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Abstract: (1) Background: The aim of our study was to investigate the relationship between retinal
metabolic alterations (retinal vessel oximetry, RO) and structural findings (retinal vessel diameter,
central retinal thickness and retinal nerve fiber layer thickness, RNFL) in patients with inherited
retinal diseases (IRDs). (2) Methods: A total of 181 eyes of 92 subjects were examined: 121 eyes of
62 patients with IRDs were compared to 60 eyes of 30 healthy age-matched controls. The retinal
vessel oximetry was performed with the oxygen saturation measurement tool of the Retinal Vessel
Analyser (RVA; IMEDOS Systems UG, Jena, Germany). The oxygen saturation in all four major
peripapillary retinal arterioles (A-SO2; %) and venules (V-SO2; %) were measured and their difference
(A-V SO2; %) was calculated. Additionally, retinal vessel diameters of the corresponding arterioles
(D-A; µm) and venules (D-V; µm) were determined. The peripapillary central retinal thickness and
the RNFL thickness were measured using spectral domain optical coherence tomography (SD-OCT)
(Carl Zeiss Meditec, Dublin, CA, USA). Moreover, we calculated the mean central retinal oxygen
exposure (cO2-E; %/µm) and the mean peripapillary oxygen exposure (pO2-E; %/µm) per micron of
central retinal thickness and nerve fiber layer thickness by dividing the mean central retinal thickness
(CRT) and the RNFL thickness with the mean A-V SO2. (3) Results: Rod-cone dystrophy patients had
the highest V-SO2 and A-SO2, the lowest A-V SO2, the narrowest D-A and D-V and the thickest RNFL,
when compared not only to controls (p ≤ 0.040), but also to patients with other IRDs. Furthermore,
in rod-cone dystrophies the cO2-E and the pO2-E were higher in comparison to controls and to
patients with other IRDs (p ≤ 0.005). Cone-rod dystrophy patients had the lowest cO2-E compared
to controls and patients with other IRDs (p ≤ 0.035). Evaluated in central zones, the cO2-E was
significantly different when comparing cone-rod dystrophy (CRD) against rod-cone dystrophy (RCD)
patients in all zones (p < 0.001), whereas compared with controls and patients with inherited macular
dystrophy this was observed only in zones 1 and 2 (p ≤ 0.018). The oxygen exposure was also the
highest in the RCD group for both the nasal and the temporal peripapillary area, among all the
evaluated groups (p ≤ 0.025). (4) Conclusions: The presented metabolic-structural approach enhances
our understanding of inherited photoreceptor degenerations. Clearly demonstrated through the
O2-E comparisons, the central and the peripapillary retina in rod-cone dystrophy eyes consume
less oxygen than the control-eyes and eyes with other IRDs. Rod-cone dystrophy eyes seem to be
proportionally more exposed to oxygen, the later presumably leading to more pronounced oxidative
damage-related remodeling.

Keywords: retinal vessel oxygen saturation; oxygen exposure; inherited retinal diseases; metabolism–
structure relationship

1. Introduction

Inherited retinal diseases (IRDs) have been summarized in a heterogeneous group
presenting progressive photoreceptor degeneration [1–4]. Although the classical pheno-
types of these entities are morphologically different [3,4], in severe phenotypes they may
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show similar generalized rod-cone or cone-rod dysfunction as measured by full field
electroretinography (ffERG) [5–9]. The underlying photoreceptor dysfunction has been
discussed to have a significant impact on the metabolic environment and might therefore be
associated with remodeling and apoptosis that occur with the progression of IRDs [10–17].

Oxygen constitutes a crucial energy release reagent, the primarily biological tissue
oxidant [18]. Compared with the human brain, the retina is known to share the most
extensive metabolic supply and exchange in the body [19]. Oxygenation of the human
retina is a dynamic process of which the regulation is maintained by different mechanisms.
For the retina, not only lower oxygen levels, but also higher oxygen levels are destructive.
Thus, in order to maintain proper visual function, adequate blood supply and oxygen
metabolism are necessary [16,18–20]. Based on published data, the inner retina is supplied
mainly by the retinal arterial vessels and the superficial retinal capillaries, whereas the outer
retina is supplied generally by the choroidal vessels and to lesser extent by the deep retinal
capillaries [20]. Notably, although the retinal blood flow is auto-regulated, the choroidal
blood flow is not auto-regulated [20]. Therefore, in the presence of the degeneration of
photoreceptor, the oxygen delivery to the outer retina remains unchanged, whereas the
intraretinal oxygen level continues to increase [21–24].

According to the published research on microelectrode-based measurements in animal
models, under normal conditions, regional variations in the intraretinal oxygen distribution
have been found. Three oxygen consumption zones, corresponding to the superficial and
deep retinal capillary and choroidal beds, have been clearly identified. According to these
data, the metabolic supply of rod photoreceptors is supported mainly by the choroidal
vessels and additionally by the deep retinal capillaries [25–27]. Under dark-adapted
conditions, the metabolic activity of rod photoreceptors is further supported by oxygen
diffusion from the superficial retinal capillary vessels [27–29].

