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Abstract: The development of bio-glues is still a challenging task, regarding adhesion on wet surfaces;
often, high performance and adaption to complex geometries need to be combined in one material.
Here, we report biocompatible adhesives obtained by blending regenerated silk (RS) with a soluble
plant-derived polyphenol (i.e., chestnut tannin) that was also used to exfoliate graphite to obtain
graphene-based RS/tannin (G-RS/T) composites. The resultant G-RS/T hybrid material exhibited
outstanding stretchability (i.e., 400%) and high shear strength (i.e., 180 kPa), superior to that of
commercial bio-glues, and showed sealant properties for tissue approximation. Moreover, we showed
how such nanocomposites exhibit electromechanical properties that could potentially be used for the
realization of green and eco-friendly piezoelectric devices. Finally, we demonstrate the in vitro glue’s
biocompatibility and anti-oxidant properties that enable their utilization in clinical applications.

Keywords: regenerated silk; exfoliated graphite; tannin extracts; mechanical properties; adhesion;
biocompatibility

1. Introduction

Adhesives that can bond biological tissues are of great interest in the areas of wound
repair, applications in surgical sutures and regenerative medicine [1–3]. To date, there are
some commercial adhesives for diverse wet surfaces, but which, however, have limits in
terms of excessive mechanical rigidity or poor mechanical toughness [4,5]. A multifunc-
tional adhesive that overcomes the mismatch between planar geometries and the curved
interfaces of most natural objects (i.e., living organisms and environmental substrates), is
sticky on wet substrates and has self-sensing properties for real-time monitoring of vital
parameters needs a huge effort for implementation.

Regenerated silk (RS), due to its biocompatibility and biodegradation properties, has
been extensively investigated in wound dressings [6] and scaffolds [7,8]. Moreover, RS
has already been studied as a bio-ink for printable smart architectures [9] as well as a
colloidal-type glue when blended with polyethylene glycol (PEG), polyvinyl alcohol or
tannic acid [10–12]; however, these hybrid materials suffer from a long gelation time.

Tannins are polyphenol extracts produced by superior plants as a chemical shield to
protect the wooden structure against radical oxidative processes, as well as against biologic
attacks from animals, fungi and bacteria [13]. These extracts are widely applied in the
leather tannery row, in pharmacy and cosmetics, but also in oenology and animal feeding,
suggesting high compatibility with living tissue [14]. Flavonoid tannins have recently
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found application for polymeric application in adhesives [15], wood preservatives [16], bio-
plastics [17] and foams [18] thanks to their excellent capacity to crosslink with a contained
amount of hardener (e.g., formaldehyde, hexamine, furanics).

One underexploited but highly interesting property of polyphenols lies in their ca-
pacity to exfoliate graphene [19]. Graphene is an ideal additive for adhesives because its
structure involves significant enhancements on the mechanical properties of the composite.
This is of particular interest when applied on regenerated silk [9].

Recently, it was reported how two-dimensional (2D) nanomaterials, thanks to their
outstanding physical and electrical properties, may play a crucial role when interfaced
with elastomeric-like matrices to fabricate flexible smart devices [20]. Combining high-
performance 2D material, such as graphene, with biogenic materials (i.e., RS and tannin)
is a versatile strategy to develop smart materials. The materials were chosen on the basis
of the following criteria: the adhesive has to be compliant to the dynamic movements of
tissues and self-sensing when the interface is stressed.

Here, we propose a reverse engineering approach to fabricate stretchable and self-
powering materials, exploiting the tannin-assisted exfoliation of graphite nanoplatelets
in the same solvent used to regenerate silk from silk cocoons. The synergistic effect of
the addition of graphene and tannin endows the resultant composites with remarkably
improved mechanical properties and electromechanical properties, as well as adhesion
ability on wet surfaces, suggesting an exciting material platform of nature-based sealants,
which could be used for a wide range of applications in regenerative medicine.

