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ABSTRACT

Astrocytes are key players in brain function; they are
intimately involved in neuronal signalling processes and
their metabolism is tightly coupled to that of neurons. In
the present review, we will be concerned with a discussion
of aspects of astrocyte metabolism, including energy-
generating pathways and amino acid homoeostasis. A
discussion of the impact that uptake of neurotransmitter
glutamate may have on these pathways is included along
with a section on metabolic compartmentation.
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ASTROCYTE ENERGY METABOLISM

Glucose entry, phosphorylation and generation
of glycogen in astrocytes
Astrocytes are ideally positioned to sense synaptic activity in

the brain (Kacem et al., 1998), they control blood flow (Gordon

et al., 2008; Allen and Barres, 2009), interact with neurons and

endothelial cells (Vesce et al., 1999) and likely act as signalling

integrators at different temporal and spatial domains (Parpura

and Zorec, 2010; Parpura et al., 2010). Astrocytic endfeet lie

between all brain capillaries and neuronal terminals

(Tsacopoulos and Magistretti, 1996; Mathiisen et al., 2010)

and during neuronal activity astrocytes may exhibit an

increased glucose uptake and possibly have a key role in

coupling synaptic activity to glucose utilization (Magistretti,

2006) and provision of glucose for neuronal metabolism

(DiNuzzo et al., 2010, 2011). Sodium-coupled uptake of

glutamate by astrocytes and the ensuing activation of the

Na+/K+-ATPase may trigger glucose uptake and glycolytic

processing (Fox et al., 1988, Magistretti, 2006), the latter

process providing energy in the form of ATP to fuel glutamate

uptake (Schousboe et al., 2011).

The [glc]i (intracellular glucose concentration) is dependent

on the [glc]e (external glucose concentration), but is limited to

a maximal value of ,0.4 mM (Bittner et al., 2010; Prebil et al.,

2011a). This upper limit is likely due to the plasma membrane

permeability for glucose, which is in balance with the cytosolic

glucose utilization. The rate of glucose flux through GLUT1

(glucose transporter 1), the major GLUT in astrocytes (Loaiza

et al., 2003), is thus in balance with the rate of utilization by

hexokinase activity. Interestingly, the level of [glc]i in

astrocytes (0.4 mM) is much lower than that measured

in 3T3-L1 fibroblasts (10.2 mM) and preadipocytes (2.6 mM),

but comparable with adipocytes (0.6 mM) (Kovacic et al.,

2011), determined at similar extracellular glucose levels.

In astrocytes, the cytosolic glucose concentration declines

to a new lower steady-state value in approximately 20 s,

when extracellular glucose changes from 0.5 to 0.0 mM. At

higher initial extracellular glucose level (i.e. 5 mM; higher

load for the metabolism), the decline in cytosolic glucose

concentration is slower (60 s), which is likely due to the rate-

limited cytosolic consumption of glucose (Prebil et al., 2011a).
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GLUT1 (45-kDa isoform) is located in the astrocytic endfeet

around blood vessels (Morgello et al., 1995) and in astrocytic

cell bodies and processes (Leino et al., 1997). The GLUT2 was

also found in astrocytes (Leloup et al., 1994; Leino et al.,

1997; Arluison et al., 2004). On the other hand, the 55-kDa

isoform of GLUT1 is located in endothelial cells which form

the blood–brain barrier. Glucose enters neurons trans-

cellularly through astrocytes via the 45-kDa isoform of

GLUT1 or directly via GLUT3, a neuronal GLUT (Maher et al.,

1994). It may be noted that GLUT1 is stimulated by glutamate

in vitro and by neuronal activity in vivo (Loaiza et al., 2003;

Porras et al., 2008; Chuquet et al., 2010).

After glucose entry, glucose is phosphorylated by type I

hexokinase (Needels and Wilson, 1983; Griffin et al., 1992). In

astrocytes, most of the type I hexokinase is associated with

mitochondria (Lynch et al., 1991), and the activity of

hexokinase bound to mitochondria is greater than the

cytosolic hexokinase (Nagamatsu et al., 1996). However,

inhibition of gap junctions promotes the translocation of

type I hexokinase from mitochondria towards microtubules,

and induces a significant expression of type II hexokinase and

GLUT3, which are normally not present in astrocytes; all these

changes aid to sustain a higher rate of cell proliferation

(Sánchez-Alvarez et al., 2004). It was shown that levels of

glucose-1,6-bisphosphate higher than 0.2 mM inhibit astro-

glial hexokinase in a concentration-dependent manner; at

1.2 mM, the hexokinase activity is almost completely

inhibited (Lai et al., 1999). Endothelin-1, a vasoconstricting

agent (Nie and Olsson, 1996), stimulates the translocation

and up-regulation of both GLUT1 transporter and type 1

hexokinase in astrocytes (Sánchez-Alvarez et al., 2004). Type

II hexokinase is induced by deprivation of glucose (Niitsu

et al., 1999). It was recently shown that ischaemic stress

increases the expression of GLUT3, which is responsible for

the enhanced storage of intracellular glucose during

reperfusion (Iwabuchi and Kawahara, 2011).