In vivo studies on animal models of outer retinal degeneration have reported a marked
reduction in oxygen utilization with acceleration of rod photoreceptor degeneration [26,27].
Although less oxygen is used by the degenerative photoreceptors, the oxygen delivery to
the outer retina remains unchanged and the oxygenation of the inner retina increases [27].
With the progression of degeneration and continuous loss of photoreceptors, an increased
oxygen level in the retina leads to the elevation of superoxide radicals and the genera-
tion of other reactive oxygen species in the retina, resulting in an increased risk of cell
apoptosis [30]. Once the cones are involved, the central vision is impaired and is lost [31].
Subsequently, changes in the oxygen environment are reported to play a role in the pro-
gression of the degenerative process and the neurovascular remodeling [21–24].

Retinal vessel oximetry (RO) is a novel in vivo method, which allows researchers to
study oxygen saturation of the retinal vessels and to explore metabolic alterations of the
retina [19,32–37]. Recent RO studies on adults and children affected by inherited retinal
disease have shown an altered oxygen metabolism by means of a significant increase in
oxygen saturation in the retinal arterioles and venules, explained as a result of reduced
oxygen consumption [38–40]. These findings were more pronounced in patients with rod-
cone dystrophy (RCD) [38–40]. Furthermore, the oxygen saturation values correlated well
with structural and functional changes [39,41–43]. In addition, peripapillary retinal vessel
diameters were reduced proportionally to the functional and structural changes [39,44].
As the highest amount of oxygen is used by retinal photoreceptors, a reduction in retinal
oxygen demand with a subsequent increase in oxygen saturation in the retinal vessels,
followed by cellular apoptosis, has been hypothesized [39,41,43,45]. Based on the evi-
dence discussed above, the degeneration of photoreceptors with secondary neurovascular
remodeling seems to be a causative factor of increased retinal vessel oxygen saturation.

Spectral domain optical coherence tomography (SD-OCT) allows a precise in vivo
evaluation of retinal structural alterations. Many contradictory results have been reported
in regard to the thickness of the retinal nerve fiber layer (RNFL) in patients affected
by IRD [39,46–50]. Nevertheless, the amount of peripapillary RNFL structural changes
correlates well with the metabolic alterations detected by RO in IRDs [39]. In addition,
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the presence of cystoid macular edema (CME) in OCT imaging, reported to occur in
10%–50% of retinitis pigmentosa patients [51–54], has been well associated with the best-
corrected visual acuity [55,56] and also with the degree of metabolic alterations and foveal
vascular anomalies in RCD [42,57].

In order to deeper understand the compromised metabolic function and structural
alterations in patients with IRDs, we continued studying the mechanism related to the
retinal oxygen saturation which impacts the retinal structural alterations in different IRDs.
Although the arterio-venous difference (A-V SO2; %), known to be proportional to the
oxygen saturation, has been defined as a parameter for oxygen consumption [58], and the
correlation between the level of structural damage and retinal vessel oxygen saturation
has been confirmed in previous studies in RCD patients [39,41,42], the oxygen exposure
for a certain amount of retinal and RNFL tissue (O2-E; %/µm) has not been studied yet.
A central aim of the present study was therefore to calculate the mean retinal oxygen
exposure per micron of central retinal thickness (CRT; µm) and per micron of nerve fiber
layer thickness by dividing the mean CRT and RNFL thickness with the mean A-V SO2.

2. Materials and Methods

This cross-sectional consecutive study was performed on 92 subjects (53♀, 39♂). A total
of 60 eyes of 30 healthy subjects (21♀, 9♂; mean 46.34 ± 10.50 years) were compared with
69 eyes affected by rod-cone dystrophy (RCD, 18 ♀17 ♂; 43.88 ± 13.54 years), 26 eyes with
cone-rod dystrophy (CRD, 8♀and 6 ♂; 41.08 ± 13.02 years) and 26 eyes with inherited
macular dystrophy (IMD, 6 ♀7 ♂; 54.16 ± 13.49 years). The RCD subgroup included patients
with a clinical picture of retinitis pigmentosa with predominantly rod over cone dysfunction.
The CRD subgroup consisted of patients suffering from CRD with predominantly cone
over rod dysfunction. The IMD subgroup included patients affected by Stargardt’s disease
and Best’s disease.

Our study adhered to the tenets of the Declaration of Helsinki. All subjects provided
informed consent before the study. The data were collected between September 2016 and
December 2017.

2.1. Subjects

Our inclusion criteria for patients with IRDs were as follows: characteristic clinical
and funduscopic features of IRD [3,4], Caucasian origin and typical electrophysiological
findings [5–9]. The inclusion criteria for controls were as follows: Caucasian origin and
having best-corrected visual acuity >0.8. Exclusion criteria for patients and controls were
the presence of ocular and/or systemic pathology other than IRD (for instance, diabetes
mellitus, hypertension or other metabolic and neurodegenerative diseases) and RO images
with inadequate quality. Neither controls, nor patients with IRDs were under topical or
systemic treatment with antioxidative, capillaroprotective, anti-inflammatory or antithrom-
botic action, which may influence the RO imaging. We performed for all controls and
patients with IRD a standard ophthalmologic examination, including best-corrected visual
acuity (Snellen charts), Goldmann applanation tonometry, biomicroscopy and fundoscopy.