2. Materials and Methods
2.1. Materials

Silk cocoons were supplied by a local farm (Fimo srl, Milano, Italy). Sodium hydrogen
carbonate (NaHCO3), calcium chloride (CaCl2) and formic acid (FA) were supplied by
Merck (Darmstadt, Germany). Graphite nanoplatelets C777 (GNPs, carbon content > 65%,
average flake thickness ~ 20 nm, layer number ~ 41, average particle (lateral) size:16 µm,
were supplied by Nanesa (Arezzo, Italy). Commercial chestnut tannin extract “Saviotan A”
was kindly supplied by SavioLife (Viadana, Italy).

2.2. Synthesis of the Films

Silk cocoons were degummed with NaHCO3 (5 g in 200 mL of water) in boiling water
for 30 min and rinsed with deionized water; the procedure was repeated two times. The
degummed fibers were then left to dry at room temperature.

RS solutions were produced by dispersing the degummed silk fibers into the FA/CaCl2
solution by magnetic stirring at room temperature for 5 min to obtain a homogeneous
solution; the CaCl2 amount was calculated with respect to the silk:CaCl2 weight ratio (i.e.,
60:40) with a silk amount of 0.65 g that was dissolved in FA (5 mL). Afterwards, 1 wt% and
10 wt% of tannin, with respect to the silk content, were added to the solution, respectively,
leaving the dissolution to proceed at 50 ◦C. Finally, 1 wt% of GNPs, with respect to the
silk amount, was added to the solutions and sonicated for 30 min at room temperature.
The solutions were dropcast into Petri dishes with a diameter of 5 cm and left to evaporate
under a laminar flow hood overnight. Hereinafter, RS/T is used for samples obtained
by adding only tannin, and G-RS/T for those obtained by adding GNPs (Table 1). For
comparison purposes, we also prepared films of neat RS.
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Table 1. Composition of the prepared samples.

Sample Tannin
(wt%)

GNPs
(wt%)

RS 0 0

RS/T1 1 0

G-RS/T1 1 1

RS/T10 10 0

G-RS/T10 10 1

2.3. Characterization

To investigate the exfoliation of GNPs, 1 wt% of GNPs powder, calculated with respect
to the RS amount, was added to 5 mL FA/CaCl2 solutions containing 0 wt%, 1 wt% and
10 wt% of tannin, respectively. The GNPs powder was dissolved with bath sonication
operating at 100 W and 40 kHz for 30 min. The dispersions were then left to stand for
24 h to allow the insoluble graphite to precipitate, and were then centrifuged for 30 min at
500 rpm.

FTIR investigations were carried out on the casted films using a PerkinElmer (Waltham,
MA, USA) spectrometer equipped with a diamond crystal in attenuated total reflectance
(ATR) mode.

The sheets were removed from the Petri dishes using a sharp razor blade and were
placed onto the diamond ATR crystal before applying pressure to the top of the sample.
Measurements were performed in the range of 4000 to 400 cm−1 with a resolution of
4 cm−1, and the number of scans was 64 for each spectrum. The measurements were
performed at room temperature. The diamond crystal was cleaned after each measurement
and background spectra were acquired prior to each sample measurement. The spectra
were collected in the range of 1750 to 1520 cm−1, which are the amide I and amide II
bands of RS. The spectra were then deconvoluted, firstly by smoothing the signal with a
polynomial function—in this case a 15-point Savitski–Golay smoothing function—then
by subtracting a linear baseline and applying Gaussian deconvoluting curves by Origin 9
(OriginPro, version 9.0, OriginLab Corporation, MA, USA) software.

