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ABSTRACT

Motivation: Recent advances in high-throughput technologies
have made it possible to investigate not only individual protein
interactions, but also the association of these proteins in complexes.
So far the focus has been on the prediction of complexes as sets
of proteins from the experimental results. The modular substructure
and the physical interactions within the protein complexes have been
mostly ignored.
Results: We present an approach for identifying the direct physical
interactions and the subcomponent structure of protein complexes
predicted from affinity purification assays. Our algorithm calculates
the union of all maximum spanning trees from scoring networks
for each protein complex to extract relevant interactions. In a
subsequent step this network is extended to interactions which
are not accounted for by alternative indirect paths. We show that
the interactions identified with this approach are more accurate
in predicting experimentally derived physical interactions than
baseline approaches. Based on these networks, the subcomponent
structure of the complexes can be resolved more satisfactorily and
subcomplexes can be identified. The usefulness of our method
is illustrated on the RNA polymerases for which the modular
substructure can be successfully reconstructed.
Availability: A Java implementation of the prediction methods and
supplementary material are available at http://www.bio.ifi.lmu.de/
Complexes/Substructures/.
Contact: caroline.friedel@bio.ifi.lmu.de
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Cellular processes of all sorts are shaped by proteins associated
in complexes. Thus, the identification of such complexes and
the interactions within the complexes have become a major
experimental focus. While direct, physical interactions can be
identified by the yeast two-hybrid (Y2H) approach (Fields and Song,
1989), affinity purification methods followed by mass spectrometry,
such as tandem affinity purification (TAP) (Rigaut et al., 1999), can
also identify indirect interactions via other proteins in complexes.
Recently, the TAP systems was applied by Gavin et al. (2006) and
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Krogan et al. (2006) to identify protein complexes in the yeast
Saccharomyces cerevisiae on a genome scale.

In the TAP system, epitope-tagged proteins (baits) are expressed
and purified in consecutive affinity columns (Rigaut et al., 1999).
Proteins interacting directly or indirectly with the bait, so-called
preys, are then co-purified with the bait and identified by mass
spectrometry. Ideally, the purification of one bait would yield the
complete protein complex the bait is involved in. However, proteins
may be co-purified which bind unspecifically to the bait (false
positives), while proteins from the same protein complex may fail
to bind tightly enough and be missed in the screen (false negatives).
Due to these measurement errors and the large size of these datasets,
sophisticated methods are necessary to predict the actual complexes
from the purification results.

The first predictions methods were developed by the groups of
Gavin et al. and Krogan et al. themselves. Since the resulting
complexes showed only relatively little agreement, advanced
methods have been developed recently (Collins et al., 2007; Friedel
et al., 2008; Hart et al., 2007; Pu et al., 2007), which improved
predictive performance significantly. Here, most approaches use
a two-step approach by first calculating interaction scores and
then predicting the complexes from those scores. Thus, complexes
are predicted as sets of associated proteins and the substructure
of the complexes or the physical interactions within these is
not considered. As the predictions of the best approaches differ
significantly although the overall prediction quality is the same, a
more detailed analysis of the complex structure is necessary for the
individual complexes.

So far, few computational methods have been developed for
analyzing the substructure of protein complexes. Aloy et al.
(2004) used homology modeling and electron microscopy to
at least partially resolve interactions between subunits of 54
experimentally derived complexes. The method of Hollunder et al.
(2007) identifies subsets of proteins which occur more frequently in
different complexes than expected at random. Gavin et al. (2006)
distinguished between core elements and modules or attachments
in their protein complex predictions, but did not predict direct
interactions.