After glucose phosphorylation, glucose-6-phosphate is the

intermediate from which either glycolysis, the pentose–

phosphate pathway or the generation of glycogen may start

(Figure 1). The amount of glucose metabolized in the

pentose–phosphate pathway is less than one-tenth compared

with glycolysis in cultured astrocytes (Leo et al., 1993; Ben-

Yoseph et al., 1994), where lactate is a major metabolic

product (Wiesinger et al., 1997). Several toxic agents, such as

chlorinated acetates, fluoxetine, ethanol and copper, were

shown to disturb glucose uptake or metabolism in astrocytes

(Abdul Muneer et al., 2011; Allaman et al., 2011; Scheiber and

Dringen, 2011; Schmidt et al., 2011).

It was reported that in rat brain the extracellular

concentration of glucose, measured by a microdialysis

technique, is as low as 0.47 mM (Fellows et al., 1992).

Moreover, in ischaemic conditions, the extracellular glucose

concentration, measured with micro-electrodes, is less than

0.05 mM, and in hypoglycaemia less than 0.19 mM (Silver

and Erecińska, 1994), which may be the milieu where glucose

may leak out of the astrocyte, since the resting cytosolic

glucose concentration was measured to be 0.4 mM, especially

if noradrenalin is present (Prebil et al., 2011a).

Emerging evidence suggests that metabolic substrates

other than glucose (e.g. glycogen, lactate and glutamate)

provide significant amounts of energy in the brain (Brown

et al., 2001; Dienel and Cruz, 2006). In the brain, glycogen

(Cataldo and Broadwell, 1986; Wender et al., 2000) as well as

GP (glycogen phosphorylase) predominantly reside in astro-

cytes (Ibrahim, 1975). The term glycogen shunt (Figure 1)

represents the fraction of metabolized glucose that passes

through glycogen molecules, prior to entering the glycolytic

pathway, and may be as large as 40% of overall glucose

metabolism (Walls et al., 2009). The glycogen reservoir can

provide fuel for energy production during hypoglycaemia

(Swanson and Choi, 1993; Brown and Ransom, 2007), as well

as during normal brain metabolism (Swanson, 1992; Fillenz

et al., 1999; Walls et al., 2009). Glycogen content appears to

be dependent on insulin signalling in astrocytes (Heni et al.,

2011).

Glycolysis and glycogenolysis appear to provide most of the

energy required during an abrupt energy demand (Hertz et al.,

2007). Glycogen might serve as a source of lactate which may

be transferred to neurons (Wender et al., 2000; DiNuzzo et al.,

2011), or converted to pyruvate, which enters the TCA

(tricarboxylic acid) cycle (Sickmann et al., 2005). Lactate and

ketone bodies have been shown to fuel a substantial portion of

brain-energy metabolism in prolonged starvation, diabetes

and under hypoglycaemia (reviewed by Pellerin and

Magistretti, 2004). In addition, lactate may act as a signalling

molecule (reviewed by Barros and Deitmer, 2010). On the other

hand, astrocytic networks can also effectively remove lactate

from activated glycolytic domains, and the lactate can be

dispersed throughout the syncytium to the endfeet for release

to blood (Gandhi et al., 2009). Finally, channelling of blood-

borne glucose to the extracellular space for use in neurons has

been suggested by DiNuzzo et al. (2010, 2011) based on the

idea that breakdown of glycogen inhibits phosphorylation by

hexokinase.

Effects of glutamate entry on energy metabolism
A FRET (fluorescence resonance energy transfer)-based

approach employing nanosensors (Fehr et al., 2003) may be

reliably used to monitor dynamic activity-induced changes in

cytosolic glucose levels in astrocytes (Bittner et al., 2010,

2011; Prebil et al., 2011a, 2011b). In the first generation of

such nanosensors, such as FLIPglu-600m, a decrease in the

FRET signal was observed upon glucose binding (Takanaga et

al., 2008). The second generation of nanosensors, such as

FLII12PGLU-700mD6, have an improved signal-to-noise ratio

and a higher dynamic measuring range in vivo, from 0.05 to

9.6 mM (Takanaga et al., 2008). Phosphorylated sugars have

no effect on the FRET ratio (Fehr et al., 2003). To dynamically

monitor the cytosolic glucose concentration ([glc]i), the CFP

(cyan fluorescence protein) fluorescence is excited and the

fluorescence of CFP and YFP (yellow fluorescence protein) is
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monitored. The ratio between YFP and CFP is calculated over

a defined region of the imaged cell. Cells superfused with

extracellular medium, containing a high glucose concentra-

tion, display high intensity of CFP fluorescence and low

intensity of YFP fluorescence. Thus, the high YFP/CFP ratio

(DR) indicates an elevated cytosolic glucose concentration.

The exchange of glucose-rich external solution with the one

devoid of glucose results in the FRET ratio decline, indicating

glucose depletion from the cell (Takanaga et al., 2008).