The morphology of the exfoliated graphite was investigated by atomic force mi-
croscopy (AFM) and the extent of exfoliation was analyzed with Raman spectroscopy.
AFM images were obtained using a tapping mode AFM (multimode Nanoscope Iva, Dig-
ital Instrument/Veeco Aschheim, Germany) under ambient conditions. The oscillation
frequency was set to approximately 300 kHz. The GNP suspensions were deposited by
spin-casting onto previously clean Si wafers. The height and length of the GNP particles
were measured for at least 20 particles. The Raman spectra were recorded in a Renishaw
Invia (Renishaw plc., Wotton-under-Edge, UK) microscope using an excitation wavelength
of 514.5 nm argon ion laser and 0.02 cm−1 resolution.

The stress–strain curves of the RS/T and G-RS/T films (3 cm × 1.5 cm rectangular
shaped samples) were obtained through a tensile testing machine (Lloyd Instr. Ltd. LR30K,
Steyning Way West Sussex, UK). The samples were tested at room temperature with a strain
rate of 5 mm·min−1 using a 50 N load cell. Three samples per formulation were tested.

The adhesive properties were tested by gluing two portions of commercial porcine
intestine (supplied by Butcher’s Falchi, Terni, Italy) to the prepared samples. Once the
materials were applied between porcine intestines, the structures were stored in a climatic
chamber for 24 h at 37 ◦C and a relative humidity of 90%. The shear strength was then
calculated with a strain rate of 5 mm·min−1, dividing the maximum force by the adhesion
area. The rupture was observed on the overlapped region of the intestine. To avoid damage
of the tissues by the clamping, polystyrene stiff films (NIST® SRM® 1921b, Merck, Milan,
Italy) were glued to the back of the intestine as the substrate. The accurate values of the
adhesion areas were calculated by importing the digital photos in AutoCAD (AutoCAD
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LT, version F.51.0.0, Autodesk Inc., CA, USA, 2012). The reported results are the average of
at least three measurements per composition of adhesive.

The sealant properties of the prepared samples were determined measuring the burst
pressure. A 5 mm-long incision was made through one porcine intestinal wall. RS/T and
G-RS/T sealants were positioned and gently pressed over the incision. A Porcine intestine
loop was sectioned with a scalpel. The two loop cuts created were then anastomosed with
5/0 absorbable interrupted full thickness sutures; the suture used was synthetic absorbable
monofilament made from the polyester (p-dioxanone) [21]. A digital manometer was
connected in series to a pump, recording the burst pressure, which is defined as the
maximum pressure reached before its sharp loss after the rupture. The piezoelectric
properties were investigated as follows: the RS/T and G-RS/T samples were stuck onto
the bottom of an aluminum tape electrode, and then aluminum tape was attached to the
top. The samples were then positioned over a Teflon substrate to electrically isolate the
system. The samples were progressively stretched and the open circuit voltage values were
monitored using a computer-controlled Keithley 4200 Source Meter Unit (Tektronix UK
Ltd., The Capitol Building, Oldbury, UK). The dynamic piezoelectric output of the samples
was measured by using the finger imparting method reported elsewhere [22].

2.4. Antioxidant Assay by Oxygen Radical Absorbance Capacity (ORAC)

The antioxidant capacity of all compounds was determined using the ORAC method.
Hydrophilic extraction was performed on two independent occasions for each sample. The
procedure was based on the method of Zulueta et al. [23], with slight modifications [24].
Briefly, 2,20-azobis (2-methylpropionamide) dihydrochloride (AAPH) was used as a per-
oxyl radical generator, fluorescein was used as a fluorescent probe and Trolox was used as a
reference antioxidant standard. The data are expressed as micromoles of Trolox equivalents
(TE) per gram of sample (µmol TE/g). The ORAC assay was carried out on a FLUOstar
OPTIMA microplate fluorescence reader (BMG LABTECH, Offenburg, Germany) at an
excitation wavelength of 485 nm and an emission wavelength of 520 nm.