2.2. Retinal Vessel Imaging

Each subject received tropicamide 0.5% and phenylephrine 1% eye drops for both
eyes for mydriasis. The pupils were dilated to 7.0–8.0 mm. After a minimum of 20 min,
four test–retest fundus images were obtained, as described previously [36]. We followed a
standard procedure for RO acquisition in our clinic. Optic disc-centered fundus images,
with a 50◦ field, were taken for each eye using the Retinal Vessel Analyser (RVA; Imedos
UG, Jena, Germany), which was connected to the fundus camera FF450 (Carl Zeiss Meditec,
Jena, Germany). Images of both eyes were obtained, starting with the right eye. At least
four RO images with good image quality were taken. The three-channel luminance his-
togram tool of the RVA (Imedos UG) was used to control RO images for optimal brightness
to reduce the possible effect of pigmentation of the retina and brightness on RO. As previ-
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ously described, we selected for further analyses only images with optimal illumination,
red channel illumination <160 step of the scale and green channel illumination >60 step
of the scale [36]. An optic disc-centered image protocol was applied, where two rings,
with a radius of 1.0 and 1.5 optic disc diameters, in the peripapillary area were plotted
(Figure 1). The annulus between these two rings defined the area of interest in which
we performed RO and vessel diameter measurements. All main arterioles and venules
within the measurement area were analyzed. The average arteriolar and venular S-O2
(A-SO2 and V-SO2, %) and mean arteriolar and venular vessel diameter (D-A and D-V,
µm) were obtained by simultaneously selecting the main vessels in all four quadrants.
Their difference (A-V SO2, %), known to be proportional to the oxygen saturation of the
retina, was calculated as well.
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Figure 1. Vessel map of the retinal oximetry (RO) image, showing color-coded oxygen saturation
(SO2) values of retinal vessels within the peripapillary annulus of a control. Scheme: 1.0–1.5 optic
disc diameter distances from the optic disc margin. CRD—cone-rod dystrophy; IMD—inherited
macular dystrophy; RCD—rod-cone dystrophy.

We evaluated the average, the naso-temporal, as well as the central SO2 parameters
(A-SO2, V-SO2 and A-V SO2), retinal vessel diameters (D-A and D-V), as well as the
corresponding oxygen exposure parameters (cO2-E and pO2-E). The naso-temporal values
were calculated from the values corresponding to the nasal and temporal main peripapillary
vessels. The ETDRS chart for calculation of the central retinal exposure parameters in zones
was plotted around the fovea.

2.3. Optical Coherence Tomography Imaging

For the evaluation of the retinal structure, we performed standard spectral domain
OCT (SD-OCT) using Cirrus OCT (Carl Zeiss Meditec, Dublin, CA, USA). The OCT im-
ages were taken by implementing a macular thickness protocol (Macular Cube 512 × 128,
Figures 1 and 2) and a high-definition image-protocol (HD 5 Line Raster). The software of
the Cirrus OCT provided a macular thickness map divided into nine subfields. For statisti-
cal analyses, the data were averaged, based on the anatomical and physiological structure
of the central retina. We computed the mean macular thickness (µm) into three areas,
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as follows: zone 1 at 3◦; zone 2 between 3◦ and 8◦, and zone 3 between 8◦ and 15◦

(Figures 1 and 2).
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Figure 2. An example of RNFL thickness (12 scans, 6-mm optic nerve head-centered raster) and macu-
lar thickness protocol (Macular Cube 512 × 128) of a control subject (top, left eye), a patient with RCD
(left eye), a patient with CRD (left eye) and a patient with IMD (bottom, left eye). The naso-temporal
values were calculated from the values corresponding to the nasal and temporal main peripapillary
vessels. The ETDRS chart for calculation of the central retinal exposure parameters in zones is plotted
around the fovea.

To evaluate the RNFL thickness, we performed an image protocol with a series of 12 scans,
6-mm optic nerve head-cantered raster, each on the Cirrus OCT (Carl Zeiss Meditec, Dublin,
CA, USA). The average RNFL thickness (µm) was calculated automatically.

In addition, we calculated the mean retinal oxygen exposure (cO2-E; %/µm) and the
mean peripapillary oxygen exposure (pO2-E; %/µm) per micron of central retinal thickness
and per micron of nerve fiber layer thickness, by dividing the mean A-V SO2 by the mean
CRT and by the mean RNFL thickness, respectively. The oxygen exposure in the central
retina was assessed thereafter in zones, as follows: zone 1 (z1O2-E; %/µm); zone 2 (z2O2-C;
%/µm), and zone 3 (z3O2-C; %/µm).

Statistical Procedures

For statistical analysis we used the IBM SPSS Statistics software, version 21 (Interna-
tional Business Machines Corp., Armonk, NY, USA). Mixed effects models are suitable
for repeated measurements data. A linear mixed-effects model was performed for each
pair of the tested methods, in which one parameter of the tested pair was a dependent
variable. Results are presented as adjusted means and standard deviations for controls and
the corresponding mean difference in patients’ subgroups with the respective p-values.

