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The effects of excessive dietary iron intake on the body have been an important topic. The

purpose of this study was to investigate the effects of high-dose iron on intestinal damage

and regeneration in dextran sodium sulfate (DSS)-induced colitis model mice. A total of

72 8-week-old adult C57BL/6 mice were randomly divided into two dietary treatment

groups: the basal diet supplemented with 45 (control) and 450 mg/kg iron (high-iron)

from ferrous sulfate. The mice were fed different diets for 2 weeks, and then 2.5% DSS

was orally administered to all mice for 7 days. Samples of different tissues were collected

on days 0, 3, and 7 post administration (DPA). High-iron treatment significantly decreased

the relative weight of the large intestine at 7 DPA but not at 0 DPA or 3 DPA. High dietary

iron increased the jejunal villus width at 0 DPA, decreased the villus width and the crypt

depth of the jejunum at 3 DPA, and decreased the number of colonic crypts at 7 DPA.

Meanwhile, high dietary iron decreased the number of goblet cells in the jejunal villi and the

Paneth cells in the jejunal crypts at 0 DPA, increased the number of goblet cells per crypt

of the colon at 3 DPA, and the number of Paneth cells in the jejunal crypts, the goblet cells

in the colon, the Ki67-positive proliferating cells in the colon, and the Sex-determining

region Y-box transcription factor 9+ (SOX9) cells in the jejunum crypts and colon at 7

DPA. The organoid formation rate was increased by high-iron treatments at 3 DPA and 7

DPA. High dietary iron treatment decreased the mRNA level of jejunal jagged canonical

Notch ligand 2 (Jag-2) at 0 DPA and bone morphogenetic protein 4 (Bmp4) and neural

precursor cell-expressed developmentally downregulated 8 (Nedd8) in the jejunum and
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colon at 7 DPA, whereas it increased the mRNA expression of the serum/glucocorticoid-

regulated kinase 1 (Sgk1) in the colon at 3 DPA. The results suggested that a high dose

of iron aggravated intestinal injury but promoted intestinal repair by regulating intestinal

epithelial cell renewal and intestinal stem cell activity in adult mice with colitis.

Keywords: high iron, dextran sodium sulfate-induced colitis, intestinal injury, intestinal repair, adult mice

INTRODUCTION

Inflammatory bowel disease (IBD) mainly includes Crohn’s
disease and ulcerative colitis (1). Iron deficiency is a common
complication in patients with IBD, and patients are encouraged
to eat a high-iron diet (2, 3). Some studies have shown that
the chemical properties of iron put pressure on the intestines
during inflammation (4). High-iron diets cause oxidative stress
(5), inhibiting the growth, differentiation, and proliferation of
most cells (6, 7). However, few studies have examined the effect
of a high-iron diet on intestinal repair after injury in adult mice
with colitis.

Animal models of colitis are induced using dextran sodium
sulfate (DSS) (8). Symptoms include colon edema (9), rectal
bleeding, diarrhea, and weight loss (10). In addition, the DSS-
induced rat model of ulcerative colitis is accompanied by
impaired jejunal barrier function (11). The regeneration phase
of the injured intestine usually lasts 4 days after injury, and the
intestinal tract returns to the normal stage 7 days after injury (12).

The integrity and regenerative potential of intestinal epithelial
cells play key roles in fighting inflammation (13). A distinct
feature of the intestinal morphology is the compartmentation of
the epithelium into prominent villi composed of differentiated
cells and the invagination of crypts containing stem and
progenitor cells at their base. In mammals, the intestinal
epithelium is the most active self-regenerative tissue (14) and
is constantly renewed by intestinal stem cells (ISCs) located in
the crypt bottoms (15). The continuous renewal and repair of
the intestinal mucosal epithelium after injury depend on ISCs.
ISCs are capable of differentiating into progenitor cells, and these
newly formed cells proliferate and differentiate along the crypt-
villus axis of the small intestine and colon (16), differentiating
into one of the four main cell types (intestinal epithelial cells,
goblet cells, Paneth cells, and intestinal endocrine cells). The
villus height, crypt depth, and Ki67 expression have been used
to determine cell proliferation (17), and the number of crypts
increases during repair after colonic mucosal injury (18). As
the ability to form multilobed organoids is considered a direct
stem cell function, the frequency of organoid formation in
serial replating experiments serves as a quantitativemeasurement
of ISC function (19). In addition, the Wnt signaling pathway
plays an important role in maintaining and regulating ISC self-
renewal (20).

