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Formononetin regulates endothelial nitric
oxide synthase to protect vascular
endothelium in deep vein thrombosis rats
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Abstract

Objective: Formononetin is a bioactive isoflavone that has numerous medicinal benefits. We explored the feasibility and
its mechanism of formononetin on treating acute deep vein thrombosis (DVT) in rats.

Materials andmethods: Inferior vena cava (IVC) stenosis was performed to establish the DVT rat model. First, different
doses of formononetin were used to observe the feasibility of formononetin on treating DVT. In sham and DVT groups, rats
were orally treated with vehicle. In the remaining groups, formononetin (10 mg/kg, 20 mg/kg, and 40 mg/kg) was orally
treated once a day for 7 days at 24 h after IVC. After 7 days, the levels of thrombosis and inflammation related factors in
plasma were measured. The expression of endothelial nitric oxide synthase (eNOS) was analyzed by western blot and
immunofluorescence. Molecular docking was used to evaluate the interaction between the formononetin and eNOS.
Further, the NOS inhibitor (L-NAME) was used to explore the mechanism of formononetin for DVT.

Result: After treatment with formononetin, the average weights of thrombosis were decreased, and the levels of
thrombosis and inflammation related factors were also significantly decreased. Additionally, phosphorylation of eNOS was
increased with the formononetin administration. There is a good activity of formononetin to eNOS (total score = �6.8).
However, the effects of 40 mg/kg formononetin were concealed by the NOS inhibitor (L-NAME).

Conclusion: Formononetin reduces vascular endothelium injury induced by DVT through increasing eNOS in rats, which
provides a potential drug for treatment of venous thrombosis.

Keywords
inferior vena cava, molecular docking, nuclear factor-kappa B, venous thrombosis

Date received: 1 December 2021; accepted: 8 June 2022

Introduction

Deep vein thrombosis (DVT), also known as venous
thromboembolism, globally constitutes a major fraction of
diseases and frequently complicates the postoperative re-
covery of surgical patients with recognized or unrecog-
nized risk factors.1,2 Estimation of clinical probability,
measurement of D-dimer levels, and ultrasonography are
common approaches for diagnosing symptomatic DVT of
the lower extremities.3 Clinically, unfractionated heparin,
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low-molecular weight heparin, fondaparinux, and direct
oral anticoagulants are used to treat acute vein thrombosis.4

Moreover, inflammatory reactions are also closely asso-
ciated with DVT.

It is well known that activation of immune system
strongly influences blood coagulation and pathological
thrombus formation.5 Adhesion of neutrophils has been
identified as the initial step of thrombosis. D-dimer, pro-
thrombin fragment 1 + 2 (F1 + 2), thrombomodulin (TM),
interleukin (IL)-1β, IL-18, and tissue factor (TF) are some
of the factors that are reported to participate in the process
of thrombosis and inflammation.6–8 As a prototypical
proinflammatory signaling pathway, nuclear factor-kappa
B (NF-κB) pathway plays a major role in the expression of
proinflammatory genes, including cytokines, chemokines,
and adhesion molecules.9 These immune cascades lead to
expression of adhesion receptors on vascular endothelial
cells. The vascular endothelium maintains the balance
between vasodilatation and vasoconstriction, procoagulant
and anticoagulant, and prothrombotic and antithrombotic
mechanisms.10 Phosphorylation status and expression of
endothelial nitric oxide synthase (eNOS) are markers of
vascular endothelium function.10,11

Formononetin (7-hydroxy-40-methoxyisoflavone) is a
bioactive isoflavone that has numerous medicinal benefits,
including antioxidant, anti-inflammatory, and antitumor
activities.12,13 Interestingly, formononetin could improve
arterial endothelium function by upregulating eNOS
through estrogen receptors and mitogen-activated protein
kinase (MAPK) pathway.14 In addition, formononetin can
suppress NF-κB and phosphatidylinositol 3-kinase (PI3K)/
AKT in myeloma cells.15 These research studies suggested
that formononetin might play an active role in reducing
thrombus formation through regulating arterial endothe-
lium function.

In addition, we found that eNOS is one of the targets of
formononetin through Traditional Chinese Medicine Da-
tabase and Analysis Platform (TCMSP) (https://www.
tcmsp-e.com/). In this study, we evaluated the effects of
formononetin on thrombus formation and eNOS expres-
sion in DVT rats in an attempt to elucidate its potential
mechanism.