In the present study, ‘subject’ was taken as a random factor, and the ‘group’, ‘age’,
‘gender’, ‘location’ and the ‘eye’ were taken as fixed factors. The study groups were treated
as covariates. The mean SO2 parameters (A-SO2, V-SO2, their difference: A-V SO2), oxygen
exposure (O2-E), as well as the mean of the vessel diameter measurements (D-A and D-V)
and the RNFL and macular thickness were taken as independent variables.
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Our results are presented as p-values with corresponding regression coefficients.
Statistical significance was defined as p < 0.05.

3. Results

In total, 181 eyes of 92 subjects were enrolled in the study: 69 eyes of 35 patients
diagnosed with rod-cone dystrophy (RCD), 26 eyes of 13 patients with cone-rod dystrophy
(CRD) and 26 eyes of 13 patients with inherited macular dystrophy (IMD) were compared
to 60 eyes of 30 age-matched controls. All demographic characteristics of our participants
are summarized in Table 1.

Table 1. Demographic characteristics including age, gender, best corrected visual acuity (BCVA, Snellen charts) in eyes of
controls and patients suffering inherited retinal diseases in subgroups as mean ± standard deviation (SD).

Groups Number
of Subjects

Evaluated Eyes Age, Y;
Mean (±SD)

Gender
(♀:♂)

Mean BCVA, (±SD)
(Snellen Charts)RE LE

Controls 30 30 30 46.34 (10.50) 21:9 1.0 (0.03)
RCD 35 34 35 43.88 (13.54) 18:17 0.53 (0.26)
CRD 13 13 13 41.08 (13.02) 8:6 0.47 (0.36)
IMD 13 13 13 54.16 (13.49) 6:7 0.75 (0.30)

3.1. Increased A-SO2, V-SO2, O2-C and Decreased A-V SO2 Values in RCD Patients

In general, patients with RCD had higher average A-SO2 and V-SO2 and lower A-V
SO2 values when compared to controls (p ≤ 0.04, ANOVA based on mixed-effect models;
Figure 3a). For instance, in controls, the average A-SO2 and V-SO2 were measured at
92.08% and at 53.94%, respectively, and the corresponding average A-V SO2 at 38.21%.
In RCD patients, the averaged retinal A-SO2 and V-SO2 showed a significantly increased
difference (7.03% and 9.60%) when compared to controls, whereas the A-V SO2 decreased
significantly by 2.98% (Table 2). The CRD group also revealed increased average A-SO2
values, and the IMD group presented increased average V-SO2 values compared to controls
(p ≤ 0.012), but these were still not as high as those in the RCD group (Table 2, Figure 3a).

The box plots in Figure 3 represent the interquartile range; the short horizontal bold
line depicts the median. In each graph the groups as labelled on the x-axis (from left to
right: controls, rod-cone dystrophy (RCD), cone-rod dystrophy (CRD), inherited macular
dystrophy (IMD)) and the evaluated parameters—on the y-axis.

3.2. Attenuated Retinal Vessel Diameters in RCD Patients

In general, the average peripapillary retinal vessel diameters, both the D-A and D-V,
were significantly narrower in the RCD patients than in controls and in patients with IMD
(p ≤ 0.001; Table 2, Figure 3b). Noticeably, the CRD group also showed narrower average
peripapillary vessel diameters when compared to the IMD group (p ≤ 0.004), but not when
compared to controls or RCD patients (Table 2, Figure 3b).

3.3. Peripapillary Retinal Nerve Fiber Layer Thickness Results: Thickest Peripapillary RNFL in
RCD Patients

RCD patients have significantly greater average peripapillary RNFL thickness than
controls and patients with other IRDs (p ≤ 0.001; Table 2, Figure 3d). In the temporal part
of the RNFL this difference was more pronounced (p ≤ 0.001; Table 3, Figure 3f). Patients
with IRDs other than RCD did not differ from controls in this respect.

3.4. Central Retinal Thickness in RCD

The OCT of the central retina imaging, consistent with previous studies on patients
with IRDs [51–54,56,59], confirmed the loss of photoreceptors (IS/OS line integrity), distor-
tions of the retinal microstructure and the presence of intra-retinal cystic spaces.

Within the entire IRD group only subjects with CRD differed from controls by means
of significantly thinner central retina thickness with a mean difference from controls of
42.68 µm (p < 0.01; Table 2, Figure 3c). The mean CRT of CRD was significantly thinner in all
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zones, when evaluated in comparison to controls and patients with other IRDs (p ≤ 0.001)
but to RCD only in zone 1 and zone 2 (p < 0.001; Table 4, Figure 3c).Genes 2021, 12, x FOR PEER REVIEW 7 of 17 

 

 

 

 

 

Figure 3. Box plots for the evaluated parameters, as follows: oxygen saturation (a); retinal vessel diameter (b), central
retinal thickness (c), RNFL thickness (d), central oxygen exposure in zones (e) and peripapillary naso-temporal oxygen
exposure (f) parameters.
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Table 2. Oxygen saturation parameters (A-SO2, V-SO2 and A-V SO2), retinal vessel diameters (D-A and D-V), the central
retinal thickness and the RNFL thickness and the oxygen exposure (O2-E).

