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Photoinitiators are utilized in the production of a wide range of commonly used products. However, some pho-
toinitiators exert toxic effects. We previously demonstrated the endocrine‐disrupting effects of photoinitiators
in vitro. The present study investigated the estrogenic activities of three photoinitiators: 1‐hydroxycyclohexyl
phenyl ketone (1‐HCHPK), methyl 2‐benzoylbenzoate (MBB), and 2‐methyl‐40‐(methylthio)‐2‐morpholinopro
piophenone (MTMP), which were subcutaneously injected into mouse xenografts with MCF‐7 breast cancer
cells. The results obtained showed that 1‐HCHPK, MBB, and MTMP promoted breast tumor growth in these
xenografts. A pretreatment with the estrogen receptor antagonist tamoxifen blocked the tumor growth‐
promoting effects of each photoinitiator. Collectively, the present results suggest that the three photoinitiators
exhibit estrogenic agonist activities in vivo. Furthermore, as a factor for breast tumor growth, these photoini-
tiators potentially have estrogenic properties in vivo.
Introduction

Photoinitiators are utilized in the production of a wide range of
commonly used products, including adhesives, items in the printing
industry (inks, printing plates), toys (fabrication of 3D objects), and
materials in the medical field (dental filling materials and artificial tis-
sues) (Dumanian et al., 1995; Kostoryz et al., 1999; Bohonowych et al.,
2008; Santini et al., 2013). Some photoinitiators have been reported to
exert toxic effects under in vitro conditions (Kostoryz et al., 1999; Eick
et al., 2002; Huang et al., 2002; Williams et al., 2005; Demirci et al.,
2008). Furthermore, in vivo studies demonstrated that the photoinitia-
tor benzophenone, which is present in sunscreen, induced allergic skin
reactions, similar to skin irritants that cause photoallergies, allergic
contact dermatitis, and facial erythema (Alanko et al., 2001; Cook
and Freeman, 2001; Nedorost, 2003). However, the health hazards
associated with the different entry routes of photoinitiators into the
body and their effects on exposed individuals have not yet been
clarified.

We previously detected photoinitiators, including 1‐
hydroxycyclohexyl phenyl ketone (1‐HCHPK), methyl 2‐
benzoylbenzoate (MBB), and 2‐methyl‐40‐(methylthio)‐2‐morpholino
propiophenone (MTMP), in marketed injection solutions using gas
chromatography‐mass spectrometry (Kawasaki et al., 2012; Yamaji
et al., 2012; Tsuboi et al., 2016). Injection solutions containing MTMP
were administered to adults at a total dose of 1 L/day, and approxi-
mately 5.6 mg of MTMP per day accumulated in the body (Kawasaki
et al., 2012). However, the pharmacokinetics of MTMP have yet to
be elucidated in detail. We showed that MTMP induced apoptosis
through a caspase‐dependent pathway via caspase‐3/7 in vitro
(Kawasaki et al., 2013). Moreover, 1‐HCHPK, MBB, and MTMP did
not exhibit mutagenicity in the Ames test. However, UV‐irradiated
MTMP was associated with frameshift mutations in bacteria (Takai
et al., 2018). Reitsma et al. (2013) previously reported that the pho-
toinitiator 2‐isopropylthioxanthone (2‐ITX), which is used in ink,
exhibited endocrine‐disrupting activity in vitro. We also demonstrated
that 1‐HCHPK, MBB, and MTMP exhibited endocrine‐disrupting activ-
ities and interacted with the estrogen receptor (ER) as agonists in the
MCF‐7 breast cancer cell line. Furthermore, a pretreatment with an ER
antagonist blocked the proliferative capacity of each photoinitiator.
Based on these findings, we suggested that photoinitiators have estro-
genic properties (Morizane et al., 2015).