The sensor may be calibrated in situ by measuring the

difference between the FRET ratio during superfusion with

the increasing extracellular glucose concentration and

intermittent superfusion with a solution devoid of glucose

(DR). To calibrate the sensor, the plasma membrane should be

permeabilized (e.g. by using b-escin) to allow fast and

unhindered access of glucose to the sensor in the cell interior.

The saturation level of the sensor is first calculated (S5DR/

DRmax), and then by using the binding constant Kd of the

sensor the intracellular concentration of glucose is estimated

([glc]i5{Kd6S}/{12S}; Prebil et al., 2011a). It is important

to note that since the sensor measures the level of

unphosphorylated glucose, it is assumed that a decrease in

[glc]i reflects increased utilization of glucose, i.e. increased

uptake and glycolytic breakdown of extracellular glucose.

The effect of glutamate as a neurotransmitter in the synapse

is strongly dependent on astrocytic metabolism (Hertz, 2006).

Since glutamate does not readily cross the blood–brain barrier,

glucose serves as a precursor for glutamate synthesis (Hertz and

Dienel, 2002). Neurons lack the enzyme pyruvate carboxylase

(Yu et al., 1983) and therefore depend on astrocytes for de novo

synthesis of glutamate (Danbolt, 2001; Hertz and Zielke, 2004).

Rapid glutamate uptake by glial transporters located near

release sites (Chaudhry et al., 1995; Bergles et al., 1997; Clark

and Barbour, 1997; Dzubay and Jahr, 1999) removes the

transmitter and thus terminates the excitatory postsynaptic

potential. In physiological conditions, glutamate uptake into

astrocytes is driven by the electrochemical gradient of sodium

(O’Kane et al., 1999) and mediated mainly through two glial

glutamate transporters: GLAST (EAAT1) and GLT1 (EAAT2)

(Rothstein et al., 1994; Danbolt, 2001).

Figure 1 Glucose and glycogen metabolism in astrocytes
Simplified schematic representation of glucose metabolism via glycolysis or via the ‘glycogen shunt’ illustrating how glucose units
may be metabolized via incorporation into and subsequent hydrolysis from the branched glycogen molecule preceding metabolism to
pyruvate and lactate, i.e. glycogenolysis. Glucose-6-P, glucose-6-phosphate; ETC, electron transport chain.
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Trafficking of glutamate transporters to the plasma

membrane has been studied (Robinson, 2002; Fournier et al.,

2004; Stenovec et al., 2008) and it is likely that glutamate

transporters get incorporated into the plasma membrane by

exocytosis (Cheng et al., 2002; Stenovec et al., 2008).

Consistent with the presence of a regulated exocytotic

pathway in astrocytes (Kreft et al., 2004; Pangrsic et al., 2006,

2007; Parpura and Zorec, 2010), a calcium-dependent

increase in cumulative exocytosis increases the glutamate

transporter density (Stenovec et al., 2008), which is important

for maintaining a low extracellular glutamate concentration,

essential for the prevention of chronic glutamate neurotoxi-

city (Rothstein et al., 1996).

After glutamate uptake into astrocytes, it is either

converted to glutamine (Figure 2) by the astrocyte-specific

GS (glutamine synthetase; Derouiche, 2004) or at high

glutamate concentration is oxidatively degraded after

conversion to a-KG (a-ketoglutarate; Yu et al., 1982;

McKenna et al., 1996, 2000). The latter pathway (Figure 3)

clearly shows that besides being an excitatory transmitter,

glutamate is an important metabolic fuel, which is oxidatively

metabolized in astrocytes (Miller et al., 1975; Hertz et al.,

1988; Swanson et al., 1990; Zielke et al., 1998; Dienel and

Cruz, 2006; Hawkins, 2009). This aspect is discussed in further

detail in a subsequent section.

Astrocytes respond to glutamate by enhancing both

glucose utilization and lactate production and release

(Pellerin and Magistretti, 1994, 2003; Fray et al., 1996),

which has been suggested to lead to the increase in

extracellular lactate that follows cortical activation (Hu and

Wilson, 1997); however, the exact sources and sinks of

extracellular lactate during activation are still elusive, as

discussed recently by Kasischke (2011), and neurons might

indeed contribute to extracellular lactate (Caesar et al., 2008;