Scholtens et al. (2005) and Bernard et al. (2007) developed
approaches to model the physical topology of protein complexes
from affinity purification results as well as physical interactions
from Y2H experiments. However, Scholtens et al. used this only
as an intermediate step in predicting protein complexes and did
not evaluate the actual interactions they predicted. Bernard et al.
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Algorithm: MST extension

- Calculate MST scaffold S

- Sort remaining edges

- ∀e = ( , ) S in non-increasing order

• Find optimal path P in S from u to

•
⇒ Add e to S

If    (e) ≥ α w(P)

Fig. 1. (A) The algorithm for determining the union of all MSTs (Bandelt et al., 1999). Edge weights are processed in decreasing order. For each edge weight
δ (in the example δ=0.4), all edges with weight δ (dashed lines) which connect different connected components (gray ellipses) are added to the current MST
network (solid lines). (B) Illustration of how MSTs are extended (for α=1). The current scaffold is indicated by solid lines. To determine if the interaction
between A and D (dashed line) should be added to the network, we first find the optimal path with maximum probability between the two nodes. In this case,
this is A→B→C →D which has a weight of 0.9 ·0.7 ·0.8=0.504. Since the weight of edge (A,D) is < 0.504, the edge is discarded. If the weight of (A,D)
were > 0.504, it would be added to the scaffold network. (C) Algorithm for calculating the extended MST networks (eMSTα).

showed that accurate predictions can be obtained by applying their
approach to combined affinity purification and Y2H results, but
did not evaluate to what degree their results depend on the Y2H
interactions used additionally.

Here, we investigated whether the topology of protein complexes
can be predicted from the affinity purification results alone. The
topology of a protein complex describes both the direct physical
interactions within the complex (the complex scaffold) and its
hierarchical substructure, i.e. the subdivision of the complex into
smaller components. Since most methods for predicting protein
complexes from affinity purification results calculate interaction
scores as an intermediate step, we developed a method to extract
the complex scaffolds from these densely connected scoring
networks.

Our algorithm calculates the union of all maximum spanning trees
(MSTs) from the interaction scores for each complex. The MSTs
are then extended by interactions which are not accounted for by
indirect interactions via other proteins. We applied our method to
confidence scores and protein complexes calculated from the yeast
affinity purification experiments of Gavin et al. and Krogan et al.
with the Bootstrap method (Friedel et al., 2008). Our approach
predicts physical interactions with superior accuracy than baseline
approaches and the method by Bernard et al. (2007). Furthermore,
the distance in the resulting network between two proteins reflects
the similarity of their subcomponent annotations. Accordingly,
the substructure of the protein complexes can be resolved and
subcomplexes can be identified.

2 METHODS
In the following, let C ={C1,...,Cn} be a set of protein complexes with Ci

a set of proteins and G= (V ,E) a weighted network of interaction scores.
Here, V is the set of all proteins and E the set of all interactions between
them. We assume that all scores are confidence values in the range of 0 to 1.
The function w : E →[0,1] defines the weight, i.e. the confidence score, of
each edge. Interactions not contained in the network are given a weight of 0.
If the scoring method calculates general scores from −∞ (or 0) to ∞, edge
weights are scaled to [0,1].

We assume that each complex is connected in the network of actual
physical interactions. This means that each protein can be reached from every
other protein in the same complex by a path of physical (direct) interactions.

This network of direct interactions is denoted as the scaffold of the complex
and the scaffold is predicted separately for each complex.

2.1 Maximum spanning trees
For each complex, our algorithm takes as input the network of interaction
scores for all protein pairs in this complex. From this interaction network,
we predict interactions for the complex scaffold by calculating MSTs. A
spanning tree is a tree which connects all vertices in the network. The
MST is the spanning tree with the maximum sum of edge weights. As
several different MSTs can exist in a network, we determine the union
of all possible MSTs to predict the physical interactions in the complex
scaffold. To calculate the union of all MSTs, we used a modification of
the Kruskal algorithm (Cormen et al., 2000) described by Bandelt et al.
(1999) (Fig. 1A). The runtime of this algorithm is in O(|E|log|V |) as for
the original Kruskal algorithm and its correctness follows from the work of
Carroll (1995).