The intestinal environment induced by a high-iron diet may
adversely affect epithelial cell repair or barrier recovery after
injury (5). We hypothesized that high-dose iron aggravates
intestinal injury and is detrimental to repair by limiting intestinal
epithelial cell renewal and ISC activity. Based on this hypothesis,

adult mice with DSS-induced colitis were used as model animals
in this study to determine the intestinal index, intestinal
morphology, intestinal cell renewal, organoid formation rate, and
expression ofWnt target genes as a method to study the intestinal
injury induced by the high dose of iron with DSS and to evaluate
the repair effect of high-dose iron on the injured intestine. We
were surprised to find that high-dose iron increased intestinal
inflammation in mice with colitis but promoted intestinal repair.

MATERIALS AND METHODS

Animals and Experimental Procedures
The experimental protocol was reviewed and approved
(Approval number 2016-093) by the Animal Care and Use
Committee of Hunan Normal University, Changsha City,
Hunan, China (21). Seventy-two adult male C57BL/6 mice
(aged 8 weeks, similar body weight) were acclimated for 1
week with free access to standard mouse chow and tap water
under controlled temperature (23◦C), humidity (55% ± 10%),
and light (12:12-h light–dark cycle) conditions. The mice were
randomly divided into two dietary treatment groups (n = 36):
the basal diet supplemented with 45 (control) and 450 mg/kg
iron (high-iron) from ferrous sulfate. The mice were fed dietary
iron for 2 weeks and administered 2.5% dextran sodium sulfate
(DSS, MB5535, Meiluobio Consultancy) in drinking water for
7 days. We found that the survival curves, body weights, and
feed intakes of the adult mice decreased substantially during
DSS induction, and the mice showed signs of illness, as shown in
Supplementary Figure S1. The adult mice were euthanized by
isoflurane anesthetization followed by cervical dislocation, and
samples of different tissues were collected on day 0 (day 21), 3
(day 24), and 7 (day 28) post administration (DPA).

Sample Collection and Measurement
The experimental protocol used to induce ulcerative colitis
was performed as previously described (22) and is briefly
shown in Figure 1A. At 0 DPA, 3 DPA, and 7 DPA, 12
adult mice in each group were euthanized, their small and
large intestines were removed, and the intestinal lengths
were measured in parallel with a straight edge after the
mesentery was removed. After the mesentery and fat were
removed, the large and small intestines were weighed separately
(23). The intestinal tissues of the jejunum and the mid-
colon (approximately 2 cm each) were separated with sterile
instruments and washed with phosphate-buffered saline (PBS;
137mM NaCl, 2.7mM KCl, 4.3mM Na2HPO4, and 1.4mM
KH2PO4, pH = 7.4). Each fragment (approximately 2 cm
long) was fixed with 4% formaldehyde in phosphate buffer
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FIGURE 1 | Representative image of the experimental protocol used for the

induction of ulcerative colitis in mice. Mice received normal iron content or

high-iron diet from ferrous sulfate for 2 weeks (d1–d14) (n = 36 for each

group). From days 15 to 21, mice were treated with sodium dextran sulfate

(DSS) (2.5% DSS in drinking water) and euthanized after DSS withdrawal

(d21), or 3 days (d24) and 7 days (d28) after DSS withdrawal (n = 12).

and stored at 4◦C until the microscopic evaluation of the
intestinal morphology and renewal of intestinal epithelial
cells (24).

Examination of Intestinal Morphology
According to the standard paraffin-embedding technique, the
intestinal tissues of the jejunum and colon were embedded and
fixed, and the embedded wax block was fixed on a microtome
and cut into 4 µm-thick sections, and the slices were spread in
42◦Cwater, flattened, and then mounted on glass slides. After the
water was drained, the slides were placed on a 37◦C baking sheet,
stained with hematoxylin and eosin, and inspected under an
optical microscope (DM3000; Leica). The villus height and crypt
depth of the jejunum, as well as the crypt depth of the colon, were
measured at 40× magnification using an image processing and
analysis system (Image-Pro Plus version 6.0, Media Cybernetics,
San Diego, CA, USA), and the intestinal villus height and crypt
depth were measured at five positions (five bright fields with two
to three villi per field under the microscope) in each section. The
mean villus height and crypt depth in each section of each mouse
was then calculated and subjected to further analyses.