Bak et al., 2009; Contreras and Satrustegui, 2009) as well as

consume at least half of the available extracellular glucose

(Zielke et al., 2007). Glutamate may induce glycolysis in

astrocytes (Pellerin et al., 2007) which is mediated by the ac-

tivation of a Na+-dependent uptake system rather than the

activation of extracellular glutamate receptors (Pellerin and

Magistretti, 1994); however, others have not been able to

show this coupling between glutamate uptake and stimu-

lation of glycolysis, probably indicating astrocytic diversity

(Hertz et al., 1998, 2007). Using FRET nanosensors for glucose,

it was recently confirmed that glutamate stimulates gly-

colysis in cultured astrocytes, but only after a lag of several

Figure 2 Schematic representations of the proposed amino acid (AA) shuttles at the glutamatergic synapse involved in the return of
ammonia generated in neurons when the glutamate-glutamine cycle is running
In the lactate–alanine shuttle the amino acid (AA) is alanine and the ammonia produced in neurons is fixed into a-KG by the GDH
reaction to form glutamate, then transaminated by alanine aminotransferase into the KA (keto-acid) pyruvate to form alanine which
is exported to astrocytes. In the astrocytes this process is then reversed, and pyruvate is transported in the other direction (it is likely
that pyruvate may be converted to lactate for the transfer process to occur). In the branched-chain AA shuttle the AA is a branched-
chain AA such as leucine. Here, the ammonia fixed in the GDH reaction in the neurons is transaminated into the KA (keto-acid) a-
ketoisocaproate to form leucine, which is exported to astrocytes. In the astrocytes, the process is reversed, i.e. a-ketoisocaproate is
transported in the other direction. Abbreviations: Glc, glucose; Gln, glutamine; Glu, glutamate.
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minutes (Bittner et al., 2011). On the other hand, a prolonged

application of glutamate results in a switch of the astrocytic

metabolism from glycolytic to oxidative, which is manifested

as a stimulation of mitochondrial activity, decreased glucose

uptake and decreased glycolytic lactate production (Dienel,

2004; Liao and Chen, 2003). This may be related to the fact

that glutamate is an energy substrate in astrocytes (Hertz

et al., 2007). It was recently shown that glutamate added to

the extracellular solution containing 3 mM of glucose results

in a significant decrease in cytosolic glucose concentration in

astrocytes (Prebil et al., 2011a). The high glutamate

concentration may interfere with the intermediates of the

TCA cycle (Yu et al., 1982). This suggests that elevated

glutamate may be used by astrocytes as an energy source and

that glucose may be directed towards glycogen synthesis,

hence a decrease in cytosolic glucose concentration. The time-

course of the glucose concentration decrease has a

time-constant of approximately 50 s with a delay to onset of

the change of 24 s after stimulation, comparable with the

delay of glutamate-stimulated hexose uptake (Loaiza et al.,

2003). The glutamate together with K+ triggers an increase in

the rate of glycolysis in astrocytes (Bittner et al., 2010). On the

other hand, when glutamate is added to a glucose-free

extracellular medium, a slow increase in the cytosolic glucose

concentration was detected (Prebil et al., 2011a). In this case

the glutamate is likely to be used as an energy source (see

Hertz et al., 2007) and it enabled glucose to be spared from

immediate use. This mechanism was confirmed by the inhi-

bition of glycogen mobilization using a GPa inhibitor DAB

(diaminobenzidine), where such an increase in intracellular

glucose after glutamate addition was attenuated (Prebil et al.,

2011a). This confirms that glutamate may be used as an

alternative source of energy (Swanson et al., 1990) and that

the glycogen-derived glucose may be preserved in hypogly-

caemic conditions. The increase in intracellular glucose in

glucose-free extracellular medium is in agreement with the

view that astrocytes may provide an endogenous source of

brain glucose, since they express glucose-6-phosphatase-b

(Forsyth et al., 1993; Ghosh et al., 2005); however, the role of

astrocytes as glucose-releasing cells by this mechanism is

controversial and has to be further investigated (Dringen and

Hamprecht, 1993; Forsyth, 1996).

Figure 3 The extent to which glutamate (GLU) is oxidized in astrocytes seems to increase particularly during higher GLU concentrations
A net synthesis of TCA cycle intermediates occurs when the initial reaction is catalysed by GDH which paves the way for the complete
oxidation of the carbon skeleton of GLU. This requires pyruvate recycling via the concerted action of malic enzyme (ME) and pyruvate
dehydrogenase (PDH) converting malate into acetyl-CoA producing NAD(P)H. Acetyl-CoA is oxidized completely in one turn of the
TCA cycle. A partial oxidation of GLU is acquired when pyruvate (PYR) is reduced to lactate (LAC) instead of being oxidized to acetyl-
CoA. The redox state of the cell is likely important in the regulation of the destiny of the GLU molecule. Alternative to the activity of
GDH, AAT facilitates the formation of a-KG from GLU at the expense of OAA (oxaloacetate); thus no net synthesis of TCA cycle
intermediates is obtained. In contrast to the complete oxidation initiated by the activity of GDH, AAT enables the truncated TCA cycle
which refers to the net synthesis of aspartate from GLU, a pathway shown to accelerate during hypoglycaemic conditions. PC,
pyruvate carboxylase; CIT, citrate.
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Modulation of glucose metabolism in astrocytes
by noradrenaline, adrenaline and ATP
Receptors for multiple neurotransmitters co-exist on astro-

cytes and can regulate energy metabolism (Magistretti, 1988).

In astrocytes, noradrenaline activates both a- and b-

adrenergic receptors (Northam et al., 1989; Hertz et al.,

2010), which induces glycogen breakdown (Subbarao and

Hertz, 1990a, 1991; Pellerin and Magistretti, 1994; Fray et al.,

1996; Gibbs et al., 2008; Walls et al., 2009; Obel et al., 2012). In

addition to rapid glycogen breakdown, noradrenaline stimu-

lates long-term glycogen re-synthesis (Pellerin et al., 1997).

