
Research Article
Generalized Discriminant Orthogonal Nonnegative Tensor
Factorization for Facial Expression Recognition

Zhang XiuJun1,2 and Liu Chang1,2

1 College of Information Science and Technology, Chengdu University, Chengdu 610106, China
2 Key Laboratory of Pattern Recognition and Intelligent Information Processing in Sichuan, Chengdu 610106, China

Correspondence should be addressed to Liu Chang; chang.liu.scu@gmail.com

Received 4 August 2013; Accepted 6 January 2014; Published 26 March 2014

Academic Editors: S. Bourennane and J. Marot

Copyright © 2014 Z. XiuJun and L. Chang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In order to overcome the limitation of traditional nonnegative factorization algorithms, the paper presents a generalized
discriminant orthogonal non-negative tensor factorization algorithm. At first, the algorithm takes the orthogonal constraint into
account to ensure the nonnegativity of the low-dimensional features. Furthermore, the discriminant constraint is imposed on
low-dimensional weights to strengthen the discriminant capability of the low-dimensional features. The experiments on facial
expression recognition have demonstrated that the algorithm is superior to other non-negative factorization algorithms.

1. Introduction

Over the past few years, the nonnegative matrix factorization
algorithm (NMF) [1] and its variants have proven to be useful
for several problems, especially in facial image characteriza-
tion and representation problems [2–8].The idea of nonnega-
tive factorization is partlymotivated by the biological fact that
the firing rates in visual perception neurons are nonnegative.

However, NMF and its variants have some drawbacks.
First of all, NMF requires that all object images should be
vectorized in order to find the non-negative decomposition.
This vectorization leads to information loss, since the local
structure of the image is lost. Moreover, NMF is not unique
[9, 10]. In order to remedy these drawbacks, non-negative
tensor factorization (NTF) has been proposed [11–13]. NTF
represents a facial expression database as a three-order
tensor. The tensor representation avoids the vectorization
operation and preserves the structure of the data. Under
some mild conditions, NTF is unique. Existing NMF and
NTF algorithms project data into low-dimensional spacewith
the inverse or pseudoinverse of the basis images, so both of
them cannot guarantee the nonnegativity of low-dimensional
features, which restricts the application of non-negative

factorization in real world. Furthermore, NTF do not take
into account class information in data samples. Actually, it is
believed that those features with discriminant constraints are
of great importance for pattern recognition. Reference [14]
develops a discriminant non-negative tensor factorization
algorithm (DNTF),which adds fisher discriminant constraint
into the objective function. But like other discriminant non-
negative matrix factorizations [6, 15–18], DNTF employed
discriminant analysis on the representation coefficients and
not on the actual features used in the recognition procedure.
The actual features used for recognition are derived from
the projection of data samples to the bases matrix and only
implicitly depend on the representation coefficients.

Based on the above analysis, the paper proposes a
generalized discriminant orthogonal non-negative tensor
factorization algorithm (GDONTF), which makes full use of
the class information and imposes the orthogonal constraint
to the objective function. The algorithm not only guarantees
the non-negativity of low-dimensional features, but also gen-
eralizes discriminant constraints to low-dimension features.
The experiments on facial expression recognition indicate
that GDONTF achieves better performance than other non-
negative factorization algorithms.
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2. Generalized Discriminant Orthogonal Non-
Negative Tensor Factorization