Immunohistochemical Staining for Ki-67,
Lysozyme (LYZ), and Sex-Determining
Region Y-Box Transcription Factor 9+

(SOX-9)
After the slides were placed at 37◦C overnight, they were
transferred into a water-bath slide dryer at 65◦C for 90min
on the next day, dewaxed twice for 10min each, and then
rehydrated with a decreasing series of ethanol solutions, starting
with 100% ethanol and decreasing in 5-min intervals to 95
to 85% ethanol and finally to 75% ethanol. We applied 3%
hydrogen peroxide (H2O2) to inactivate endogenous peroxidases
and incubated the sections in the dark for 10min. Antigen
retrieval was performed by boiling the samples twice in sodium
citrate buffer (0.01M, pH 6.0). Bovine serum albumin (BSA; 5%;
Boster Biological Technology Co., Ltd., Wuhan, China) was used
to block nonspecific binding by incubating the sections at 37◦C
for 40min at a dilution of 1:10. Sections were then incubated with
a Ki-67 antibody (Abcam, ab15580; 1:600 dilution), lysozyme
(LYZ) antibody (Abcam, ab108508; 1:700 dilution), or SOX-9
antibody (Millipore, AB5535-25UG; 1:1000 dilution) at 37◦C for

90min. Paneth cells only exist in the crypts of the jejunum and are
not found in the colon (16, 25); thus, the LYZ antibody was only
incubated with the jejunum sections. Then, the slices were treated
with an enzyme-labeled goat anti-rabbit IgG secondary antibody
(ZSGB-BIO, Beijing, China) at 37◦C for 45min. Except for the
blocking step, each step was followed by four washes with PBS
for 3min each. The slices were treated with a diaminobenzidine
(DAB) kit (ZSGB-BIO, Beijing, China) in the dark for 50 s
to visualize the positive cells. Microscopic images of intestinal
samples from the jejunum and colon of each animal were
photographed with an optical microscope (Leica DM3000, Leica
Microsystems, Wetzlar, Germany) at 40× magnification. The
numbers of cells positive for Ki-67 (colon and jejunum crypts),
LYZ (jejunum crypts), and SOX-9 (colon and jejunum crypts) in
atleast 10 crypts from each sample were counted using Image-Pro
Plus 6.0 software (26).

Alcian Blue–Periodic Acid Schiff Staining
Tissue sections were stained with Alcian blue–periodic acid
Schiff (AB–PAS) (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China) according to the manufacturer’s protocol. After
the slices were dewaxed, they were hydrated in a gradient
ranging from 95% ethanol to distilled water, remaining in each
gradient solution for 2min. Alcian blue dye solution was added
and stained the sections for 15min, and then the sections
were incubated with the periodate dye solution for 10min.
After washing the sections with distilled water for 2min, the
sections were completely dried, and Schiff reagent was added
and incubated with the section for 5min. Next, the sections were
slowly rinsed with running tap water for 5min. After the sections
on the glass slides were air-dried naturally, they were covered
with a cover glass for inspection under an optical microscope.
Image-Pro Plus version 6.0 software was used to count the
number of goblet cells in the intact jejunal villi and crypts of the
jejunum and colon and calculate the average values of no <10
counts for each sample (27).