2.5. Cytotoxicity Assay In Vitro

For the bio-compatibility assessment, the HepG2 cell line (ATCC HB 8065), a human
hepatocyte carcinoma, was used as a representative model. This cell line was purchased
from ATCC (American Type Culture Collection, Gaithersburg, MD, USA). According to
ATCC standard procedure, HepG2 was cultured in Eagle’s minimum essential medium
(EMEM), supplemented with 10% heat-inactivated fetal bovine serum (FBS), 1% non-
essential amino acids, 1 mM sodium pyruvate, 2 mM of L-glutamine and antibiotics
(100 U/mL penicillin, 100 µg/mL streptomycin) [25]. To evaluate the biocompatibility
of these compounds, MTT assay was used after 24 h and 48 h of treatment [26]. HepG2
cells were seeded in a 96-well plate at 1 × 104 cells/well final cell density and after
24 h the fresh complete medium was replaced with 8 different scalar dilutions of stock
solutions (1 mg/mL). MTT reagent (0.5 µg/µL) was added in each well for 3 h at 37 ◦C.
Then, the supernatant was carefully removed, and formazan salt crystals were dissolved
in 100 µL DMSO 100%, and the OD values were measured spectrophotometrically at
570 nm (Eliza MAT 2000, DRG Instruments GmbH, Marburg, Germany). Each experiment
was performed in triplicate three times and cell viability was expressed as a percentage
relative, as previously described [27,28]. A one-way ANOVA test was performed using the
Graphpad program (GraphPad Prism 9.2.0.332, GraphPad software, San Diego, CA, USA)
for MTT assay.

3. Results and Discussion

By exploiting the experimental evidence that formic acid (FA) is able to solubilize
degummed silk and that tannins are also generally soluble in acidic environments [9,14],
we investigated the ability of FA solution of CaCl2 mixed with tannin to exfoliate the
graphite. Figure 1a shows that the addition of tannin to the FA+GNPs dispersion after
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10,000 rpm centrifugation for 20 min forms stable brown solutions, suggesting that tannin
exfoliates graphite in FA. Raman and AFM analyses were used to support the exfoliation
process of graphite. Figure 1b shows the Raman spectra of the graphite dispersed in FA (i.e.,
FA+GNP) and 1 wt% tannin-assisted dispersion of GNPs in FA (i.e., FA+GNP+T1). The
features of graphite are the G band at 1580 cm−1, the D band at 1324 cm−1 and the 2D band
at 2700 cm−1. After the addition of tannin, the band at 1324 cm−1 increased its intensity.
The D band indicates the presence of defects while the G band represents sp2 hybridization
in-plane stretching vibration of carbon atoms [29]. Thus, the D band intensity can be used
to explore the number of defects of the graphene layers due to the graphite exfoliation [30].
According to the Raman spectra (Figure 1b), the D band is increasing in intensity because
the presence of tannin exfoliates graphene, increasing the ID/IG ratio from 1.10 to 1.25. An
ID/IG ratio of 1.20 was found for the 10 wt% tannin-assisted dispersion of GNPs in FA
(i.e., FA+GNP+T10, Figure S1, Supplementary Materials). AFM analysis was performed
to investigate the thickness of the graphite layers. Figure 1c shows graphite flakes that
are exfoliated by the addition of the tannin; i.e., the height of the flakes obtained from
the FA+GNP+T1 solution was found to be 2.5 nm, against a mean value of about 8 nm
measured for the flakes of the FA+GNP dispersion. When compared with the raw graphite
dispersed in FA, these findings suggest that most of the graphite was exfoliated by using
FA/tannin solution under sonication (Figure 1d).

Figure 1. (a) Photographs of FA/CaCl2 dispersions of GNPs with concentrations of 0 (FA+GNP),
1 (FA+GNP+T1) and 10 (FA+GNP+T10) wt% of tannin, respectively. (b) Raman spectra of FA+GNP
and FA+GNP+T1 dispersions. (c) AFM images (5 µm × 5 µm on the left and 3 µm × 3 µm on the
right) showing the topographic view and height profiles of GNPs on silicon obtained from FA+GNP
(top) and FA+GNP+T1 (bottom) dispersions after centrifugation, respectively. (d) ID/IG ratio values
and flake thickness obtained from Raman and AFM analyses on the prepared solutions.