Consider an 𝑁 order tensor 𝑋 ∈ R𝑑1×𝑑2 ⋅⋅⋅×𝑑𝑁 , every data
sample 𝑋𝑖 is an 𝑛 − 1 order tensor; that is, 𝑋𝑖 ∈ R𝑑1×𝑑2 ⋅⋅⋅×𝑑𝑛−1 ,
in which 𝑑1, 𝑑2 ⋅ ⋅ ⋅ 𝑑𝑁−1, is the dimensionality and 𝑑𝑁 is the
number of data set. The data set is divided into 𝐶 classes.
Data samples belonging to class 𝑐 denote 𝑉(𝑐); the number
of data samples in 𝑉(𝑐) is 𝑁𝑐. In order to guarantee the
non-negativity of low-dimensional features and take use of
the class information, we propose generalized discriminant
orthogonal non-negative tensor factorization algorithm; the
objective function of which is defined as follow:
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Let ℎ𝑖 be the low-dimensional features of the sample𝑋𝑖; then
the feature matrix 𝐻 ∈ R𝑑×𝑀 consists of all low-dimensional
features, 𝑑 is the low dimensionality of samples, and 𝑀 is
the number of all samples. Actually, the separability of the
weight coefficient has nothing to do with the recognition
accuracy, while the class separability of the low-dimensional
features has a great influence on the recognition accuracy.
Consequently, the within- and between-class scatter matrices
are defined as follows:
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where 𝑚𝑐 is the mean of the low-dimensional features in the
class 𝑐 and 𝑚 is the mean of all low-dimensional features.
The objective function in (1) can be written as the following
optimization problem:
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Since the basis matrix 𝑊 consists of the projection
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where 𝑊 = 𝑈
(𝑁−1)

⊙ 𝑈
(𝑁−2)

⊙ ⋅ ⋅ ⋅ ⊙ 𝑈
(1).
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Figure 1: Some images in the Jaff facial expression database.

Table 1: Comparison of the best recognition rates for all tested
algorithms.

Algorithms Recognition rate Algorithms Recognition rate
NMF 79.19% NMFOS 89.06%
DNMF 92.06% FisherNMF 92.06%
DNTF 95.24% GDONTF 97.07%

Consequently, the update rules of 𝑈(𝑁) are

𝑈
(𝑁)
𝑡+1

𝑖𝑗
= 𝑈
(𝑁)
𝑡

𝑖𝑗

(𝑋(𝑁)𝑊)
𝑖𝑗

(𝑈(𝑁)𝑊𝑇𝑊)
𝑖𝑗

. (20)

3. Experiments

We have conducted facial expression recognition in order
to compare the GDONTF with other algorithms such as
NMFOS [19], DNMF [6], FisherNMF [16], and DNTF [14].
Because these algorithms calculate low-dimension features in
iteration form, the iteration number is 100. For NMFOS and
GDONTF, 𝜆 = 1. 𝛾 = 0.5 in DNMF and 𝛼 = 1 in FisherNMF.
All low-dimension features are classified by SVM with linear
kernel.

The database used for the facial expression recogni-
tion experiments is Jaff facial expression database [20].
The database contains 213 images of ten Japanese women.
Each person has two to four images for each of the seven
expressions: neutral, happy, sad, surprise, anger, disgust, and
fear. Each image is resized into 32 × 32. A few examples
are shown in Figure 1. We randomly select 20 images from
each expression for training; the rest is used for testing. The
recognition rates with various dimensionalities of different
algorithms are shown in Figure 2. Table 1 shows the best
recognition rates of the above algorithms. Because NMF is
unsupervised learning algorithm, it has the lowest recogni-
tion rates. DNMF and FisherNMF have better recognition
rates with supervised learning. It is interesting that NMFOS
is superior to DNMF and FisherNMF when the feature
dimensionality is from 16 to 160 and is better than DNTF
when the feature dimensionality is from 16 to 40, which
also illustrates the validity of the orthogonal constraint. It is
obvious thatGDONTFoutperforms other algorithms and the
best recognition rate is up to 97.07%.
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Figure 2: Facial expression recognition rate versus dimensionality
in Jaff database.

4. Conclusion

In this paper, a generalized discriminant orthogonal non-
negative tensor factorization algorithm is proposed con-
sidering the orthogonal constraint and the discriminant
constraint. For the algorithm, the non-negativity of the low-
dimensional features is preserved due to the orthogonal
constraint for either training samples or testing samples. In
order to enhance the recognition accuracy, the discriminant
is conducted on low-dimensional features instead of the
weight coefficient of the basis images. The experiments also
validate the performance of the algorithm.
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