The development of breast cancer is associated with several factors,
including estrogen exposure. Estrogen exerts physiological and patho-
physiological effects by regulating the expression of target genes via
ER alpha (ESR1), which functions as a transcription factor (Kelsey
and Berkowitz, 1988). ESR1 as a receptor transcription factor plays
an important role in the development of breast cancer, endometrial
cancer, and ovarian cancer, in addition to the effects of female hor-
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Fig. 1. Chemical structures. A: 1-Hydroxycyclohexyl phenyl ketone (1-
HCHPK), B: methyl 2-benzoylbenzoate (MBB), and C: 2-methyl-40-
(methylthio)-2-morpholinopropiophenone (MTMP).
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mones, such as normal mammary gland development (Persson, 2000).
Therefore, estrogen is closely involved in the growth and progression
of breast cancer, and ESR1 antagonists, such as tamoxifen (Tam) and
aromatase inhibitors, have been clinically applied as endocrine ther-
apy for breast cancer (Huang et al., 2000). Moreover, the treatment
outcomes of breast cancer are affected by the expression of hormone
receptors, such as ESR1 and human epidermal growth factor receptor
2 (HER2) (Barnard et al., 2015). Therefore, ESR1 antagonists and anti‐
HER2 antibodies are mainly used in endocrine therapy for breast can-
cer worldwide. Tam is commonly employed in clinical settings because
it was the first selective estrogen receptor modulator to be developed
(Mürdter et al., 2011). The long‐term administration of Tam reduced
the recurrence and mortality rates of breast cancer in the ATRAS study
(Davies et al., 2013). Based on these findings and with the ultimate
aim of preventing breast tumor progression, we investigated the
endocrine‐disrupting activities of photoinitiators in vivo. Therefore,
the present study examined the estrogenic activities of 1‐HCHPK,
Fig. 2. Photoinitiator or tamoxifen treatments promoted breast tumor growth in a
nude mice. (A) 1-HCHPK, (B) MBB, (C) MTMP, and (D) Tam. Results are presented a
control (DMSO-treated) group. # indicates a significant difference in the 25 mg/k
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MBB, and MTMP using a mouse xenograft model with MCF‐7 breast
cancer cells.
Materials and methods

Drugs

MCF‐7, an estrogen‐sensitive human breast cancer cell line, was
obtained from the RIKEN BioResource Center (Ibaraki, Japan). Dul-
becco’s modified Eagle medium (DMEM) and fetal bovine serum
(FBS) were purchased from Life Technologies Japan Ltd. (Tokyo,
Japan). Dimethyl sulfoxide (DMSO), 1‐HCHPK, phosphate‐buffered
saline (PBS) (pH 7.4), and Tam (ER antagonist) were purchased from
Sigma‐Aldrich Co. (MO, USA). MBB and MTMP were purchased from
Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). Matrigel® Matrix
was purchased from Corning Japan K.K. (Osaka, Japan). In the
in vivo study, all drugs were dissolved in DMSO and subcutaneously
administered at a volume of 1 mL/kg. The chemical structures of the
photoinitiators used in the present study are shown in Fig. 1.
Cell culture

The MCF‐7 human breast cancer cell line was cultured in DMEM
supplemented with 10% (v/v) heat‐inactivated FBS, 100 units/mL of
penicillin, and 100 μg/mL of streptomycin. Cells were maintained at
37 °C in an incubator with 5% (v/v) CO2 in a water‐saturated
atmosphere.
n in vivo murine model. MCF-7-xenografted tumors were generated in BALB/c
s the mean± SD (n = 5). #p<0.01, $p<0.01 significantly different from the
g group. $ indicates a significant difference in the 50 mg/kg group.



Fig. 3. Photoinitiator or tamoxifen did not affect body weight in an in vivomurine model. MCF-7-xenografted tumors were generated in BALB/c nude mice. (A) 1-
HCHPK, (B) MBB, (C) MTMP, and (D) Tam. Results are presented as the mean ± SD (n = 5).
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Subjects

Female BALB/c‐nu mice (Charles River, Yokohama; initial weight
11–19 g) were housed four or five per cage under climate‐controlled
conditions with a room temperature of 23 ± 1 °C with a 12‐h light-
–dark cycle (lights on at 8:00 a.m.). Food and water were available
ad libitum. Experiments were performed in accordance with the Guide-
lines of the Ethics Review Committee for Animal Experimentation of
Okayama University Medical School.

Tumor-xenografted model mice

The mouse xenograft model was established according to a previ-
ously described method (Faustino‐Rocha et al., 2013). MCF‐7 breast
cancer cells (1 × 106) were suspended in PBS and mixed with Matri-
gel® Matrix at a ratio of 1:1 in 200 μL. Suspended cells were subcuta-
neously injected into 6‐week‐old female BALB/c‐nu mice. When the
estimated tumor volume was 100–300 mm3, mice were randomly sep-
arated into five mice/treatment group and administered a photoinitia-
tor (5–50 mg/kg), Tam (0.5–50 mg/kg), or a combination of Tam (0.
5–50 mg/kg) + the photoinitiator (50 mg/kg) via a subcutaneous
injection once a day for 2 weeks. Tam (0.5–50 mg/kg) was adminis-
tered 30 min before the challenge with each photoinitiator (50 mg/
kg). Body weights and estimated tumor volumes were measured each
week using a scale and Vernier caliper, respectively. The estimated
tumor volume was calculated using the formula V=(W (2) × L)/2,
where V is the volume of the tumor, W is the width of the tumor,
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and L is the length of the tumor. The observation period was 91 days
after the start of drug administration.
Statistical analysis

