOH*CAN) in the Cox regression
model.

11 p-values from the log-likelihood ratio tests of the interaction term (cnv*loh).

* Direction of association undetermined.

doi:10.1371/journal.pone.0135074.t001

MAML3) significantly associated with OSCC-specific mortality with the Bonferroni corrected
p-values <0.05 (Fig 6A, Table 2). Results in Fig 6A also suggest that there are a large number of
probes on Chr. 4 showing moderate association (low p-values). Indeed, at FDR = 0.05, we find
675 SNPs showing significant association with OSCC deaths. Among these, a large percentage
(28.3%) is on Chr. 4q (Fig 6B). This motivated us to assess the connection between LOH/CNA
of this chromosome arm and mortality. We clustered patients into two groups (14 vs. 61)
based on LOH on 4q. Patients in the two clusters were similar in tumor size, site, nodal status,
smoking and alcohol use history, but differ by AJCC stage (S6 Table, Fisher Exact test

p = 0.0477). Cumulative incidence curves of OSCC-specific mortality of these two groups
showed a statistically significant difference (Fig 6C, log rank test p = 0.0199). Furthermore, the
two LOH-based clusters show significantly different association with patients’ mortality even
when AJCC stage was included in the adjustment (log-likelihood ratio test p = 0.00161). We

Table 2. List of 4 probes of whom the combined information of CNA and LOH are significant for predicting OSCC-specific m.

Cyto- SNP ID RS Gene Nucleotide P (CNA, LOH, & CNA*LOH P (CNA*LOH Direction of CNA
band position Symbol position terms)l} Interaction)}$ association
No LOH
LOH present
4933 SNP_9242309 rs12647997 PALLD 169663775 7.47E-07 0.63 *
4933 SNP_A- rs9685229 DDX60L 169371116 5.26E-07 1.54E-05 +
8393999
4931.1 SNP_A- rs11100449  MAML3 141171560 8.53E-08 4.15E-03 * +
8706233
13q14 SNP_A- rs7339301 — 39637333 5.42E-07 1.62E-06 - +
2115691

1 p-values from the log-likelihood ratio tests for the combined term (cnv+loh+cnv:loh) in the cox regression model “OSCC-specific survival ~ CNV + LOH
+ CNV:LOH + sex + age +smoking history”.

11 p-values from the log-likelihood ratio tests of the interaction term (cnv:loh).

* Direction of association undetermined.

doi:10.1371/journal.pone.0135074.t002

PLOS ONE | DOI:10.1371/journal.pone.0135074 August 6, 2015 11/28



@’PLOS ‘ ONE

LOH and CNA in Oral Squamous Cell Carcinoma

conducted the same analysis using CNA data of 4q, but didn’t detect a significant difference in
their association with OSCC-specific mortality (56 Fig).

Discussion

This study used LCM isolated tumor cells from fresh frozen tumor samples and paired periph-
eral blood leukocytes and the high density Affymetrix Genome-wide Human SNP Array 6.0 to
interrogate LOH/CNA events in HPV-negative OSCC and their association with OSCC-spe-
cific mortality. It detected a wide array of LOH and CNA events among tumors from 75
patients. All tumors harbored LOH and/or CNA, with no two exhibiting the same LOH/CNA
patterns on the genome-wide level.