Counting of Organoids
Adult C57BL/6 mice in the high-iron group and the control
group were euthanized at three time points, and an intestinal
segment of approximately 6 cm was removed from the anterior
jejunum of each mouse. The jejunum was washed with cold
PBS, scraped, cut into small pieces, and then incubated with 2.5
mmol/L ethylenediaminetetraacetic acid disodium salt (Sigma–
Aldrich, St. Louis, MO, USA) for 30min and placed on a
4◦C rotator for epithelial separation. Next, the sample was
washed with PBS until a high crypt purity was achieved
and then filtered through a 70-µm cell strainer. Ten percent
(vol/vol) fetal calf serum (FCS) was added to the crypt
suspension and centrifuged at 1200 rpm for 5min. The pellet
was washed with 2mL of DMEM-GF (Gibco, Grand Island,
NY), and the pelleted crypts were embedded in 8 µL of
Matrigel (Corning, Bedford, OH, USA) in a prewarmed 96-
well culture dish, with approximately 100 crypts per well.
After Matrigel solidification, a culture medium (130 µL) was
added. The composition of the medium was described by
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TABLE 1 | The effect of iron in the diet on the body weight of adult mice¹.

Items² Dietary of iron, mg/kg P-value

45 450

BW, g

d 0 20.71 ± 0.15 20.70 ± 0.11 0.964

d 7 21.86 ± 0.14 21.66 ± 0.11 0.268

d 14 23.43 ± 0.14 23.27 ± 0.15 0.461

d 21 19.79 ± 0.30 18.83 ± 0.39 0.070

d 24 19.07 ± 0.61 17.31 ± 0.50 0.069

d 28 25.23 ± 0.29 24.33 ± 2.57 0.750

1Body weight changes of adult mice fed a high-iron diet and normal diet from day 1 to day 28. Values are expressed as mean ± SEM; n = 36 (d 0, d 7, d 14), n = 12 (d 21, d 24, d

28); 2BW, body weight.

Wang Z (28). Finally, the organoid formation efficiency was
calculated (29).

Extraction of RNA and Real-Time
Quantitative Polymerase Chain Reaction
(PCR)
Tissue from each sample was pulverized in liquid nitrogen.
Total RNA was extracted from jejunal and colonic samples
using RNAiso Plus (TaKaRa, Dalian, China) and then treated
with DNase I (TaKaRa, Dalian, China) to remove trace DNA.
The RNA was reverse-transcribed (RT) to cDNAs according
to the manufacturer’s instructions (23). Primer 5.0 (Premier
Biosoft International, Palo Alto, California, USA) was used to
design the primers used in this study. The selected gene primer
sequences are shown in Supplementary Table S1. The cDNAs
were diluted (1:4) with sterile double-distilled (dd) water (H2O)
before they were subjected to real-time quantitative PCR. Each
PCR was performed in triplicate. Real-time quantitative PCR
analysis was performed with a QuantStudio 5 Real-Time PCR
System (Thermo Fisher Scientific Inc., Rockford, IL, USA) in a
reaction volume of 10 µL containing 5 µL of SYBR Green mix
(TaKaRa, Dalian, China), 1 µL of cDNAs, 0.2 µL each of the
forward and reverse primers, 0.2 µL of ROX II, and 3.4 µL of
dd H2O. The mRNA expression abundance (A) of the target
gene was normalized using β-actin and calculated as A= 2−11Ct

[Ct(β-actin)-Ct(target)] (30).

Statistical Analysis
All statistical analyses were calculated using SPSS software
(version 22.0; IBM Corp., Chicago, IL, USA). Before analysis, the
Shapiro–Wilk normality test and Tukey’s t-test were performed
on the data that conformed to a normal distribution. Any
value that deviated from the standardized mean by more than
three standard deviations was eliminated. Values are presented
as the means ± SEM. P < 0.05 indicated that the difference
was significant, and P < 0.01 indicated that the difference was
extremely significant. All graphs presented in this study were
plotted using GraphPad Prism 6.0 software (GraphPad Inc., San
Diego, CA, USA).

FIGURE 2 | Large intestine relative weight with different levels of ferrous

sulfate. * indicates p < 0.05, n = 12. 7 DPA indicates “day 7 post

administration,” which is day 28 of the whole experiment cycle.

RESULTS

Gut Index
As shown in Table 1, no significant differences in the
weights of adult mice from the high-iron group and the
control group were observed from Day 0 to Day 28 (P >

0.05). At 7 DPA, the relative weight of the large intestine
was significantly decreased (Figure 2, P = 0.035) in the
high-iron group. No significant differences (P > 0.05)
were observed in the intestinal length and weight, relative
intestinal length, or relative intestinal weight at 0 DPA
(Supplementary Table S2), 3 DPA (Supplementary Table S3),
or 7 DPA (Supplementary Table S4).