Materials and methods

Experimental subjects

This study was approved by the ethics committee of the
Weihai Municipal Hospital. Eighty Sprague-Dawley male
and female rats (age, 8 weeks; weight, 200–220 g) were
purchased from Jinan Pengyue Experimental Animal
Breeding Co, Ltd (SCXK (Lu) 20,190,003). All rats had
free access to food and water with a 12 h cyclic lighting

schedule at 20–26°C and 40–70% relative humidity. The
experiments followed the Guide for the Care and Use of
Laboratory Animals published by the US National Insti-
tutes of Health (NIH publication no.85–23, revised 1996).

DVT model

Referring to the existing protocols,7 we established an
inferior vena cava (IVC) stenosis-induced DVT model in
rats. In Figure S1, it showed the situation of IVC stenosis-
induced DVT model. Briefly, rats were anesthetized by
intraperitoneal injection of 1% pentobarbital sodium
(40 mg/kg) after 1 week of adaptive feeding. The limbs
were fixed at a supine position on the operating table. A 2-
cm incision was made along the midline of the abdomen.
The IVC was disserted and exposed, and stenosed by
putting a 20 G needle (d = 0.91 mm) outside the vein, tying
with a 7-0 silk at about 1 mm below the left renal vein, and
removing the needle. The abdominal muscles and skin
were sutured after surgery. Ceftriaxone sodium was evenly
sprayed on the incision line to prevent bacterial infection.

Animal groups

Experiment 1. Forty rats were randomly divided into five
groups, eight in each group. In sham group, the IVC was
exposed and then sutured without any invasive treatment.
In DVT group, the IVC stenosis was properly established.
In formononetin groups, 10, 20, 40 mg/kg formononetin
(F828304, Macklin, Shanghai, China) was orally admin-
istrated at 24 h after IVC stenosis surgery,13 once per day
for 7 days. In the sham and DVT groups, the rats were
treated with the same volume of 0.5% carboxymethyl
cellulose (CMC). The formononetin was dissolved in 0.5%
CMC.

Experiment 2. In order to analyze whether formononetin
improved the DVT via regulating eNOS, the NOS selected
inhibitor L-NAME (HY-18729A, MedChemExpress,
China) was used to the following study. Forty rats were
divided into sham, DVT, L-NAME, formononetin, and
formononetin plus L-NAME groups (n = 8). In the L-
NAME group, the rats were orally treated with 40 mg/kg L-
NAME at 24 h after IVC stenosis surgery, once per day for
7 days.16 In the formononetin group, the rats were orally
treated with 40 mg/kg formononetin at 24 h after IVC
stenosis surgery, once a day for 7 days. In the formononetin
plus L-NAME groups, the rats were orally treated with
40 mg/kg formononetin and 40 mg/kg L-NAME at 24 h
after IVC stenosis surgery, once per day for 7 days.
Similarly, the rats were treated with the same volume of
vehicle in the sham and DVT groups. The L-NAME was
dissolved in the water.
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Sample collection

On day 8 after operation, the rats were anesthetized with
1% pentobarbital sodium, then collected venous plasma
from the femoral vein in vacuum blood tubes containing
sodium citrate additives as anticoagulants and shook it
repeatedly immediately. Then, rats were killed by an in-
traperitoneal injection of 3% pentobarbital sodium
(150 mg/kg). The thrombus-containing IVC was carefully
removed from the test subjects for measuring weight and
length. After washing out unclotted blood with 0.9% saline
carefully, one part of the thrombosed IVC were fixed with
4% paraformaldehyde (C111000222, Macklin, Shanghai,
China) for 24 h, while the rest were stored at �80°C for
downstream analysis.

Enzyme linked immunosorbent assay (ELISA)

For the D-dimer (0623R2, Meimian, Jiangsun, China), F1
+ 2 (70174R2, Meimian, Jiangsun, China), TF (0082R2,
MeiMian, Jiangsun, China), and TM (0075r2, Meimian,
Jiangsun, China), their levels were analyzed after collection
and marking within 60 min. For the IL-1β (0047r2, Mei-
mian, Jiangsun, China) and IL-18 (0194R2, MeiMian,
Jiangsun, China), the plasma was centrifuged at 1000×g
for 30 min at 4°C to collect supernatants. The supernatants
were identified by ELISA kit within 4 h. The multiscan
spectrum of the Labsystems Multiskan MS 352 Microplate
Reader (Thermo Fisher Scientific) was used for the
analysis.