This study confirms and adds to previous evidence regarding LOH and CNA in certain
chromosomal regions and gene loci that may play an important role in oral cancer biology and
prognosis. The observation of frequent LOH events on Chr. 3p, 9p, 11q and 17p is consistent
with previous reports [6, 36-61]. A number of genes on Chr. 3p have been proposed to be
HNSCC TSG that are shared with breast or colon cancer [62]. Based on the respective top 100
SNPs exhibiting the most frequent LOH or copy number loss in our study, the potential TSG
on Chr. 3p would include TGFBR2, CNTN4, and CHLI (reported for colorectal cancer) and
CNTNEG (for breast cancer [63]), as well as FHIT, ROBOI1-GRE1 and SETMAR-LRRNI. So far,
few studies have proposed HNSCC TSG in Chr. 9p [44]. Our results on extremely frequent
LOH (in >80% of patients tested) suggest that eight genes (FLJ35024, KDM4C, CCDC171,
IL33, PTPRD, TTC39B, SH3GL2, FREM1) within Chr. 9p21.2-24.3 may be TSG for HNSCC
that, with the exception of PTPRD and SH3GL2, have not been recognized previously. KDMC4
is a histone demethylase involved in chromatin remodeling [64, 65]. IL33 expression has been
reported to be elevated in HNSCC and may promote cell migration and invasion [66]. PTPRD
encodes for a phosphatase that regulates cell cycle. Its inactivation via homozygous deletion
and/or mutation has been reported in several cancers, including HNSCC [67-69]. Our finding
adds to the reported mechanisms of its inactivation. Variant genotypes of TTC39B have been
associated with dyslipidemia [70, 71]. The present study is the first to implicate it in cancer and
raises the question of what role lipid metabolism may play in OSCC pathophysiology. There is
some prior evidence to support SH3GL2 as a HNSCC TSG in that its decreased expression
and/or deletion was associated with laryngeal cancer [72, 73]. The current study is the first to
suggest its potential role as a TSG in OSCC, and that LOH may be another mechanism for its
dysregulation. FREM-1 encodes for an extracellular matrix adhesion protein [74]. The current
study is the first for its implication in cancer. Further human and model system studies to ver-
ify our new findings implicating KDM4C, PTPRD, TTC39B, SH3GL2, FREM1 as potential TSG
are warranted. It is noteworthy that at least for the top 100 SNPs associated with the most fre-
quent LOH, the LOH events were accompanied by copy number gain, loss, or neither gain nor
loss, attesting to the complexity of genomic changes in OSCC. It is also notable is that the top
100 SNPs with copy number gains are all in 8q24. The genes harboring these SNPs (S1B Table)
could be potential oncogenes for OSCC and warrant further investigation.

Our observed DNA copy number gains of oncogenes EGFR and ERBB2 and copy number
loss of TSG CDKN2A and SMAD4 are consistent with prior reports on HNSCC [6, 75-84].
FATI encodes for a cadherin protein implicated in the adhesion and migration of oral cancer
cells [85]. Results from the Cancer Genome Atlas project [86] and the India Project conducted
by the International Cancer Genome Consortium (India project team of the International Can-
cer Genome Consortium, 2013) showed that FATI is mutated in 20%-40% of HNSCC. Homo-
zygous loss of FATT has been reported in a study of oral cancer [87]. Based on its frequent
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mutations and copy number loss in cancer, FATI has been hypothesized as a TSG. Our results
showing copy number loss in FATI adds support to this hypothesis.

Amplification of 11q13.1-14.3 region in HNSCC has been observed by others [6, 84, 88—
96]. Our observation of high-level copy number amplification of MYEOV, CCNDI, ORAOV1,
FGF19, FGF4, FGF3, ANOI, FADD, PPF1A1, CTTN and SHANK?2 in this region is consistent
with prior reports and supports the hypothesis that they might be oncogenes and warrants fur-
ther investigation into their potential as therapeutic targets. Our observation that the majority
of patients who harbor high copy number amplification in this region also have LOH events
and that patients with copy-number-gain-LOH in this region have poorer survival than those
who rarely have CNA or LOH in this region represents a new discovery and requires further
validation. The fact that patients clustered by CNA rather than LOH showed a significant dif-
ference in OSCC-specific mortality underscores the importance of gene amplification in this
region and the need to investigate the amplified genes in their role as potential drivers for
OSCC aggressiveness, prognostic indicators, and targets for therapeutic intervention.

Our results showed that region 2 of Chr. 11q (11q22-24) also contains many genes with
high level of amplification (CNA>5), including many MMPs (MMP-1, -3, -7, -8, -10, -12, -13,
-20, and -27). This observation underscores the pivotal function of metalloproteinases in
OSCC progression. High level of amplification of MMP-1, -3, -7,-10,-12, -13 in HNSCC has
previously been reported [97], while amplification of MMP-8, -20, and -27 has not. ARHGAP42
is a RhoGTPase activating protein. No prior reports linking it to cancer. Others have hypothe-
sized YAP]I to be a driver gene for HNSCC [98-100]; our observed high level YAPI amplifica-
tion lends support to this hypothesis. High TRPC6 expression has been observed in other
cancers [101-105] and was reported to be associated with poor prognosis of esophageal cancer
[105]. CNTNS5 encodes an adhesion molecule that mediates cell surface interactions during
neural development. Our finding is the first to link CNTN5 with cancer. Whether it plays a role
in perineural invasion by participating in reciprocal signaling between nerves and OSCC as
demonstrated by plexins and semaphorins in HNSCC models [106] warrants examination.
DYNC2H] encodes a dynein protein purported to be involved in immune system and cytoskel-
eton remodeling. TMEM 123 encodes a transmembrane maturation marker for dendritic cells
in mice [107]. WTAPPI, a pseudogene with unknown function, has been reported to be associ-
ated with Wilms’ tumor. Amplification of BIRC3 has been reported in acute myeloid leukemia
[108] and pancreatic cancer [109]. Little is known about KIAA1377. DCUNI1D5 encodes for a
protein involved in neddylation of cullin. Its overexpression was reported in laryngeal cancer
[110]. ANGPTL5 encodes for angiopoietin-like 5 protein that supports the engraftment of
human hematopoietic stem cells in NOD-SCID mice [111]. Our results showing high copy
number of this gene in OSCC is the first to implicate its role in carcinogenesis.