Intestinal Morphology
The jejunum villus width was significantly increased
(Figure 3E, P < 0.001) in the high-iron group at 0 DPA,
and the jejunum villus width (Figure 3E, P = 0.033)
and jejunum crypt depth (Figure 3D, P = 0.031) at 3
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FIGURE 3 | Effects of dietary iron on jejunum and colon injury and repair in adult mice induced by DSS. The effect of high-iron diet on (A) the depth of colonic crypts,

(B) the number of colonic crypts, (C) jejunum villus height, (D) jejunum crypt depth, (E) jejunum villus width, and (F) relative height of villus at 0 DPA, 3 DPA, and 7 DPA

(n = 12), ns means no significance, * indicates p < 0.05, while **indicates p < 0.01, and ***indicates p < 0.001. (G) At 0 DPA, 3 DPA, and 7 DPA, HE staining

intestinal morphology images of jejunum and colon in the high-iron group and the control group. VW indicates “Villus Width,” CD indicates “Crypt Depth,” and CN

indicates “Crypts Number.” 0 DPA indicates “day 0 post administration,” which is day 21 of the whole experiment cycle; 3 DPA indicates “day 3 post administration,”

which is day 24 of the whole experiment cycle; 7 DPA indicates “day 7 post administration,” which is day 28 of the whole experiment cycle. Note Scale bars, VW is

200 µm (magnification 100×), CD is 50 µm (magnification 400×), CN is 500 µm (magnification 50×).

DPA and the number of colonic crypts (Figure 3B, P
= 0.042) at 7 DPA were significantly decreased in the
high-iron group. However, significant differences (P >

0.05) in the colonic crypt depth (Figure 3A), jejunum
villus height (Figure 3C), or villus height: crypt depth
(Figure 3F) were not observed at the three time points.

Representative images of intestinal morphology are shown in
Figure 3G.

Renewal Status of Intestinal Epithelial Cells
The numbers of goblet cells in the jejunal villi (Figure 4A,
P = 0.003) and Paneth cells in the jejunal crypts (Figure 4B,
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FIGURE 4 | Effects of dietary iron on intestinal epithelial cell renewal in adult mice at 0 DPA. (A) Goblet cell number of jejunum villi (B) Paneth cells number in jejunum

crypt. n = 12. 0 DPA indicates “day 0 post administration,” which is day 21 of the whole experiment cycle. Note Scale bars. A used 100 µm (magnification 200×), B

used 50 µm (magnification 400×). **indicates p < 0.01, and ***indicates p < 0.001.

FIGURE 5 | Effects of dietary iron on intestinal epithelial goblet cell renewal in adult mice at 3 DPA. The number of goblet cells in the colonic crypt, n = 12. The 3 DPA

indicates “day 3 post administration,” which is day 24 of the whole experiment cycle. Note Scale bars, 100 µm (magnification 200×), *** indicates p < 0.001.

P < 0.001) were substantially decreased in the high-iron
group at 0 DPA. However, the number of goblet cells in
the colon crypt (Figure 5, P < 0.001) was substantially
increased in the high-iron group at 3 DPA. At 7 DPA,
numbers of goblet cells in the colon crypts (Figure 6A, P =

0.004), Paneth cells in the jejunum crypts (Figure 6B, P =

0.020), Ki67-positive proliferating cells in the colon (Figure 6C,

P = 0.046), and SOX9-positive cells in the jejunum crypts
(Figure 6D, P = 0.008) and colon (Figure 6E, P < 0.001) were
significantly increased.

Organoid Formation
The organoid formation rates of samples from adult mice in
the high-iron group were significantly higher than those in the
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FIGURE 6 | Effects of dietary iron on regeneration of intestinal epithelial cells in adult mice at 7 DPA. (A) Goblet cells in colonic crypt, (B) Paneth cells in jejunum crypt,

(C) Ki67 cells in colonic crypt, (D) SOX9 cells in jejunum crypt, and (E) SOX9 cells in the colonic crypt. n = 12. The 7 DPA indicates “day 7 post administration,” which

is the day 28 of the whole experiment cycle. Note Scale bars, B used 50 µm (magnification 400×), the rest used 100 µm (magnification 200×). * indicates p < 0.05,

** indicates p < 0.01, and *** indicates p < 0.001.
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TABLE 2 | Effects of dietary iron on organoid formation rate of adult mice after repair¹.