Hematoxylin-eosin (H&E) staining

The thrombus-containing IVC, fixed with 4% parafor-
maldehyde for 24 h, were embedded in paraffin and sec-
tioned into slices (3 μm). After dewaxing with xylene, the
slices were dehydrated using ethanol (anhydrous ethanol,
5 min; 95% ethanol, 2 min; 80% ethanol, 2 min; 70%
ethanol, 2 min). The slices were processed for hematoxylin
staining (G1120, Solarbio, Beijing, China) for 15 min,
differentiated for 30 s, and soaked at 50°C for 5 min. The
slices were stained with eosin for 40 s. After washing with
phosphate-buffered saline (PBS), the slices were again
dehydrated with ethanol and cleared with xylene
(X820585, Macklin, Shanghai, China). The sections were
then observed under a light microscope (DM1000 LED,
Leica, Germany).

Immunofluorescence

The thrombus-containing IVC, fixed with 4% paraformal-
dehyde for 24 h, were embedded in paraffin and sectioned into
slices (5 μm). After dewaxing with xylene, the slices were

dehydrated using ethanol. The sections were then treated with
citrate buffer (pH 6.0, m053201, mreda, Beijing, China) at
95°C for 10 min and sealed with 5% bovine serum albumin
(BSA) (A8010, Solarbio, Beijing, China) for 60 min at 25°C.
Thereafter, sections were incubated with rabbit anti-phospho-
eNOS (Thr113) (1:200, bs-3589R, Bioss, Beijing, China) at
4°C overnight. After washingwith PBS, sliceswere incubated
with a second antibody, lgG, labeled with Cy3 (rabbit anti-rat
lgG/Cy3, 1:1000, bs-0293R, Bioss, Beijing, China) for
60 min at room temperature (25°C). After washing with PBS,
sections were stained with 40, 6-diamidino-2-phenylindole
(DAPI) for 5 min. The fluorescent images were obtained
using a laser confocalmicroscope (LSM800, Zeiss, Germany)
and analyzed using Image J software (version 6; National
Institutes of Health).

Western blot

The thrombus-containing IVC, previously stored at �80°C,
were dissolved in cold RIPA (Radioimmunoprecipitation
assay) buffer (R0010, Solarbio) containing protease and
phosphatase inhibitors for 15 min and centrifuged at
12,000 g for 25 min at 4°C. Total protein was extracted
using a total protein extraction kit (BC3640-50T, Solarbio,
Beijing, China). The protein (40 μg) was separated by 10%
SDS-PAGE (Bio-Rad Laboratories, Inc.), transferred to a
polyvinylidene fluoride (PVDF) membrane (EMD Milli-
pore), and sealed with 5% skimmedmilk at 5°C for 1 h. The
primary antibodies were diluted with 5% BSA at 4°C,
including rabbit anti-Iκκβ (1:800,bs-4880R,Bioss, Beijing,
China), rabbit anti-p-eNOS (1:800, bs-3589R, Bioss,
Beijing, China), rabbit anti-eNOS (1:800, bs-20608R,
Bioss, Beijing, China), rabbit anti-intercellular cell adhe-
sion molecule-1 (ICAM-1, 1:800, bs-4617R,Bioss, Bei-
jing, China), rabbit anti-NF-κB p65 (1:800, bs-23217R,
Bioss, Beijing, China), rabbit anti-p-NF-κB p65 (1:800, bs-
230303R, Bioss, Beijing, China), and rabbit anti-GAPDH
(1:1000, bs-0755R, Bioss, Beijing, China). The mem-
branes were incubated overnight at 4°C. Thereafter, they
were washed thrice (10 min/wash) in TRIS-buffered saline
with 0.1% Tween 20 (TBST). The membranes were sub-
sequently incubated with goat anti-rabbit IgG/HRP (1:
1000, bs-0295G-HRP, Bioss, Beijing, China) at 25°C for
1 h. Following three washes with TBST, enhanced
chemiluminescence (ECL) reagent (C05-07004, Bioss,
Beijing, China) was used to observe the protein bands.
Protein expression was quantified using the ImageJ soft-
ware (version 6; National Institutes of Health).