We observed that copy number gains of FGF14 are associated with an increased risk of
OSCC-specific mortality in patients with LOH in this gene, and a decreased risk in patients
without LOH. This observed interaction effect between LOH and CNA suggests that the two
alleles might involve very different functional consequences. Such phenomenon can be
detected only when both LOH and CNA information are available-a strength of our study.
While interesting, these findings need to be interpreted with caution and validated in larger
populations because the sample size of this study is still quite limited. Dysregulation of FGF sig-
naling in cancer and FGFs’ potential as therapeutic targets are active areas of research [112-
115]. While having sequence homology to FGFs, FGF14 does not activate FGF receptor as a
true ligand [116]. Instead, it was found to be an intracellular modulator of voltage-gated
sodium channel essential for regulating neuronal activities [117]. It would be of interest to
examine the biological function of FGF14 in oral carcinogenesis and whether its expression is
in anyway related to perineural invasion of OSCC.
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Our results showed that CNA, LOH, and their interaction for a probe in each of PALLD,
DDX60L and MAML3 genes were significantly associated with OSCC mortality. PALLD
encodes palladin, an actin-associated protein essential for the regulation of cell morphology
and motility. Its upregulation has been reported in pancreatic cancer [118, 119] and, was asso-
ciated with poor survival among patients with renal cell carcinoma [120]. Our observation that
copy number gain LOH in PALLD is associated with particularly poor survival is consistent
with the observation in pancreatic cancer and with our prior report of an association between
upregulation of alpha-actinin, another player in cytoskeleton remodeling, and poor progres-
sion-free survival among OSCC patients [121]. DDX60L encodes for DEAD protein with
unknown function. The protein encoded by MAML3 has been shown to be essential for Notch
signaling in vivo [122]. Notch signaling is utilized effectively in numerous cellular and develop-
mental processes through its multiplicity of receptors (Notch 1-4) and ligands including
MAMLI1, MAML2 and MAMLS3 that serve as coactivators [123]. Notch 1 has been shown to be
frequently mutated in HNSCC with nearly 40% of the 28 mutations identified predicting a
truncated gene product [124]. The authors of that paper suggested that NOTCHI may function
as a TSG rather than an oncogene in HNSCC. Our result showing having LOH in MAML3 was
associated with poor survival even in the context of copy number gains lends support to this
hypothesis

Heterozygosity and partial or complete loss of Chr. 4q have been reported for verrucous
hyperplasia/carcinoma [125] and HNSCC [126, 127]. Unlike the present study, that earlier
report [126] on HNSCC did not find LOH on Chr. 4q to be associated with survival. While the
reason for the difference is unknown, it might have to do with the fact that the earlier report
was based on the examination of 33 polymorphic microsatellites while our study involved the
examination of 189 LOH events.

Thus, even with a limited number of 75 patients, the current study has confirmed a number
of prior findings on LOH and CNA in oral cancer as well as discovered a number of chromo-
somal regions that contain potential oncogenes and TSG for OSCC that warrant further inves-
tigation. Results of the current study also point to the heterogeneity and complexity of genomic
alterations in OSCC and the need to take this into account when designing therapeutic inter-
ventions for oral cancer patients. Larger studies are needed to confirm or refute the observed
associations of LOH, CNA, or their interactions with OSCC outcomes, and, if confirmed, to
examine the clinical utility of these findings. Conducting larger studies could also discover new
somatically-altered chromosomal regions that could not be detected with the multiple compar-
ison penalties in our current study.