Adjusted Means in Groups
(±SD)

Comparison between
Groups ANOVA, Based on Mixed Effects Model

Controls RCD CRD IMD Group 1 Group 2 Mean Difference p-Values between Groups

A-SO2 (%)

92.08 (4.51) 99.12
(6.42)

96.55
(4.95)

94.30
(6.03)

Controls
Controls
Controls

RCD
RCD
CRD

RCD
CRD
IMD
CRD
IMD
IMD

−7.03
−4.47
−2.21
2.57
4.82
−2.26

<0.001
0.001
0.102
0.052

<0.001
0.148

V-SO2 (%)

53.94 (6.65) 63.55
(7.64)

56.67
(8.03)

58.61
(8.63)

Controls
Controls
Controls

RCD
RCD
CRD

RCD
CRD
IMD
CRD
IMD
IMD

−9.60
−2.72
−4.66
6.88
4.94
−1.94

<0.001
0.138
0.012

<0.001
0.006
0.358

A-V SO2 (%)

38.21 (5.52) 35.54
(8.59)

39.86
(7.74)

35.69
(9.00)

Controls
Controls
Controls

RCD
RCD
CRD

RCD
CRD
IMD
CRD
IMD
IMD

2.98
−1.65
2.52
−4.32
−0.15
4.17

0.040
0.374
0.177
0.018
0.935
0.053

D-A (µm)

96.21
(13.910)

84.12
(14.43)

91.20
(19.63)

106.93
(29.65)

Controls
Controls
Controls

RCD
RCD
CRD

RCD
CRD
IMD
CRD
IMD
IMD

12.10
5.01

−10.72
−7.09
−22.82
−15.71

<0.001
0.236
0.027
0.086

<0.001
0.004

D-V (µm)

121.00
(14.67)

107.60
(17.88)

112.23
(28.58)

147.70
(26.31)

Controls
Controls
Controls

RCD
RCD
CRD

RCD
CRD
IMD
CRD
IMD
IMD

13.40
8.77

−26.70
−4.63
−40.10
−35.47

0.001
0.074

<0.001
0.329

<0.001
<0.001

Central retinal thickness (µm)

271.67
(19.60)

263.80
(36.02)

229.00
(35.84)

281.88
(15.77)

Controls
Controls
Controls

RCD
RCD
CRD

RCD
CRD
IMD
CRD
IMD
IMD

7.87
42.68
−10.20
34.80
−18.07
−52.88

0.227
<0.001
0.275

<0.001
0.037

<0.001

RNFL thickness (µm)

92.83 (8.42) 109.85
(22.91)

92.50
(20.63)

92.89
(9.90)

Controls
Controls
Controls

RCD
RCD
CRD

RCD
CRD
IMD
CRD
IMD
IMD

−17.02
0.33
−0.06
17.35
16.96
−0.39

<0.001
0.946
0.991

<0.001
0.001
0.947

cO2-E (µm/%)

6.92 (1.05) 8.08
(2.15)

5.88
(1.30)

7.51
(1.14)

Controls
Controls
Controls

RCD
RCD
CRD

RCD
CRD
IMD
CRD
IMD
IMD

−1.16
1.05
−0.60
2.20
0.56
−1.64

0.002
0.035
0.242

<0.001
0.005
0.005

pO2-E (µm/%)

2.35 (0.36) 3.36
(1.02)

2.36
(0.60)

2.58
(0.64)

Controls
Controls
Controls

RCD
RCD
CRD

RCD
CRD
IMD
CRD
IMD
IMD

−1.01
−0.01
−0.23
1.00
0.78
−0.21

<0.001
0.946
0.320

<0.001
<0.001
0.404
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Table 3. The naso-temporal RNFL thickness parameters and the corresponding oxygen exposure parameters (pO2-E nasal,
pO2-E temporal).

Adjusted Means in Groups
(±SD)

Comparison between
Groups ANOVA, Based on Mixed Effects Model

Controls RCD CRD IMD Group 1 Group 2 Mean Difference p-Values between Groups

RNFL nasal (µm)

87.80
(13.97)

103.88
(28.02)

90.10
(31.83)

88.62
(13.10)

Controls
Controls
Controls

RCD
RCD
CRD

RCD
CRD
IMD
CRD
IMD
IMD

−16.07
−4.30
−0.82
11.80
15.25
3.48

0.001
0.490
0.904
0.053
0.023
0.649

RNFL temporal (µm)

96.23
(11.91)

113.97
(25.35)

88.36
(17.16)

96.88
(14.03)

Controls
Controls
Controls

RCD
RCD
CRD

RCD
CRD
IMD
CRD
IMD
IMD

−17.740
7.874
−0.650
25.614
17.090
−8.524

<0.001
0.121
0.904

<0.001
0.001
0.164

A-V SO2 nasal (%)

38.20 (5.36) 37.04
(5.89)

36.88
(5.30)

41.62
(6.91)

Controls
Controls
Controls

RCD
RCD
CRD

RCD
CRD
IMD
CRD
IMD
IMD

1.151
1.313
−3.421
0.162
−4.572
−4.734

0.390
0.393
0.039
0.912
0.004
0.008

A-V SO2 temporal (%)