Molecular docking analysis

The formononetin ligand was retrieved from PubChem
(https://pubchem.ncbi.nlm.nih.gov/) with 3D structure, and
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the three-dimensional structure of eNOS was downloaded
from PDB database (https://www.rcsb.org/). Mechanical
optimization, hydrogenation, and charging of ligand were
carried out by UCSF chimera software. At the same time,
the acceptor was extracted from the ligand small molecule,
repaired the side chain and hydrogenated using UCSF
chimera software.17 Then the molecular docking was an-
alyzed using AutoDock Vina tool. The docking results
were evaluated using total score. The total score means
inter molecular energy (kcal/mol), which represents the
stability between the ligand and receptor. The value is more
negative, and the binding is more stable.

Statistical analysis

Data were processed using SPSS software (version 19.0;
National Institutes of Health), and the results are expressed
as mean ± standard deviation. One-way analysis of vari-
ance followed by Tukey’s post hoc test was used for data
analysis among groups. p value of <0.05 was considered
statistically significant.

Results

Effects of formononetin on IVC thrombosis in
DVT rats

The lengths and weights of the IVC thrombus in each group
were observed and measured (Figure 1(a)). After treatment
of formononetin, the length and weight of thrombosis were
significantly decreased in a dose-dependent manner. The
pathological changes of venous thrombosis in each group
were observed by H&E staining (Figure 1(b)), which
showed longitudinal sections. In the sham group, the IVC
wall structure was intact, and no thrombosis was observed
in the vascular lumen. In the DVT group, there was a full
thrombus, while in the formononetin groups, the amounts
of thrombus in the vascular lumen were declined with the
doses increasing. These findings suggest that formononetin
could reduce DVT.

Effects of formononetin on inflammatory and
coagulation factors in DVT rats

The expression of inflammatory factors, IL-1β and IL-18
(Figure 2(a)), and coagulation factors, D-dimer, F1 + 2, TF,
and TM (Figure 2(b)) were analyzed by ELISA. Compared
with the sham group, the above indexes were significantly
increased. Compared to the DVT group, the contents of
inflammatory factors and coagulation factors in the for-
mononetin groups were significantly low. In addition, the
levels of inflammatory factors and coagulation factors were

decreased with the doses of formononetin increasing.
These results indicate that formononetin reduced inflam-
matory and coagulation factors in DVT rats.

Effects of formononetin on p-eNOS expression in
IVC thrombus

The expression of p-eNOS in IVC thrombus was analyzed
using immunofluorescence (Figure 3(a)) and western blot
(Figure 3(b)). The expression level of p-eNOS was sig-
nificantly lower in the DVT group than in the sham group.
However, after formononetin treatment, the expression
level of p-eNOS was significantly increased compared with
the DVT group. The levels of p-eNOS were increased with
the doses of formononetin increasing. In order to confirm
the relationship between the formononetin and eNOS, the
molecular docking analysis showed that there is a good
activity of formononetin to eNOS (score = �6.8, Figure
3(c)). The absolute value of score greater than six is used as
the screening condition.

Formononetin improved DVT via regulating
the p-eNOS

In order to confirm that formononetin improves DVT
through regulating eNOS, the eNOS inhibitor L-NAME
was used to carry out the experiment 2. At the same time,
there was no significant difference between the DVT
group and the L-NAME alone treatment group. Compared
with the DVT group, the length and weight of thrombus
were remarkably declined (Figure 4(a)), and the throm-
bosis in the vascular lumen (Figure 4(b)) was reduced
after 40 mg/kg formononetin treatment. However, the
effects of 40 mg/kg formononetin were clearly counter-
acted by L-NAME.

Formononetin decreased NF-κB pathway via
regulating the p-eNOS

The expression of eNOS was measured by immunofluo-
rescence (Figure 5(a)) and western blot (Figure 5(b)), and
the results showed that eNOS inhibitor L-NAME obviously
inhibited the effects of formononetin on eNOS expression
when contrasted to the formononetin group. Meanwhile,
the expression of ICAM-1 was significantly increased
because of the IVC thrombosis, and its expression was
clearly inhibited by 40 mg/kg formononetin treatment
(Figure 5(b)). In addition, the NF-κB pathway-related
proteins Iκκβ, p-NF-κB p65/NF-κB p65 were observed
in each group by western blot (Figure 5(b)). The activated
NF-κB pathway by DVT was notably suppressed after
40 mg/kg formononetin treatment. However, the suppression
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of 40 mg/kg formononetin was weakened when treated
with the eNOS inhibitor L-NAME at the same time.