Structural changes in the RS, depending on the tannin content and GNPs addi-
tion, were investigated by FTIR spectroscopy. The spectra reported in Figure 2a and
Figure S2 show the amide I and amide II regions, where the absorptions between 1622–1637
and 1697–1703 cm−1 correspond to β-sheet structure, and those at 1638–1655 cm−1 and
1656–1662 cm−1 are indicative of random-coil and α-helical structure, respectively [31].
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The ratio of the peak area with respect to the total area was used to estimate the per-
centage content of secondary structures that are summarized in Figure 2b. According to
previous results [9,32], neat RS consists of random coil and α-helices structures while, for
the G-RS/T1 and G-RS/T10 samples, part of the random coils is transformed in β-sheets
structures (Figure 2b). It is noteworthy that tannins interact with proteins, producing
stable complexes; therefore, the presence of only random coils in the RS/T samples can
be ascribed to the presence of polyphenols that negatively affect the β-sheet and/or α-
helices arrangement. The β-sheet content observed in the G-RS/T composites is due to a
uniform distribution of the SF chains on the graphene surfaces, inferring a better interfacial
interaction and a higher tensile strength of the composite film [33].

Figure 2. (a) FTIR spectra in amide I and amide II regions of RS, RS/T and G-RS/T samples obtained by the addition of
0 wt%, 1 wt% (RS/T1) and 10 wt% (RS/T10) of tannin to the RS and by the addition of GNPs (G-RS/T1 and G-RS/T10),
respectively. Peak deconvolution carried out by peak assignment to the secondary structures: 1650 cm−1 (random coil),
1656 cm−1 (α-helices) and 1620 cm−1 (β-sheet) for amide I and 1540 cm−1 (random coil) for amide II. (b) Quantitative
analysis of secondary structures in RS/T and G-RS/T samples, respectively. (c) Photograph (left) demonstrating excellent
elongation of RS/T10 film when stretched and (right) stress/strain curves for the RS/T and G-RS/T samples. (d) Tensile
strength and toughness of the prepared specimens calculated from the engineering stress–strain curves. (e) Setup for
measurement of shear strength (F, force; L, length; W, width). (f) Photographs show three G-RS/T10 films adhered on
porcine intestines. The scale bar indicates 1.5 cm. (g) Shear strength values between porcine intestine of RS/T and G-RS/T
adhesives after storing the samples at 37 ◦C and relative humidity of 90%.
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For evaluating the practicability of the RS/T and G-RS/T composites as stretchable
materials, the mechanical properties were evaluated in detail (Figure 2c). The synergistic
effect of the addition of both tannin and graphene for the RS composite is illustrated in
Figure 2d. As a result, the mechanical properties of the G-RS/T10 sample are improved,
with the highest tensile strength of 0.18 MPa, toughness (calculated as the area under the
engineering stress-strain curve) of 0.66 MPa and elongation at break of 430%, respectively.
Additionally, the mechanical properties of the RS added with different tannin concentra-
tions (i.e., 1 wt% and 10 wt%) were also investigated and indicate that tannin addition
also has a large effect on the mechanical performance. Compared with neat RS, we ob-
served a decrease in the tensile strength and an increase in the elongation at break. These
mechanical properties can be explained as follows: the molecules of tannin hinder the
secondary bonding between the protein chains (intra- and inter-molecular), establishing
a stable complex through non-covalent bonds [34]. This new arrangement facilitates the
sliding of the molecules so that the tensile strength reduces while the elongation increases.

To evaluate the adhesion performance of the RS/T and G-RS/T materials, we mea-
sured the shear strength by lap-shear test. Considering the wide utilization of soluble
plant-derived polyphenols in the cosmetic industry [35], we tested the adhesion perfor-
mance of the prepared samples on wet porcine skin, a model tissue very similar in its
mechanical properties to human skin [35] (Figure 2e,f and Figure S3).