The increase in glycogen turnover was found to be dependent

on the activation of a2 adrenergic receptors involving the

Gi/o-PI3K (phosphoinositide 3-kinase) pathway in chick

astrocytes (Hutchinson et al., 2011). Although b1-adrenergic

receptors are the predominant b-adrenergic receptors in

mouse astrocytes, the activation of b2- and b3-adrenergic

receptors was found to increase glucose uptake in mouse

astrocytes (Catus et al., 2011). Noradrenaline-induced pyruvate

decarboxylation was found to result from an increase in intra-

mitochondrial concentration of Ca2+ in astrocytes (Chen and

Hertz, 1999). This significantly stimulates the TCA cycle in

astrocytes (Subbarao and Hertz, 1990b, 1991). The inhibition of

b2-adrenergic stimulation of glycogen synthesis is associated

with cognitive impairment (Hertz and Gibbs, 2009).

An application of adrenaline or noradrenaline results in

increased cytosolic glucose concentration from 0.3 to 0.5 mM,

with the initial rates of [glc]i rising at 1.6 mM/s (Prebil et al.,

2011a). This is similar to the total glycolytic rate (1.8 mM/s)

measured in astrocytes bathed in the GLUT inhibitor

cytochalasin B (Bittner et al., 2010). The b-adrenergic

stimulation of astrocytes modulates cytosolic glucose via

changes in cytosolic cAMP levels (Pellerin et al., 1997). In cells

stimulated with noradrenaline and preincubated with DAB,

a GPa inhibitor, cells displayed only one-third of the [glc]i
increase compared with noradrenaline-stimulated cells

without DAB preincubation (Prebil et al., 2011a). a- and b-

adrenergic receptors induce glycogen breakdown in astrocytes

(Subbarao and Hertz, 1990a, 1991; Pellerin and Magistretti,

1994; Fray et al., 1996; Gibbs et al., 2008) and the increased

availability of cytosolic glucose after adrenaline or noradrena-

line stimulation suggests that the stimulated glycogen

breakdown exceeds the cytosolic glucose utilization in

astrocytes (Prebil et al., 2011a). On the other hand, noradrena-

line-stimulated glucose uptake was also demonstrated (Yu

et al., 1993).

Using the FRET-based glucose nanosensor protein FLIPglu-

600 m in 3T3-L1 fibroblasts and adipocytes revealed that the

changes in cytosolic glucose concentration were only

detected in 56% of 3T3-L1 fibroblasts and in 14% of 3T3-

L1 adipocytes, where insulin increased cytosolic glucose

concentration by a factor of 4. On the other hand, adrenaline

increased cytosolic glucose concentration in fibroblasts but

not in adipocytes (Kovacic et al., 2011). Similarly, adrenaline

inhibits glycogen synthase and activates GP in muscle (Villa-

Moruzzi et al., 1979). In astrocytes, glycogen is continuously

synthesized and degraded (Shulman et al., 2001), and lactate

originating from glycogen is compartmentalized from that

derived from glucose (Sickmann et al., 2005).

ATP is a major factor mediating intercellular communication

and triggers a variety of different biological effects (Brake and

Julius, 1996) and is considered to be the dominant extracel-

lular messenger for astrocyte-to-astrocyte communication

(Cotrina et al., 1998; Guthrie et al., 1999; Wang et al., 2000;

Pangrsic et al., 2007; Parpura and Zorec, 2010). It is released

from astrocytes upon mechanical stimulation (Guthrie et al.,

1999) or glutamatergic receptor activation (Queiroz et al., 1997;

Pangrsic et al., 2007). Astrocytes respond to ATP with a pro-

pagating wave of intracellular calcium increases (Guthrie et al.,

1999), a process that is thought to serve as a long-range

signalling system in the CNS (central nervous system; Cornell-

Bell et al., 1990; Koizumi et al., 2005). ATP stimulation promotes

exocytosis in astrocytes (Pangrsic et al., 2006) and ATP released

from astrocytes as a result of neuronal activity modulates

synaptic transmission (Zhang et al., 2003). Furthermore,

astrocytes are capable of ATP-induced ATP release (Anderson

et al., 2004). It should be noted that there is some controversy

regarding release of ATP during hypoxic conditions (Martı́n et al.,

2007; Fujita et al., 2012).

ATP is an agonist for P2Y and P2X receptors (Ralevic and

Burnstock, 1998). Primary rat cortical astrocytes express

ligand-gated P2X ion channels (i.e. P2X1–5 and P2X7) and G-

protein-coupled P2Y receptors (i.e. P2Y1, P2Y2, P2Y4, P2Y6 and

P2Y12) (Fumagalli et al., 2003). Up-regulation of receptors in

astrocytes after injury has been found (Franke et al., 2001,

2004). The P2X7 subtype acts also as a permeabilization pore

that can induce cell death under prolonged activation by ATP

(Innocenti et al., 2004). Astrocyte-released ATP mediates a

paracrine activation of microglial P2X7 receptors that triggers

a perturbation of calcium homoeostasis and finally leads to

microglial cell death (Verderio and Matteoli, 2001).