Gender-related differences in DVT rats after
formononetin treatment

In order to find the potential influence of formononetin
treatment in DVT rats on the basis of gender, the thrombus
length and weights (Figure 6(a)), IL-1β and IL-18 in serum
(Figure 6(b)), and p-eNOS/eNOS in thrombus-containing
IVC (Figure 6(c)) were compared both DVT rats and
40 mg/kg formononetin treated rats. The results showed

that there was no difference between male and female rats
with IVC stenosis-induced DVT.

Discussion

In this study, we used different doses of formononetin to
explore its roles in IVC thrombus of DVT rats and found
that formononetin could decrease the length and weight of
IVC thrombus and alleviate venous thrombosis in IVC
stenosis-induced DVT rats with the dose of increasing.
These findings suggest that formononetin could alleviate
DVT in rats. As is well known, formononetin could prevent

Figure 1. Effects of formononetin on IVC thrombosis in DVT rats. (a) The images, lengths and weights of IVC thrombosis in each group.
(b) The pathological changes of venous thrombosis in each group were analyzed by H&E (scale = 200 μm), which showed longitudinal
sections. The arrow represents the thrombosis. Compared with the DVT group, ##p < 0.01. Compared with the 10mg/kg formononetin
group, &&p < 0.01.
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inflammation in many diseases, such as kidney injury,13

type 2 diabetes,18 and cancers.12 Many studies also have
shown that inflammation is activated and contributes to the
progression of venous thrombosis.6,7,19 Once a thrombus
forms, inflammatory cells are important for thrombus
resolution, along with fibrinolytic agents and proin-
flammatory mediators. In our study, formononetin treat-
ment reduced the secretion of proinflammatory mediators,
such as IL-1β and IL-18, suggesting that formononetin
improves venous thrombosis by inhibiting inflammation in
rats.

In the context of venous thrombosis, the levels of D-
dimer, F1 + 2, TM, and TF are important indicators for the
diagnosis and evaluation of thrombotic diseases. D-dimer
is a marker of endogenous fibrinolysis and has a high
negative predictive value for patients with DVT.2,20 As a
sensitive direct marker of thrombin formation, F1 + 2 is
used to monitor anticoagulant therapies.21 TM plays the
role of an anticoagulant by mediating the interaction

between thrombin and protein C.22 TF is activated to in-
crease the levels of blood borne in the vascular compart-
ment when risk factors for thrombosis, such as
inflammatory mediators, are present.23 Through our study,
the levels of D-dimer, F1 + 2, TM, and TF were clearly
increased, and formononetin administration significantly
decreased the above factors in the DVT rats. These data
revealed that formononetin has a positive role in anti-
thrombosis.

Endothelial dysfunction is a crucial mechanism of DVT,
which could damage the antithrombotic function of venous
wall through downregulation of eNOS expression or
stimulation of adhesion receptor expression.24 Upregula-
tion of eNOS could increase NO release and improve ar-
terial endothelial cell function, which could contribute to
the prevention of cardiovascular diseases.14 In our study,
the levels of p-eNOS were continuously upregulated in the
venous thrombosis induced by DVT with the doses of
formononetin increasing. Meanwhile, there is a good

Figure 2. Effects of formononetin on inflammatory factors and coagulation factors in DVT rats. (a) The contents of IL-1β and IL-18 in
serum analyzed by ELISA. (b) The contents of D-dimer, F1 + 2, TM, and TF in plasma analyzed by ELISA. Compared to the sham group,
*p < 0.05, **p < 0.01. Compared to the DVT group, #p < 0.05, ##p < 0.01. Compared to the 10 mg/kg formononetin group, &p < 0.05,
&&p < 0.01.
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activity of formononetin to eNOS from the results of the
molecular docking. These results were consistent with
findings of Tseng and his colleagues25 that formononetin
upregulates eNOS expression in endothelial cells to im-
prove endothelial functions. As a component of endothelial
cell-to-cell adherens junctions, ICAM-1 plays an important
role in maintaining vascular integrity.26 The expression of
ICAM-1 is upregulated in response to inflammatory
stimulation, which regulates leukocyte rolling and adhesive
interactions with the vessel wall and guides leukocyte
crossing of the endothelial layer. Studies on formononetin

and ICAM-1 have reported in the human umbilical vein
endothelial cells (HUVEC)27–29 that formononetin exhibits
a protective effect on HUVEC through reducing ICAM-1.
Consistent with these studies, we also found that for-
mononetin reduced the expression of ICAM-1 in the IVC
thrombus in rats.