Supporting Information

S1 Fig. Percentage of probes showing CNA and LOH events in each OSCC. The top three
plots show information for CNA normal, gain and loss. The bottom plot shows the LOH
events. The 75 OSCC are sorted by the percentages of probes showing LOH events.
(DOCX)

$2 Fig. Cumulative incidence curves of the OSCC-specific death for patients clustered by
CNA. The left panel shows the heatmap of CNA segments across all 22 autosomes (separated
by the blue dotted lines). Rows are individuals and columns are probe segments. Two patient
groups resulting from hierarchical clustering are labelled with purple and blue in the color bar
on the left side of the heatmap. The right panel shows the cumulative incidence curves of the
OSCC-specific death for the patients in each of the two clusters. The X-axis indicates the years
between surgery and last follow-up or death due to OSCC The Y-axis indicates the mortality
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rate.
(DOCX)

$3 Fig. Cumulative Incidence curves of OSCC-specific death of patients clustered by LOH.
The left panel shows the heatmap of LOH across all 22 autosomes (separated by the blue dotted
lines; magenta, LOH present; blue, no LOH; white, not informative). Rows are individuals and
columns are probe segments. Two patient groups resulted from hierarchical clustering are
labelled with magenta and blue in the color bar to the left of the heatmap. The right panel
shows the Cumulative Incidence curves of OSCC-specific death of the patients in the two clus-
ters. The X-axis indicates the years between surgery and last follow-up or death. The Y-axis
indicates the mortality rate.

(DOCX)

S$4 Fig. CNA and LOH data for the high-level amplification region 2 on Chr. 11 (115 probes
from 11q22-24 with nucleotide position from nt99440128 to nt102804260). The top left
panel shows tumor CNA data, and the color key indicates the number of copies. The bottom
left panel shows the heatmap of the heatmap of LOH data (magenta, LOH present; blue, no
LOH; white, not informative). In both heatmaps, the rows stand for SNPs and the columns
stand for samples. Based on the CNV data, we cluster the samples into two groups (13 patients
in the red group and 62 patients in the blue group) using hierarchical clustering algorithm. The
right panel shows the Cumulative Incidence curves of the OSCC-specific death of the patients
in the two clusters. The X-axis indicates the years between surgery and last follow-up or death.
And the Y-axis indicates the mortality rate.

(DOCX)

S5 Fig. LOH and CNA data for Chr. 9p with frequent LOH event (2579 probes from nucle-
otide position from 36587 to 38761831). The top left panel shows the heatmap of LOH data
(magenta, LOH present; blue, no LOH; white, not informative). The bottom left panel shows
the heatmap of tumor CNA data, and the color key indicates the copy number. In both heat-
maps, the rows stand for SNPs and the columns stand for samples. Based on the LOH data, we
clustered the samples into two groups (24 patients in the magenta group and 51 patients in the
blue group) using hierarchical clustering algorithm. The right panel shows the Cumulative
Incidence curves of the OSCC-specific death of the patients in the two clusters. The X-axis
indicates the years between surgery and last follow-up or death. The Y-axis indicates the mor-
tality rate.

(DOCX)

S6 Fig. CNA and LOH data for the whole Chr. 4q region (8975 probes from nucleotide
position from 63637813 to 183550869). The top left panel shows the heatmap of tumor CN
data, and the color key indicates the copy number. The bottom left panel shows the heatmap of
LOH data (magenta, LOH present; blue, no LOH; white, not informative). In both heatmaps,
the rows stand for SNPs and the columns stand for samples. Based on the CNA data, we clus-
tered the samples into two groups (15 patients in the magenta group and 60 patients in the
blue group) using hierarchical clustering algorithm. The right panel shows the Cumulative
Incidence curves of the OSCC-specific death of the patients in the two clusters. The X-axis
indicates the years between surgery and last follow-up or death. The Y-axis indicates the mor-
tality rate. Survival of the two clusters of patients was significantly different (p = 0.199) accord-
ing to log rank test.

(DOCX)

PLOS ONE | DOI:10.1371/journal.pone.0135074 August 6, 2015 15/283


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0135074.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0135074.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0135074.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0135074.s006

@’PLOS ‘ ONE

LOH and CNA in Oral Squamous Cell Carcinoma

S1 Table. Selected characteristics of HPV-negative oral squamous cell cancer patients, Uni-
versity of Washington Affiliated Institutions, 2004-2010 (n = 75).
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$2 Table. Top 100 most frequent LOH, CN gain and CN loss.
(XLSX)

S3 Table. Selected characteristics of OSCC patients according to clusters defined by
genome-wide tumor CNA or LOH events, University of Washington Affiliated Institu-
tions, 2004-2010.

(DOCX)

$4 Table. Selected characteristics for patients in clusters defined by CNA in Chr. 11, Region
1 (11q13.1-14.3, nt 68683098-nt 70375682) and Region 2 (11q22-24,
nt99440128-nt102804260).
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S5 Table. Selected characteristics of patients in clusters defined by LOH on Chr. 9p.
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S6 Table. Selected characteristics for patients in clusters defined by LOH on Chr. 4q.
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