Data were analyzed using a one‐way analysis of variance (ANOVA)
followed by Dunnett’s test. The significance level was set at P < 0.01.
Results

Effects of 1-HCHPK, MBB, and MTMP on tumor growth in tumor-
xenografted mice

As shown in Fig. 2, the 1‐HCHPK treatment markedly increased
tumor volumes. No significant differences were observed between
the 5 mg/kg group and control group. However, the 25 mg/kg group
showed significant increases in tumor volumes on day 7, followed by
slight increases after day 21. In the 50 mg/kg group, significant
time‐dependent increases were observed in tumor volumes from day
14 (Fig. 2A). MBB‐treated tumors grew in a time‐dependent manner
and significantly increased after day 91 in the 50 mg/kg group. On
the other hand, no significant differences were noted between the 5
and 25 mg/kg groups and the control group (Fig. 2B). The MTMP
treatment also markedly increased tumor volumes. No significant dif-
ferences were observed between the 5 mg/kg group and control group.
Gradual increases in tumor volumes were noted in the 25 and 50 mg/



Fig. 4. Combination treatments suppressed breast tumor growth in an in vivo murine model. MCF-7-xenografted tumors were generated in BALB/c nude mice. (A)
1-HCHPK + Tam, (B) MBB + Tam, and (C) MTMP + Tam. Results are presented as the mean ± SD (n = 5). *p < 0.01, #p < 0.01, $p < 0.01 significantly
different from the control (DMSO treated) group. * indicates a significant difference in the photoinitiator (50) + Tam (0.5) group. # indicates a significant
difference in the photoinitiator (50) + Tam (5) group. $ indicates a significant difference in the photoinitiator (50) + Tam (50) group.
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kg groups, followed by significant increases after day 70 (Fig. 2C).
However, body weight changes did not significantly differ among
the groups (Fig. 3A, B and C).

Effects of Tam on tumor growth in tumor-xenografted mice

No significant differences were observed between the 0.5, 5 and
50 mg/kg group and control group. (Fig. 2D). Furthermore, body
weight changes did not significantly differ among the groups (Fig. 3D).

Influence of the ER antagonist on effects of photoinitiators in tumor-
xenografted mice

In 1‐HCHPK‐treated mice, the pretreatment with the ER antagonist
Tam reversed 1‐HCHPK‐induced increases in tumor volumes (Fig. 4A).
Tam (0.5, 5, and 50 mg/kg) significantly suppressed 1‐HCHPK‐
induced increases from day 21.

In MBB‐treated mice, the pretreatment with Tam reversed MBB‐
induced increases in tumor volumes (Fig. 4B). Tam at 0.5, 5, and
50 mg/kg significantly suppressed MBB‐induced increases from days
84, 84, and 42, respectively

In MTMP‐treated mice, the pretreatment with Tam reversed
MTMP‐induced increases in tumor volumes (Fig. 4C). Tam at 0.5, 5,
and 50 mg/kg significantly suppressed MTMP‐induced increases from
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day 35. However, body weight changes did not significantly differ
among the groups (Fig. 5A, B and C).
Discussion

In the present study, we confirmed the estrogenic activities of pho-
toinitiators in vivo. 1‐HCHPK, MBB, and MTMP promoted tumor
growth in a mouse xenograft model. In addition, a pretreatment with
the ER antagonist Tam blocked the increases induced in tumor vol-
umes by each photoinitiator after tumor formation. These results indi-
cate that the three photoinitiators may exhibit estrogenic agonist
activities in vivo. Furthermore, as factors for breast tumor growth,
these photoinitiators may have estrogenic properties in vivo.

Tumor volumes were approximately 9.8‐fold larger in 1‐HCHPK‐
treated mice than in control mice with an observation period of
91 days. On day 91, tumor volumes were approximately 6.1‐fold larger
in MBB‐treated mice than in control mice. Similarly, after day 91,
tumor volumes were approximately 14.2‐fold larger in MTMP‐
treated mice than in control mice. In our previous study using an
MCF‐7 breast cancer cell line in vitro, three photoinitiators (10‐5 M)
had approximately 2‐fold higher proliferative effects than the control
(Morizane et al., 2015). We attributed the differences between
in vitro and in vivo findings to the chemical structures of the photoini-
tiators and the metabolic activities of the cell line and organs. Among



Fig. 5. Combination treatments did not affect body weight in an in vivo murine model. MCF-7-xenografted tumors were generated in BALB/c nude mice. (A) 1-
HCHPK + Tam, (B) MBB + Tam, and (C) MTMP + Tam. Results are presented as the mean ± SD (n = 5).
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the three photoinitiators examined, only MBB has an ester bond in its
chemical structure. This ester bond was previously reported to be
degraded by carboxyesterase in the body (Chen et al., 2016). There-
fore, the increases induced in tumor volumes by MBB, which contains
an ester bond, were considered to be smaller than those by 1‐HCHPK
and MTMP. Therefore, the tumor growth‐promoting effects of the pho-
toinitiators on breast tumors were due to in vivo factors.