36.35 (6.45) 32.60
(6.71)

38.39
(6.63)

34.29
(8.61)

Controls
Controls
Controls

RCD
RCD
CRD

RCD
CRD
IMD
CRD
IMD
IMD

3.743
−2.041
2.058
−5.784
−1.685
−4.099

0.019
0.261
0.298
0.001
0.380
0.055

pO2-E nasal (µm/%)

2.35 (0.58) 3.03
(0.91)

2.54
(1.05)

2.15
(0.42)

Controls
Controls
Controls

RCD
RCD
CRD

RCD
CRD
IMD
CRD
IMD
IMD

−0.681
−0.184
0.200
0.498
0.881
−0.383

0.001
0.438
0.457
0.025
0.001
0.177

pO2-E temporal (µm/%)

2.73 (0.66) 3.82
(1.45)

2.31
(0.45)

2.83
(0.91)

Controls
Controls
Controls

RCD
RCD
CRD

RCD
CRD
IMD
CRD
IMD
IMD

−1.095
0.420
−0.104
1.516
0.991
0.525

<0.001
0.162
0.765

<0.001
0.004
0.159

The mean CRT of RCD did not differ significantly from controls (p = 0.227), probably
due to the presence of intra-retinal cysts. However, evaluated in zones, the retinal thickness
within zone 3 was significantly thinner than in controls (p = 0.043; Table 4).
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Table 4. The retinal thickness in zones and the corresponding oxygen exposure parameters (z1O2-E, z2O2-E and z3O2-E).

Adjusted Means in Groups
(±SD)

Comparison between
Groups ANOVA, Based on Mixed Effects Model

Controls RCD CRD IMD Group 1 Group 2 Mean Difference p-Values between Groups

Retinal thickness, Zone 1 (µm)

259.56
(28.32)

272.11
(77.02)

179.22
(43.32)

246.69
(15.92)

Controls
Controls
Controls

RCD
RCD
CRD

RCD
CRD
IMD
CRD
IMD
IMD

−13.74
80.34
12.87
94.08
26.61
−64.47

0.274
<0.001
0.473

<0.001
0.109
0.001

Retinal thickness, Zone 2 (µm)

318.79
(12.34)

303.16
(55.52)

258.49
(44.85)

312.26
(27.29)

Controls
Controls
Controls

RCD
RCD
CRD

RCD
CRD
IMD
CRD
IMD
IMD

15.86
60.30
6.52

44.44
−9.34
−53.78

0.094
<0.001
0.628

<0.001
0.452
0.001

Retinal thickness, Zone 3 (µm)

268.69
(25.47)

255.92
(33.22)

239.47
(30.44)

270.88
(27.36)

Controls
Controls
Controls

RCD
RCD
CRD

RCD
CRD
IMD
CRD
IMD
IMD

13.26
29.22
−2.18
15.96
−15.44
−31.40

0.043
0.001
0.814
0.053
0.073
0.003

z1O2-E (µm/%)

6.62
(1.18)

8.48
(3.06)

4.66
(1.52)

6.59
(1.05)

Controls
Controls
Controls

RCD
RCD
CRD

RCD
CRD
IMD
CRD
IMD
IMD

−1.86
1.96
0.03
3.82
1.90
−1.93

<0.001
0.004
0.961

<0.001
0.004
0.015

z2O2-E (µm/%)

8.11
(1.03)

9.36
(2.58)

6.67
(1.66)

8.30
(1.20)

Controls
Controls
Controls

RCD
RCD
CRD

RCD
CRD
IMD
CRD
IMD
IMD

−1.26
1.44
−0.19
2.70
1.07
−1.63

0.004
0.014
0.755

<0.001
0.059
0.018

z3O2-E (µm/%)

6.83
(1.03)

7.81
(1.02)

6.15
(1.20)

7.24
(1.36)

Controls
Controls
Controls

RCD
RCD
CRD

RCD
CRD
IMD
CRD
IMD
IMD

−0.98
0.68
−0.42
1.66
0.56
−1.10

0.006
0.150
0.399

<0.001
0.222
0.051

3.5. Oxygen Exposure of the Retina in Patients with IRDs

Since the oxygen saturation, vessel diameters and central retinal and peripapillary
structures are all affected in IRDs and to a greater extent in patients with RCD, we calculated
the mean central retinal oxygen exposure (cO2-E; %/µm) and the mean peripapillary
oxygen exposure (pO2-E; %/µm) per micron of central retinal thickness and per micron of
RNFL thickness, by dividing the mean A-V SO2 with the mean CRT and respectively with
the mean RNFL thickness.
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In patients with RCD, the average central and peripapillary oxygen exposures (cO2-E
and pO2-E) were significantly higher than those in controls, and were also higher than those
in patients with other IRDs (p ≤ 0.005; Tables 3 and 4). The oxygen exposure was also the
highest in the RCD group for both the nasal and the temporal peripapillary area, among all
the evaluated groups (p ≤ 0.025; Table 3). In addition, compared to the controls, for whom
the peripapillary naso-temporal comparison showed significantly higher increased pO2-E
values in the temporal area, this parameter did not reach statistically significant values in
the RCD patients.