Stimulation of isolated astrocytes with ATP decreases

cytosolic glucose concentration with a time constant of ap-

proximately 150 s (Prebil et al., 2011b). The mechanism of

ATP-dependent glucose concentration decrease is not yet

fully understood, and may potentially affect glucose

transport or metabolism. In astrocytes, purinergic receptors,

particularly the P2X7 subtype, are coupled to the PI3K/Akt

[also known as PKB (protein kinase B)] pathway (Jacques-

Silva et al., 2004). On the other hand, in renal mesangial cells

ATP was reported to activate Akt via the P2Y receptor

(Huwiler et al., 2002). In astrocytes, ATP stimulates Akt

phosphorylation, where calcium, PI3K and a Src family kinase

are involved (Jacques-Silva et al., 2004), which may result in

several cellular downstream effects related to the Akt

pathway, such as glycogen synthesis (Brazil and Hemmings,

2001). Activated (phosphorylated) Akt phosphorylates and

inactivates GSK3 (GS kinase 3), which is a major protein

kinase involved in the regulation of glucose metabolism in

muscle (Medina and Castro, 2008). Inactivated GSK3 results

in less phosphorylated and thus more active glycogen

synthase (Cross et al., 1995; Lawrence and Roach, 1997;
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McManus et al., 2005), which may lead to a decline in

cytosolic glucose levels as observed in ATP-stimulated

astrocytes (Prebil et al., 2011b). On the other hand,

stimulation of P2X7 receptors is associated with the

activation of PKC (protein kinase C) and phospholipase D in

astrocytes (Sun et al., 1999), which may represent an

alternative pathway of glycogen synthase activation. ATP

stimulation of P2 receptors of rat cortical astrocytes was

shown to result in inhibition of GSK3 activity by a PKC-

dependent pathway that is independent of Akt (Neary and

Kang, 2006).

AMINO ACID METABOLISM

Astrocytes are obviously involved in metabolism of all amino

acids but this review will be focused on the role of astrocytes

in the metabolic homoeostasis of the two major neuroactive

amino acids, glutamate and GABA (c-aminobutyric acid)

mediating the vast majority of excitatory and inhibitory

neurotransmitter signalling respectively. The key enzymes

involved in metabolic reactions pertinent to the turnover of

the neurotransmitters glutamate and GABA as well as their

prevailing cellular localization has recently been reviewed by

Waagepetersen et al. (2009). It should be noted that GS is

exclusively expressed in astrocytes (Norenberg and Martinez-

Hernandez, 1979) and glutamate decarboxylase is only

present in GABAergic neurons and not in astrocytes (Hertz

et al., 1992). In addition, it is of functional importance that

the activity of PAG (phosphate-activated glutaminase) is

higher in neurons than in astrocytes (Schousboe et al., 1979;

Drejer et al., 1985; Larsson et al., 1985; Lovatt et al. 2007).

This difference in the expression level of GS and PAG in

astrocytes forms the basis for the glutamate-glutamine cycle

which was originally proposed on the basis of studies of

glutamate and glutamine metabolism in brain tissue

preparations which indicated different cellular compartments

of these amino acids with different turnover rates (Berl

et al., 1961, 1962; Van den Berg and Garfinkel, 1971). The

glutamate–glutamine cycle is in short the clearance of glu-

tamate from the synaptic cleft by uptake into astrocytes and

the subsequent amidation of glutamate into glutamine which

is transferred into neurons for re-synthesis of glutamate

(Figure 2). Hence the cycle leads to a net transfer of nitrogen

from the astrocytic to the neuronal compartment. In order to

maintain nitrogen homoeostasis in the ‘tripartite’ micro-

environment, i.e. the pre- and post-synaptic neuron and the

surrounding astrocyte, this nitrogen must be transferred back

to the astrocyte (Figure 2). This may be accomplished by

transfer of an amino acid, e.g. alanine, which is thought to be

transaminated forming glutamate from which the amino

group may be liberated by the action of GDH (glutamate

dehydrogenase; Waagepetersen et al. 2000; Schousboe et al.,

2003; Bak et al., 2006). The amino group may subsequently

take part in the GS reaction. For the shuttle to operate

stoichiometrically, the GDH reaction has to operate in both

directions, i.e. reductive amination in neurons and oxidative

deamination in astrocytes. The high content of ammonia in

the glutamatergic neurons may overcome the problem that

deamination seems to be favoured (Plaitakis and Zaganas,

2001). Additionally, the branched chain amino acids have

been proposed to provide the amino nitrogen for de novo

synthesis of glutamate via pyruvate carboxylation in astro-

cytes followed by amidation by GS and transfer of glutamine

to the neurons (Lieth et al., 2001). In order for the glutamate–

glutamine cycle to operate stoichiometrically, all glutamate

taken up by astrocytes via high affinity glutamate transpor-

ters (Danbolt, 2001) must be converted to glutamine in the

GS-catalysed reaction (Cotman et al., 1981). However,

numerous metabolic studies have demonstrated considerable

oxidative metabolism of glutamate via the TCA cycle (Yu et al.,

1982; McKenna et al, 1996; Sonnewald et al., 1997). The

conversion of the carbon skeleton of glutamate to a-KG can

take place by two different enzymatic pathways, i.e. via the

GDH-catalysed oxidative deamination or by transamination

(Figure 3). The latter process may be catalysed by any

aminotransferase, but since AAT (aspartate aminotransferase)