The G-RS/T10 composite can establish a strong (i.e., 180 kPa) adhesion between wet
porcine skins upon the application of gentle pressure (1 kPa) for a few seconds (Figure 2g).
The adhered porcine skins exhibit a similar strength even more than 48 h after the specimen
preparation. These findings demonstrate superior adhesion properties compared with
commercially available glues (Dermabond ≈ 40 kPa, BioGlue ≈ 50 kPa, Coseal ≈ 5 kPa
and Tisseel ≈ 2 kPa) [36,37]. Considering the shear strength recorded for the RS/T1 glue
(i.e., 120 kPa), we can claim that both the tannin-assisted graphite exfoliation and the
subsequent dispersion in soluble RS are necessary for the adhesion of wet surfaces. In
particular, it can be noticed that the shear strength of RS/T1 is higher because tannins create
stable complexes with the proteins of silk, creating a tighter adhesive. However, if tannin
is added in excess, the polymer becomes too rigid and the composite breaks soon. When
graphite nanoparticles are added, the tannin is mainly sequestered to facilitate exfoliation
and it does not participate in the adhesion process. Considering these phenomena, the
outstanding results registered for G-RS/T10 can be explained by the fact that tannin is
enough for exfoliating graphene, and the excess contributes to the tightening effect of
the adhesive.

We exploit the properties of such materials in potential applications, investigating as
a proof-of-concept a sealing patch of a perforated porcine intestine (with a 0.5 cm wide
hole) (Figure 3a and Supplementary Movie S1). The closure of wounds from surgical
operations is a very critical aspect to reduce hospitalization times, avoid tissue perforation
and reduce inflammatory phenomena [38–40]. The resistance of the sealing patch made
with the prepared samples was evaluated by measuring the bursting pressure (Figure 3b).
Intestinal anastomosis with mechanical sutures withstands low pressure before bursting
(i.e., 35 mmHg) in accordance with our previous observations [21]. The use of the G-
RS/T10 glue applied on incised intestine increases the burst pressure to 57 mmHg, an
increment of 60% in comparison to the value recorded for sutured intestine.

As RS is a piezoelectric bio-polymer [41], we enable the utilization of RS/T and G-RS/T
composites as smart patches able to behave as self-powering strain sensors (Figure 3c).
Stretchable RS/T and G-RS/T hybrid sensors were prepared by putting a conductive Al
adhesive on the top and bottom sides of the samples (Figure 3c). Such a setup could serve
as a versatile platform for implantable devices to adhere onto wet and complex structures.
The results reported in Figure 3d suggest that voltage generation can be activated by
stretching the samples. Beyond the voltage output increasing with mechanical strain, we
superimposed a dynamic mechanical test by applying a constant load every 30 s and the
resulting electrical output signal was characterized (indicated by the arrows in Figure 3d).
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The output voltage rises and decays with the application of a force, envisaging its potential
for force measurement. With consideration of the outputs generated from different RS/T
and G-RS/T samples, the device with the G-RS/T10 adhesive shows on average the largest
difference between the maximum (press) and minimum (release) values. In general, we
observe that the RS/T performance can be further increased in terms of the output voltage
by adding GNPs. Here, the combined effect of tannin on (i) exfoliating GNPs and (ii)
randomizing RS arrangement involves an enhancement of the contact between GNPs
chains during elongation with consequent increases in voltage.

Figure 3. (a) Procedure of the ex vivo porcine intestine burst pressure test for RS/T and G-RS/T patches. Incision of the
intestine segment and application of the patch over the incision and testing at different times till rupture was observed
(Movie S1). (b) Porcine intestine burst pressures on the incised intestine. The burst pressures of intact intestine and sutured
intestine are also reported for comparison purposes. (c) Photographs showing the configuration for the piezoelectric effect
measurement with G-RS/T10 sample as the active component and its elongation. (d) The generated open-circuit voltage as
a function of the engineering strain of RS/T and G-RS/T samples, respectively. The arrows indicate the open circuit voltage
recorded using the finger imparting method.