Organoid formation(%) Dietary of iron, mg/kg P-value

45 450

3 DPA 2.36 ± 0.45 16.94 ± 1.85 <0.001

7 DPA 22.14 ± 1.20 58.93 ± 2.77 <0.001

1Adult mice fed diets containing 45 mg/kg and 450 mg/kg iron from ferrous sulfate for 2 weeks and then DSS was orally administrated to all mice for 7 days, isolated organoids from

jejunum at days 3 and 7 post administration (DPA), and observed the organoid formation rate. Values are expressed as mean ± SEM, n = 6.

control group at 3 DPA (Table 2, P < 0.001) and 7 DPA (Table 2,
P < 0.001).

Expression of Genes Related to the Wnt
Pathway
As shown in Table 3, the mRNA expression of Wnt/β-catenin
target genes, such as jagged canonical Notch ligand 2 (Jag-
2), was downregulated in the jejunal tissue from the high-iron
group at 0 DPA (P = 0.007) compared with the control group.
Serum/glucocorticoid-regulated kinase 1 (Sgk1) expression was
upregulated in the colon of the high-iron group at 3 DPA (P
= 0.017). However, bone morphogenetic protein 4 (Bmp4) (P
= 0.015) and neural precursor cell-expressed developmentally
downregulated 8 (Nedd8) (P = 0.007) expression in the jejunum,
Bmp4 (P= 0.022), andNedd8 (P= 0.014) expressions in the colon
were downregulated in the high-iron group at 7 DPA. In addition,
severe inflammation may have led to lower mRNA levels in the
colon at 0 DPA, which affected our measurements; thus, we did
not provide the corresponding data in this paper.

DISCUSSION

This study was conducted to investigate the effects of high
dietary iron supplementation on intestinal injury and intestinal
repair function, especially for ISCs in the jejunum and colon
of adult mice. The symptoms of DSS-induced colitis are weight
loss (31), disruption of the gut index (32) and morphology, and
damage to intestinal stem cells (33). In vitro organoid cultures
were used to observe the regulation of ISC compartments after
tissue injury (34). Furthermore, the Wnt/β-catenin pathway
is essential for intestinal renewal and ISC maintenance (35).
Disease phenotypes were studied according to body weights and
intestinal indices (intestinal length, intestinal weight, intestinal
length:body weight, and intestinal weight:body weight). In
addition, histological parameters (villus width, villus height,
crypt depth, villus height:crypt depth, and crypt number),
intestinal epithelial cell renewal, the organoid formation rate,
and the expression of related target genes in the Wnt pathway
were assessed.

The regeneration of intestinal epithelial cells increased in
the high-iron group at 7 DPA, while the relative weight of the
large intestine was reduced, which may have been related to
the decreased number of colonic crypts. Liang, L et al. (36)
reported that iron supplementation increased colon weight and
cell (goblet cell) renewal. These inconsistent results may be due
to differences in the dietary mode or iron concentration. Oral
iron supplementation with 450 mg/kg ferrous sulfate was used

in our study, while Liang, L et al. administered an intraperitoneal
injection of 120 µg/kg iron–dextran.

The intestinal function is closely related to intestinal
tissue morphology. Pereira et al. (37) reported that during
inflammatory states, villi often become wider, although they
tend to become shorter, which explains the maintenance of
the intestinal epithelial cell count. As shown in our study, the
villus width increased in the high-iron group at 0 DPA, but
no significant difference in villus height was observed. The
morphological changes suggest an effect of high-dose iron on
intestinal function. Furthermore, the villus width and crypt
depth in the jejunum decreased at 3 DPA. The decrease in
villus width in the high-iron group may be related to the
decreased crypt depth at 3 DPA. According to the study by
Holle, GE (38), the proliferative zone in the crypt expanded
in proportion to the total crypt depth. However, the results of
studies examining the effects of a high iron concentration on
the morphology of the small intestine are contradictory. One
possible explanation for this difference is the complexity of the
intestinal repair.