Cone-rod dystrophy patients had the lowest cO2-E compared to controls and patients
with other IRDs (p ≤ 0.035; Table 2, Figure 3e). Evaluated in central zones, the cO2-E
was significantly different comparing cone-rod dystrophy patients to rod-cone dystrophy
patients in all zones (p < 0.001), whereas against controls and patients with inherited
macular dystrophy only in zones 1 and 2 (p ≤ 0.018; Table 4, Figure 3e).

Patients with IMD did not differ from controls in these parameters.

4. Discussion

Alterations in the retinal structure and oxygen metabolism have been reported in
patients with inherited retinal disease (IRD) and are mainly considered to be a consequence
of metabolic and structural changes [38,39,46,47,54,60,61].

Deducting a structural–metabolic approach by evaluating patients with inherited
retinal disease in comparison to controls, apart from studying retinal structure and oxy-
genation, we additionally evaluated the effect of retinal oxygen exposure for certain retinal-
and RNFL tissues (O2-E). In order to do this, we calculated the mean retinal oxygen expo-
sure per micron of central retinal thickness and per micron of nerve fiber layer thickness,
O2-C (%/µm) by dividing the mean CRT and RNFL thickness with the mean A-V SO2.

4.1. Altered Structural and Metabolic Function in IRDs

Consistent with the results of the studies published to date [39,41,43], we reconfirmed
increased A-SO2 and even more an increased V-SO2, with a corresponding decrease in the
A-V SO2 values within the RCD group. A novel finding in the present study is that RCD
patients also indicated significantly increased oxygen exposure when compared to controls
and patients with other IRDs.

As rods are discussed to be much more oxygen demanding, their primary affliction
would explain the more altered metabolic function when compared to other patients
with IRD. This means that, following rod-cone dystrophy, due to the marked reduction
in oxygen consumption under the continuing oxygen supply, more oxygen would be
delivered to the inner retina, where the retinal oxygen saturation is measured. Increased
intra-retinal levels of oxygen leads in turn to elevation of superoxide radicals and the
generation of other reactive oxygen species in the retina, which increases the risk of cell
apoptosis. The latter is clearly demonstrated in the presented data with much attenuated
retinal vessels in the rod-cone dystrophy patients, and also with thickening of otherwise
distorted central and peripapillary retina, consistent with the neurovascular remodeling
that occurs with degeneration [21–24]. Here, increased oxygen flux due to the lack of the
choroidal autoregulation [20] seems to have a significant impact on increased mean oxygen
exposure in RCD patients, as confirmed now in our study.

The present study also revealed significantly altered central and peripapillary retinal
structures that correspond to disturbed oxygenation, with the RCD group found to be the
most affected among IRD patients.

4.2. Altered Central Structure and Metabolic Function in IRDs

The OCT imaging of the central retina, consistent with previous studies on patients
with IRD [55,56,59], confirmed the loss of photoreceptors with IS/OS line integrity, distor-
tions of the retinal microstructure and/or macular edema. Although the central retinal
thickness in RCD patients did not differ from that of controls (p = 0.227), it was significantly
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thinner in CRD. The later held true when compared to controls and also to patients with
other inherited retinal dystrophies (p < 0.001).

A novel finding in the present study is the significantly increased central oxygen
exposure in our RCD group when compared to controls and patients with other IRDs
(p ≤ 0.005). Interestingly, even if the central retinal thickness in RCD patients was within
the normal range (p = 0.227), the oxygen exposure was significantly increased. This finding
was more pronounced in zone 1 (up to 3◦) and zone 2 (3◦–8◦), when patients with other
IRDs were considered.

Many studies have already reported on structural and functional alterations within
the RCD group in the macular area. Outside zone 2 (3◦–8◦), a study by Konieczka et al.
found a reduction in mfERG responses corresponding to the reduction in the central retinal
layer thickness [56]. Funatsu et al. [62] reported in RCD patients reduced central retinal
sensitivity measured by microperimetry corresponding to reduced outer retinal thickness
at 6◦–8◦. Several studies on fundus autofluorescense imaging in RCD patients have paid
attention to increased annular hyperautofluorescence in the parafoveolar area (within 3.0◦

to 10.5◦), which is supposed to indicate a metabolic abnormality [63,64]. Considerably,
the progression of the hyperautofluorescence ring constriction has been found to correlate
strongly with retinal eccentricity. More precisely, the mean outer ring (within 3.0◦ to 10.5◦)
has shown significantly rapid radius reduction per year, compared to the mean inner ring
(0.2◦–3.0◦) [64]. The authors suggested that the rod system dysfunction in RCD patients
may lead to a consequent cone dysfunction and thus to progressive visual field constriction
and central vision impairment. In agreement with this, studies using adaptive optics
scanning laser en-face images in RCD patients have shown reduced cone photoreceptor
density and a strong correlation with retinal eccentricity [59,65]. Since using antioxidants
in RCD models supposedly decreases the oxidative damage and prevents the death of
cone photoreceptors, it is inferred that oxidative damage is a major contributor to cone
photoreceptor apoptosis [66].