In the present study, tumor volumes were significantly larger in 1‐
HCHPK‐treated mice than in control mice on day 7; however, they
were significantly larger in MBB‐ and MTMP‐treated mice than in con-
trol mice on day 91 and day 70, respectively. These differences were
attributed to the affinity of the photoinitiators for ER. Based on an
X‐ray crystal structure analysis of the 4‐hydroxy Tam‐ER complex, 4‐
hydroxy Tam may have stronger binding affinity than Tam due to
the hydrogen bond between the hydroxyl group of the side chain of
the benzene ring and the glutamic acid residue of the receptor
(Wang et al., 2006). In addition, the binding affinity of FCE25071,
an exemestane active metabolite (reduced to a hydroxyl group at posi-
tion 17), was previously reported to be stronger than that of exemes-
tane. The IC50 of exemestane is 545 nM, whereas that of FCE25071
is 6.1 nM (Ariazi et al., 2007). Among the three types of photoinitia-
tors examined in the present study, only 1‐HCHPK has a hydroxyl
group. The hydroxyl group of the side chain of this photoinitiator
may have influenced the extent to which tumor growth was promoted.
On the other hand, gene mutations, which increase the possibility of
developing breast cancer, are also risk factors (Sun et al., 2017). The
regulation of ER expression in breast cancer was previously shown
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to involve ER gene methylation (Giacinti et al., 2006), ER gene muta-
tions (Herynk and Fuqua, 2004), and the microRNA regulation of ER
expression (Adams et al., 2007). Based on these findings, the affinity
of photoinitiators for ER and their effects on the expression of proteins
that regulate ER expression need to be investigated in future studies.

In in vitro studies on photoinitiator‐induced endocrine disruption,
D,L‐camphorquinone exerted weak anti‐androgenic effects
(Shimamura et al., 2002). In addition, 2‐ITX was found to potentially
possess estrogenic and androgenic properties (Peijnenburg et al.,
2010). 2‐ITX was also shown to regulate androgen receptors and ER
and modulate steroid biosynthesis (Reitsma et al., 2013). Based on
these findings, we considered the three photoinitiators to also regulate
hormone levels. Typical endocrine‐disrupting chemicals (EDCs) exhi-
bit estrogenic activity (Maqbool et al., 2016). ER is a ligand‐
dependent transcription factor in the nucleus of cells that mediates
the effects of estrogen by binding to the estrogen response element
(ERE) in the genome and directly controlling the expression levels of
target genes in its vicinity. Estrogen‐related receptor α (ERRα), a
nuclear receptor with the highest homology to ER, binds ERE and reg-
ulates transcription (Stein and Yang, 1995; Paech et al., 1997). In addi-
tion, previous studies demonstrated that estrogen‐bound ESR1
interacted with SP1, AP‐1, and NFκB, bound to the promoter region
of target genes, and was involved in the regulation of expression
(Delfino and Walker, 1999; Kushner et al., 2000; Safe and Kim,
2004). Moreover, several EDCs are lipophilic and accumulate in body
fat over time (Yilmaz et al., 2020). Since the three photoinitiators
examined in the present study have similar chemical structures to
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EDC in terms of lipophilicity, they were considered to be taken up by
breast cancer cells. Therefore, photoinitiators may induce irreversible
changes in the function or sensitivity of stimulatory/inhibitory signals.
Further in vitro and in vivo studies are needed to establish whether pho-
toinitiators play a role in the changes induced in the expression levels
of major proteins and genes in breast cancer cells. Moreover, the mech-
anisms by which photoinitiators exert tumor growth‐promoting effects
need to be elucidated in more detail.

In conclusion, we herein demonstrated that three photoinitiators
promoted the growth of breast tumors. The different tumor growth‐
promoting effects of these photoinitiators appeared to be due to differ-
ences in their chemical structures. Moreover, as a factor for breast
tumor growth, photoinitiators may have estrogenic properties in vivo.
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