Envisioning a biomedical application, antioxidant capacity was initially investigated
due to the tannin presence in both the RS/T compounds (1 wt% or 10 wt%) and in the
G-RS/T composites. The tannin extract alone shows, as expected, a great antioxidant
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property: 20,268.25 ± 521.55 µmolTE/g (data not shown). The RS/T1 compound, reported
in Figure 4, has approximately 30 µmolTE/g, whereas RS/T10 exhibits an ORAC value
about eight times greater, i.e., 252 µmolTE/g. We ascribe this result to a higher tannin
content. The most interesting result is the antioxidant capacity of G-RS/T1, which displays
the highest ORAC value of all four compounds: 308 µmolTE/g. It is likely that the
antioxidant activity is amplified by the presence of graphene [42,43]. On the contrary,
the low ORAC value obtained for G-RS/T10 is due to the partial insoluble nature of this
compound in the hydrophilic buffer, which could underestimate the result.

Figure 4. ORAC assay (for all compounds). Results are expressed as mean ± SD of two independent
extractions, each one performed in triplicate.

MTT assay was used to investigate cell viability at different concentrations of four
compounds after 24 h and 48 h of treatment. The lower concentrations tested (i.e., 7.8, 15.6,
31.5 and 62.5 µg/mL) are almost safe for the HepG2 cell line, as shown in Figure 5. In
some cases, these compounds are able to increase viability, probably due to the antioxidant
property of tannin. RS/T1 and RS/T10 are cytotoxic only at the highest concentration
used (i.e., 1 mg/mL), whereas the G-RS/T1 shows a reduced cell viability starting from
125 µg/mL. A possible explanation of this result is ascribable to the presence of exfoliate
graphene and to the high intrinsic antioxidant capacity, which has the power to become
pro-oxidant in a dose-dependent manner. The G-RS/T10 exhibits the same problem of
lacking solubility already observed during ORAC assay, and for this reason the results are
not completely trustworthy.
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Figure 5. Safety evaluation of the RS/T and G-RS/T samples tested in vitro using MTT test. HepG2 cells were in vitro
treated with six scalar concentrations for 24 h and 48 h. The percentage of viable cells with respect to the control was
reported as the mean standard deviation of three independent experiments, each conducted in triplicate. Positive controls
were obtained with DMSO 1%, 2% and 4%. Values were represented as mean ± standard deviation and were compared
with one-way ANOVA with p ≤ 0.05 considered statistically significant; * p < 0.01, ** p < 0.001 and *** p < 0.0001.

4. Conclusions

In this paper, we report a method to exfoliate graphite nano-platelets in FA-soluble
plant-derived polyphenol. This method allows us to produce tough regenerated silk
composite films and adhesive properties on wet and complex substrate geometries. The
presence of exfoliated graphite in the RS/T allows an enhanced piezoelectric conductivity.
These materials couple their sealant and piezoelectric properties, offering advantages over
existing tissue adhesives by enhancing the performance and allowing electric monitor-
ing of the strain. Finally, after proving their excellent antioxidant properties and their
biocompatibility for contained concentration (<125 µg/mL), these materials also provide
new opportunities for engineering bio-materials in regenerative medicine. The synergic
effect observed by the combination of these compounds of natural origin represents a
breakthrough in polymer science in line with the global circular economy concept.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11092352/s1. Figure S1: Raman spectrum of G-RS/T10 sample; Figure S2: Deconvolution
of FTIR transmittance spectra, amide I region, of RS/T and G-RS/T samples; Figure S3: Force vs.
displacement of the prepared samples for the shear strength measurement; Movie S1.
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