In agreement with the results of the studies stated above, in our RCD patients a signifi-
cant oxygen exposure at the region corresponding to zone 2 was found. We suppose that as
part of the tissue apoptosis, increased oxygen exposure occurs, with a consequent increase
in the oxidative stress of rod photoreceptors on the border the retina, which is severely
affected by remodeling. These results seem to have a significant impact on abnormal
autofluorescence, reduced sensitivity in microperimetry and mfERG measurement, as well
as on distortions of retinal microstructure in the central retina.

Contrarily, in our CRD patients, opposite to the controls and other IRD patients, the
CRT was significantly reduced (p < 0.001), as well as the oxygen exposure (p ≤ 0.035). In ac-
cordance with the published studies, the cone density is higher in the central retina [67–69].
It is, however, also known that rods are more oxygen-demanding than cones [27–29].
Therefore, in the presence of cone-rod dystrophy, where cone photoreceptors are primarily
affected and rod photoreceptors remain intact for a long period, an oxygen influx from
choroidea into the retina is expected to remain unchanged, explaining our results.

4.3. Altered Peripapillary Metabolic Function in IRDs

Peripapillary RNFL thickness in RCD patients has gained attention in many studies
and has been discussed as related to the neurovascular remodeling [39,46–50]. In our
patient group, the RNFL was significantly thicker in the RCD group when compared to
controls and to patients with other IRDs. Interestingly, in the temporal part of the RNFL
this difference was more pronounced. Furthermore, in the peripapillary temporal retina,
oxygen use as determined by the A-V SO2 parameter was significantly reduced compared to
controls and cone-rod dystrophies (p ≤ 0.019). In the comparison with IMDs, this parameter
was significantly altered only in the nasal RNFL (p = 0.004). The oxygen exposure was,
however, the highest in the RCD group for both the nasal and the temporal peripapillary
area, among all the evaluated groups. However, compared to controls, for whom the
peripapillary naso-temporal difference showed significantly increased oxygen exposure



Genes 2021, 12, 272 13 of 16

values in the temporal area, the RCD patients did not reach statistically significant values
in this parameter. A possible explanation for these results could be as follows.

According to the topographic mapping in controls, more rod photoreceptors would
be observed in the temporal retina, whereas more cone photoreceptors would be observed
in the nasal retina [69]. This finding has already been discussed as related to the increased
intensity of the cellular metabolism in the macula in controls [70]. Thus, although the
capillary-free zone close to the macula is supposed to have higher extracellular oxygen
diffusion, the higher density of photoreceptors and ganglion cells in the macula yields
to higher oxygen extraction in the temporal peripapillary retina. This would explain the
higher oxygen exposure values in the temporal peripapillary area in controls, which we
were able to document.

A novel finding in the present study is the loss of peripapillary naso-temporal differ-
ence in oxygen exposure values within the RCD group. Compared to controls and CRDs,
this naso-temporal difference in the RCD group was not present. This finding could be ex-
plained by the more rapid and progressive degeneration measured in RCD in the temporal
part of the retina, with a consecutively more increased choroidal flux, and correspondingly
increased oxygen exposure, as confirmed now in the present study. Contrarily, any possible
reduction in the peripapillary naso-temporal oxygen exposure difference in RCD may serve
as a predictor for the progression of RCD once the cones, which are denser in the macula,
are affected.

In eyes with cone-rod dystrophy, based on the underlined primary degeneration of
cones and according to the topographic mapping of the cone density in controls, the oxygen
exposure map would be presented differently. Here, due to the primary affliction of
cone photoreceptors, and thus greater effects on the nasal retina, the oxygen exposure
may increase in the peripapillary nasal retina, diminishing the naso-temporal difference
compared to controls and patients with RCD. Furthermore, taking the generalized cone
photoreceptor degeneration in patients with CRD into account, less oxygen influx from the
choroidea in to the retina may be measured, resulting in less affected oxygen exposure in
CRDs. The latter would explain why the RNFL thickness, as well as the diameters of the
peripapillary vessels, remain stable for a longer period. This explanation may serve also to
indicate that changes in cone photoreceptors’ oxygen metabolism are limited, as clearly
demonstrated with less pronounced tissue remodeling.

Our study has, however, some limitations that include among others the genetic
heterogeneity, different clinical stages of our IRD patients and the small sample size in
the IMD subgroup. in addition, possible interactions between retinal blood flow, oxygen
delivery, oxygen consumption, as well as changes in choroidal contribution should have
been taken into consideration for the interpretation of oxygen extraction. Therefore, further
studies are needed to evaluate to what extent the altered retinal and choroidal perfusion in
IRD patients may contribute to the measured metabolic dysfunction.

5. Conclusions

Clearly demonstrated through the applied metabolic–structural approach, we were
able to differentiate RCD patients not only from controls, but also from patients with
other IRDs.

With the adopted pO2-E/cO2-E model, the oxidative stress in the retina may be
accessed in vivo and be used as a metabolic parameter in understanding inherited retinal
diseases. Furthermore, these parameters of mean oxygen exposure in relation to the
amount of central retinal thickness and retinal nerve fiber layer thickness may serve as a
biomarker in evaluating the progression rate of the degeneration, as well as the effect of
future therapies.
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