We determined whether morphological changes observed
during intestinal injury and repair are caused by altered epithelial
cell renewal induced by dietary supplementation with high-dose
iron by calculating the numbers of Ki67-positive, Paneth, and
Sox9-positive cells in the crypt base and goblet cells in crypts and
villi. Ki67, a marker of proliferating cells, labels undifferentiated
proliferating transit-amplifying (TA) cells (progenitors) in the
crypt, which are derived from ISCs and differentiate into
functional epithelial cells (39, 40). We found that Ki67 levels
in the high-iron group were increased significantly at 7 DPA,
suggesting that the proliferation of intestinal epithelial cells was
increased. SOX9 is expressed in ISCs to regulate ISC proliferation
and differentiation (41). The number of SOX9 cells in the high-
iron group was increased at 7 DPA, indicating increased ISC
activity. Goblet cells and Paneth cells are secretory cells (39).
Paneth cells produce abundant antibacterial peptides/proteins
that confer mucosal protection and provide signals for the
maintenance of ISCs for normal mucosal renewal. Goblet cells
synthesize and release various mucin proteins that are major
components of the unstirredmucus layer covering the epithelium
(42, 43). The number of goblet and Paneth cells increased in
the high-iron group at 3 DPA and 7 DPA. In contrast, the
numbers of both types of cells were decreased in the high-
iron group at 0 DPA. Based on these findings, high-dose iron
exerts an adverse effect on the intestinal tract after injury
but exerts protective effects on intestinal barrier function and
epithelial homeostasis after repair. Notably, the markers Ki67
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TABLE 3 | Effects of dietary iron on Wnt target gene in adult mice1.

Items2 Dietary of iron, ppm P-value

45 450

Jejunum (0 DPA)

Bmp4 1.02 ± 0.09 1.13 ± 0.14 0.527

Jag-1 1.02 ± 0.09 0.84 ± 0.10 0.221

Nedd8 1.04 + 0.12 1.14 + 0.10 0.530

Sgk-1 1.02 ± 0.10 0.89 ± 0.22 0.623

Ephb4 1.05 ± 0.13 0.79 ± 0.16 0.251

Jag-2 1.02 ± 0.08 0.54 ± 0.12 0.007

Edn3 2.05 ± 1.03 6.07 ± 3.71 0.522

Jejunum (3 DPA)

Bmp4 1.04 ± 0.11 0.98 ± 0.11 0.720

Jag-1 1.48 ± 0.38 1.26 ± 0.11 0.676

Nedd8 1.04 ± 0.11 1.07 ± 0.11 0.870

Sgk-1 1.59 ± 0.30 2.44 ± 0.40 0.110

Ephb4 1.01 ± 0.23 1.18 ± 0.21 0.611

Jag-2 0.93 ± 0.10 0.70 ± 0.34 0.086

Edn3 2.23 ± 1.08 1.15 ± 0.42 0.461

Jejunum (7 DPA)

Bmp4 1.01 ± 0.05 0.74 ± 0.07 0.015

Jag-1 1.09 ± 0.19 0.89 ± 0.16 0.433

Nedd8 1.02 ± 0.10 0.57 ± 0.04 0.007

Sgk-1 1.30 ± 0.43 0.87 ± 0.16 0.457

Ephb4 1.33 ± 0.96 1.00 ± 0.17 0.541

Jag-2 1.53 ± 0.55 1.40 ± 0.24 0.863

Edn3 1.50 ± 0.69 1.33 ± 0.66 0.925

Colon (3 DPA)

Bmp4 1.13 ± 0.24 0.72 ± 0.07 0.235

Jag-1 1.07 ± 0.16 1.55 ± 0.93 0.056

Nedd8 1.07 ± 0.16 1.09 ± 0.11 0.944

Sgk-1 1.19 ± 0.28 3.54 ± 0.99 0.017

Ephb4 1.70 ± 0.90 3.33 ± 0.74 0.089

Jag-2 1.62 ± 0.68 2.21 ± 0.55 0.574

Edn3 1.11 ± 0.21 0.65 ± 0.14 0.158

Colon (7 DPA)