is the member of this family of enzymes having by far the

highest activity in the brain (Erecinska and Silver, 1990), this

is the most likely enzyme to catalyse this reaction. It is

probable that oxidative deamination catalysed by GDH plays a

prominent role, since the aminotransferase inhibitor AOAA

(aminooxyacetic acid) in several studies has been shown to

inhibit oxidation of glutamate in the TCA cycle (e.g. Yu et al.,

1982; Westergaard et al., 1996). The conclusion from the

above-mentioned considerations is that a substantial fraction

of the glutamate taken up into astrocytes during glutama-

tergic activity is oxidatively metabolized in the TCA cycle (see

Westergaard et al., 1995) and hence, the glutamate–

glutamine cycle is not operating stoichiometrically

(McKenna et al., 2012). This imposes a need for de novo

synthesis of the glutamate carbon skeleton which is

dependent on the pyruvate carboxylase reaction that, like

GS, is confined to astrocytes (Yu et al., 1983). It should also be

pointed out that oxidation of the carbon skeleton of

glutamate, i.e. a-KG, requires pyruvate recycling (Figure 3),

a process that has been shown to occur in astrocytes

(Sonnewald et al., 1996; Waagepetersen et al., 2002). In this

pathway, malate originating from the TCA cycle is converted

to pyruvate by malic enzyme and subsequently decarboxy-

lated by pyruvate dehydrogenase and oxidized in the TCA

cycle (Bak et al., 2007; Obel et al., 2012).

The demonstration of a significant albeit low activity of

PAG in cultured astrocytes (Schousboe et al., 1979) is

compatible with the observation that glutamine can be

oxidatively metabolized in astrocytes after conversion to

first glutamate and then a-KG (Yu and Hertz., 1983; Hertz

et al., 1988). In line with this, the use of 13C-labelled

glutamine and MR spectroscopy has demonstrated sub-

stantial metabolism of glutamine in astrocytes, a process
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coupled to pyruvate recycling (Sonnewald et al., 1996).

Metabolism of glutamine via PAG leads to production of

not only glutamate but also ammonia and in the case

of glutamate is oxidatively metabolized by GDH and an

additional molecule of ammonia is produced. This ammonia

must eventually be disposed of which likely occurs pre-

dominantly by conversion of glutamate to glutamine by GS.

The fact that the PAG- and GS-catalysed reactions are

intracellularly separated taking place in the mitochondrial

(PAG) and the cytoplasmic (GS) compartments respectively,

allows regulatory control. Nevertheless, exposure of astro-

cytes to elevated glutamine concentrations leads to adverse

effects on mitochondria caused by ammonia liberated in

the PAG reaction as demonstrated by Jayakumar et al.

(2004).

Astrocytic uptake and metabolism of GABA appears to be

of importance for the functional capacity of GABAergic

neurotransmission, since inhibitors of astrocytic GABA

transporters as well as GABA-T (GABA-aminotransferase)

act as anticonvulsants (Sarup et al., 2003; Schousboe et al.

2010). GABA will be metabolized into succinic semi-aldehyde

in the astrocytic mitochondria that contain appreciable

activity of GABA-T (Waagepetersen et al., 2009). Succinic

semi-aldehyde dehydrogenase catalyses the subsequent

oxidation of succinic semi-aldehyde to succinate which may

be used for glutamate and glutamine synthesis via conversion

to a-KG using acetyl-CoA from glucose metabolism

(Waagepetersen and Schousboe, 2007) or oxidized to CO2

via pyruvate recycling.

METABOLIC COMPARTMENTATION OF
ENERGY METABOLISM

Metabolic compartmentation at the level of the single cell is

defined as the presence of multiple, distinct intracellular

pools of identical metabolites that are not in equilibrium.

The energy metabolism of astrocytes in culture has been

shown numerous times to be compartmentalized (Schousboe

et al., 1993; Sonnewald et al., 1993; Bouzier et al., 1998;

Qu et al., 1999; Cruz et al., 2001; Waagepetersen et al., 2001,

2006; Zwingmann et al., 2001). As mentioned above, the

pyruvate pool seems to be highly compartmentalized

(Figure 4) since lactate released from cultured astrocytes is

derived from the metabolism of extracellular glucose but not

breakdown of glycogen (Sickmann et al., 2005). This may be

difficult to understand since metabolites are seemingly

diffusing freely inside the aqueous environment of the cell.