Classical activation of NF-κB is dependent on the
degradation of inhibitor of κB (IκB), which sequesters NF-
κB in the cytoplasm during homeostasis.30 After stimu-
lation, the inhibitor of κB kinase (Iκκ) is activated, which
contains three subunits: Iκκα, Iκκβ, and Iκκγ. Iκκγ activates

Figure 3. Effects of formononetin on p-eNOS expression in the venous endothelial cells of DVT rats. The expression of eNOS was
analyzed by immunofluorescence ((a), yellow) and western blot (b). Scale = 50 μm. The results were analyzed by Image J software.
Compared to the sham group, *p < 0.05, **p < 0.01. Compared to the DVT group, #p < 0.05, ##p < 0.01. Compared to the 10 mg/kg
formononetin group, &p < 0.05, &&p < 0.01. The activity of formononetin to eNOS was predicted by the molecular docking analysis (c).
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Iκκβ to phosphorylate IκB, which, in turn, causes a con-
formational change, thereby releasing NF-κB subunits.12,13

NF-κB not only plays an important role in the expression of
proinflammatory cytokines but also promotes the meta-
bolism of glycolytic energy and the production of

angiogenic factors.29,31 Zhou et al.28 reported that for-
mononetin could reverse the abnormal levels of phos-
phorylated ICAM-1, IL-1β, and NO by inhibiting Janus
kinase (JAK)/signal transducer and activator of tran-
scription (STAT) signaling. In addition, Kwon et al.32

Figure 4. Formononetin improved DVT via regulating the p-eNOS in rats. (a) The images, lengths and weights of IVC thrombosis in each
group. (b) The pathological changes of venous thrombosis in each group were analyzed by H&E (scale = 200 μm), which showed
longitudinal sections. 40 mg/kg formononetin and 40 mg/kg NOS inhibitor L-NAME were orally treated after surgery. Compared to the
sham group, **p < 0.01. Compared to the DVT group, ##p < 0.01. Compared to the formononetin group, &p < 0.05.
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found that formononetin blocked cytokine-induced endo-
thelial cell adhesion molecule expression through NF-κB
pathway disruption. Consistent with these studies, we
found that formononetin suppressed the levels of Iκκβ and
p-NF-κB p65 in venous thrombosis of DVT rats.

Previous reports have found that formononetin has a
strong estrogenic effect and that estrogens could activate

estrogen receptors.14,27 In endothelial cells, eNOS is
influenced by various stimuli, such as estrogen receptors.14

In our study, no significant difference on eNOS protein
expression was found in thrombus-containing IVC after
40 mg/kg formononetin treatment between male and fe-
male rats. However, the estrogen-related respects with
respect to the formononetin in venous thrombosis are

Figure 5. Formononetin decreased NF-κB pathway via regulating the p-eNOS in the DVT rats. (a) The expression of p-eNOS was
measured by Immunofluorescence ((a), yellow) and western blot (b). Scale = 20 μm. (b) Western blot was used to analyze the
expression of ICAM-1, Iκκβ and p-NF-κB p65/NF-κB p65. Compared to the sham group, *p < 0.05, **p < 0.01. Compared to the DVT
group, #p < 0.05, ##p < 0.01. Compared to the formononetin group, &&p < 0.01.
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needed to study in the future. The IVC stenosis model can
reproduce the clinical scenario where a thrombus has re-
opened after DVT in patients, but its significant disad-
vantage is the degree of stenosis is inconsistent leading to a
constant variable in thrombus sizes.33 An electrolytic
model may be used to analyze the effects of formononetin
in the acute and chronic DVT because of the constant
presence of flow, which more closely resembles the clinical
scenario.33 Besides, sample size calculation is an important
consideration and a necessary component for animal re-
search studies, which provides critical information for as-
sessing feasibility and implications of each study. However,
the sample size calculation and justification were not done in
this study, which is another limitation of this research.

Conclusion

The results of our study indicate that formononetin pre-
vents venous thrombosis in IVC stenosis-induced DVT

rats, and its mechanism is related to upregulation of eNOS
expression to improve endothelial functions. This potential
of formononetin might provide a potential novel drug for
treatment of venous thrombosis.
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difference of p-eNOS/eNOS protein expression between male and female rats was analyzed by western blot. No difference between
male and female was found. Male = 8 and female = 8.
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