Bmp4 1.06 ± 0.09 0.69 ± 0.08 0.022

Jag-1 0.95 ± 0.12 0.96 ± 0.10 0.921

Nedd8 1.03 ± 0.18 0.58 ± 0.04 0.014

Sgk-1 1.00 ± 0.28 1.74 ± 0.34 0.134

Ephb4 0.92 + 0.19 1.46 ± 0.18 0.086

Jag-2 1.15 ± 0.32 1.87 ± 0.22 0.116

Edn3 2.16 ± 0.95 1.51 ± 0.40 0.556

1The values are expressed as mean ± SEM (n = 12). Differences were assessed by the Student’s t-test. Values of P < 0.05 are referred to as statistically significant. 2Bmp4, bone

morphogenetic protein 4; Jag1, jagged canonical Notch ligand 1; Nedd8, neural precursor cell expressed developmentally down-regulated 8; Sgk1, serum/glucocorticoid regulated

kinase 1; Ephb4, EPH receptor B4; Jag2, jagged canonical Notch ligand 2; Edn3, endothelin 3. 0 DPA indicates “day 0 post administration,” which is day 21 of the whole experiment

cycle. 3 DPA indicates “day 3 post administration,” which is day 24 of the whole experiment cycle. 7 DPA indicates “day 7 post administration,” which is day 28 of the whole experiment

cycle.
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and SOX9 were not detected in the intestinal tissues of adult
mice at 3 DPA, which was speculated to be related to severe
intestinal damage.

ISCs, which are located at the bases of crypts, are responsible
for intestinal epithelial cell self-renewal and intestinal epithelial
homeostasis throughout the lifespan of an organism (44), and
ISCs generated from crypts develop into organoids in vitro,
simulating the ISC niche in vivo (45). Organoid budding may
be similar to the expansion of the ISC compartment and the
formation of new crypts through crypt fission (46). We isolated
and cultured jejunal organoids from adult mice in the high-
iron group and the control group to test the effects of high-dose
iron on intestinal epithelial homeostasis. Intestinal injury after
DSS induction was serious and markedly altered the formation
of organoids at 0 DPA. In addition, the organoid formation
rates of mice in the high-iron group were higher than those of
mice in the control group at 3 DPA and 7 DPA. These findings
suggest that high iron levels modulate ISC activity after repair
and further validate that a high iron concentration promotes
intestinal epithelial renewal.

The Wnt signaling pathway is critical for maintaining and
regulating ISCs (20). We explored the potential mechanisms of
ISC differentiation and self-renewal by detecting the expression
of genes related to the Wnt signaling pathway in vitro. The
Wnt/β-catenin pathway is essential for ISC self-renewal, and β-
catenin-target genes such as Bmp4, Jag1, Jag2, Ephb4, Nedd8,
Edn3, and Sgk1 are expressed to maintain ISC and progenitor
cell proliferation (21). The Jag-2 signaling pathway is involved in
early epithelial regeneration after intestinal injury by promoting
crypt epithelial cell proliferation (47). The expression of Jag-
2 was downregulated in mice fed with high-dose iron at 0
DPA, suggesting that high-dose iron inhibited intestinal epithelial
cell regeneration by reducing Jag-2 expression. Sgk1 exerts
an anti-apoptotic effect (48), and the upregulation of Sgk1
expression in the high-iron group at 3 DPA may indicate
a positive effect on the intestinal epithelium. According to
some studies, Bmp4 is a proinflammatory gene that induces
endothelial dysfunction and aggravates tissue damage (49).
In addition, Nedd8 is also associated with the inflammatory
response, and the downregulation of Nedd8 expression inhibits
NF-κB phosphorylation (NF-κB is a ubiquitous proinflammatory
transcription factor in mammalian cells), thereby reducing
inflammation (50). In our study, inflammation in the jejunum
and colon was reduced by the downregulation of Bmp4 and
Nedd8 expression levels in the high-iron group at 7 DPA.

Based on these results, a high-iron diet aggravates intestinal
injury in adult mice but exerts a positive effect on the intestinal
repair. This finding seems to contradict our hypothesis that

high iron concentrations are not beneficial to intestinal repair.
However, it may provide new insight into the postoperative repair
of colitis in livestock and poultry production.
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