There are several possible answers to this; importantly, the

intracellular compartment of an astrocyte, or indeed any

cell, cannot be regarded as being analogous to a glass of

water with all metabolites existing in a thermodynamically

Figure 4 Schematic presentation of multiple compartments in astrocytes
Synthesis of a large amount of releasable citrate via pyruvate carboxylase occurs in compartment A, a compartment for preferential
glucose metabolism. Releasable glutamine is synthesized from glutamate originating from compartments B and C. Glucose is the main
oxidative substrate for compartment B, whereas lactate and glucose are metabolized to the same extent in compartments C and D.
The main intracellular pool of glutamine is synthesized from glutamate originating from compartment D. The size of the arrows
provide an estimate of the relative magnitudes of the respective fluxes. GLN, glutamine; GLU, glutamate; CIT, citrate; OAA,
oxaloacetate; ASP, aspartate; FUM, fumarate.
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ideal mixture. Cytoplasm is a very heterogeneous

environment containing high concentrations of small

metabolites, macromolecules, ions and multiple membrane-

bound boundaries between organelles. These aspects are

discussed in an almost 30-year-old review by Clegg (1984).

Interestingly, recent mathematical modelling of the dif-

fusion of metabolites inside cells shows that cytosolic

compartmentation of high-concentration metabolites (e.g.

glucose, lactate, pyruvate and ATP) due to molecular sinks

such as enzymes and transporters should not be possible and

that such compartmentation is restricted to signalling

molecules such as cytosolic Ca2+ (Martinez et al., 2010;

Barros and Martinez, 2007). Thus, metabolic compartmenta-

tion may not arise due to localized consumption of e.g. ATP

or glucose. However, a number of issues complicate matters

somewhat. First, the astrocyte (as well as the neuron) has a

complex morphology and may be divided into functional

domains (Kimelberg and Nedergaard, 2010). Secondly, as

implied above, the astrocyte may be regarded as a crowded

place; metabolites and organelles are moving around in a

morphologically and functionally complex manner and

diverse cell in a semi-aqueous cytosolic environment with

internal physical barriers (i.e. organellar membranes) to

isotropic diffusion. Previous work in cardiomyocytes has

shown that diffusion of ATP is anisotropic and 2–3 times

slower than in dilute solution (Vendelin and Birkedal, 2008);

these authors suggested that the anisotropy was caused by

intracellular membranes hindering diffusion. Whether a 2–3

times slower rate of diffusion is sufficient to contribute to

intracellular compartmentation of metabolism remains to be

established. Thirdly, the existence of functionally and

metabolically heterogeneous pools of mitochondria has

been suggested and indeed mitochondria are very dynamic

and heterogeneous organelles (Hollenbeck and Saxton, 2005;

Waagepetersen et al., 2001). Lastly, some (astrocytic)

biochemical processes, such as ATP-consuming membrane

pumps, depend on ATP produced by substrate-level phos-

phorylation in the glycolytic pathway rather than the bulk

pool of ATP; this might be explained by the formation of

supramolecular complexes of enzymes and transporters such

that at least some glycolytic ATP never enters the bulk

cytosol (Schousboe et al., 2011). Solid evidence at the

molecular level that mitochondria are indeed metabolically

heterogeneous came from an immunogold-labelling experi-

ment in cultured astrocytes conducted by Waagepetersen

et al. (2006). Electron microscopic investigation of immuno-

gold-labelled a-KG dehydrogenase, a key TCA cycle enzyme,

showed heterogeneous distribution among mitochondria

within the same cell, indicating differential capacity for

mitochondria to perform oxidative metabolism. This implies

that some mitochondria may be tuned to produce energy in the

form of ATP, whereas others may be tuned to perform a different

task, e.g. anaplerotic reactions for synthesis of glutamine for

export to neurons as a precursor for neurotransmitter glutamate

and GABA synthesis (Figure 4 and Waagepetersen et al., 2001).

Indeed, metabolic compartmentation of astrocytic (energy)

metabolism is complex and much is still left to be learned about

this subject.

CONCLUDING REMARKS

Brown and Prior (2006) noted that over the last few decades

the methods to study brain-energy metabolism have evolved

from inflating a pneumatic cuff in order to occlude the

carotid arteries in ‘volunteer’ prisoners, to MRI (magnetic

resonance imaging). They also note that there is a ‘‘desire to

measure energy metabolism in a single cell (or even different

regions of a single cell) in the brain in real-time’’ (Brown and

Prior, 2006). However, some years ago this was not possible

due to a limited spatial and temporal resolution of

monitoring techniques. New implications of FRET-based

nanosensors may exemplify such a high spatial and high

temporal resolution technique to address brain energy

metabolism at the subcellular level.

Pertinent research questions to be asked are many when it

comes to subcellular compartmentation of (energy) meta-

bolism, such as why are seemingly identical metabolic

pathways such as glycolysis starting from extracellular

glucose segregated from glycolysis starting from glucose-6-

phosphate derived from breakdown of glycogen? And, are

metabolically heterogeneous mitochondria localized to dif-

ferent cellular compartments? Heterogeneous populations of

mitochondria between organs have been shown and might be

therapeutically targeted (Jayakumar et al., 2007); in the same

way, it might in the future be both desirable and possible to

target specific cellular populations of mitochondria, the latter

e.g. based on differences in their membrane potential.
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