2.2 Extending the MSTs
Although the combination of all MSTs is no longer necessarily a tree,
the resulting networks are extremely sparse and many physical protein
interactions are missed. As a consequence, we extend this network by
interactions which cannot be explained by an indirect interaction via other
proteins in the MST scaffold. For this purpose, we compare an interaction
(u,v) in the original network to the best indirect interaction between u and
v in the current scaffold network. If the edge weight is at least as high as
a factor α times the weight of the best indirect interaction, the interaction
is added to the MST network. The resulting network is denoted as eMSTα

and the parameter α tunes the density of the resulting scaffold network. By
default, α is set to 1.

For calculating the best indirect interaction, we use the fact that all
edge weights are confidence values in [0,1]. As a consequence, the weight
of an edge is interpreted as the probability that this edge is a physical
interaction. Here, we assume independence between the edge probabilities.
The probability of an indirect interaction between two proteins u and v is
then defined as the maximum probability of any path between them in the
current scaffold [without the edge (u,v)] (Fig. 1B).

The probability of a path P is calculated as the product of the edge
probabilities on this path (w(P)). By taking the absolute values of the
logarithms of the edges weights, the path with maximum probability can be
efficiently calculated as the path with the smallest sum of transformed edge
weights. This optimal path between a pair of nodes can then be efficiently
calculated using Dijkstra’s algorithm for shortest paths (Cormen et al.,
2000). Thus, the worst-case runtime of the algorithm is O(|E|2 log|V |) using

2141



[17:47 15/7/2009 Bioinformatics-btp353.tex] Page: 2142 2140–2146

C.C.Friedel and R.Zimmer

binary heaps. Since the scaffold networks are relatively small and sparse,
this is sufficiently fast for practical purposes.

To identify interactions which cannot be explained by a sequence of
sufficiently strong interactions via other proteins, we process candidate
interactions in the order of non-increasing edge weights (Fig. 1C). For each
interaction e, we calculate the optimal alternative path P with maximum
probability w(P) between the corresponding proteins in the current scaffold.
The interaction e is added to the scaffold if w(e)≥αw(P) and the scaffold is
updated whenever a new interaction is identified (Fig. 1C). Since we never
remove any interaction and consequently any path from the scaffold, no
interaction is missed in this way. In the following, we show for α≤1 that no
interaction is added with a better alternative path in the final scaffold.

Lemma 1. ∀e= (u,v) in the final scaffold network S, we have that w(e)≥
αw(P) for all alternative paths P between u and v in S if α≤1.

Proof. By contradiction: assume, there exists a path P for an edge e such
that w(e)<αw(P). Since the weight of each edge is ≤1 and edge weights
are multiplied to get w(P), we have for each edge f ∈P that w(P)≤w(f ).
Thus, w(e)<αw(f )∀f ∈P and w(e)<w(f )∀f ∈P if α≤1. As a consequence,
all edges on this path have been processed before e and this path was already
contained in the scaffold S when e was added. For the best alternative
path Popt between u and v at this time, we have that w(Popt)≥w(P). As
a consequence, αw(Popt)≥αw(P)>w(e). This is a contradiction to the
construction of the scaffold network. �

2.3 Identification of subcomplexes
To characterize the substructure of the complexes and identify subcomplexes,
we apply a simple partitioning approach to the scaffold network determined
with the MST or extended MST approach. For this purpose, interactions
are processed in the order of non-increasing edge weights. If the current
interaction connects a singleton protein (= a protein not contained in any
subcomplex yet) either to a subcomplex or another singleton protein, the
protein is included in this subcomplex or combined with the singleton to
create a new subcomplex. As we never merge two subcomplexes which both
contain more than one protein, this results in a disjoint partitioning of the
network without having to define cutoff parameters.

3 RESULTS
The MST and extended MST approaches were applied to interaction
scores and complex predictions calculated from the combined results
of the genome-scale TAP experiments of Gavin et al. (2006) and
Krogan et al. (2006) in yeast. Here, we used confidence scores
and protein complexes (409 complexes, BT-409) predicted with the
unsupervised Bootstrap approach that we presented recently (Friedel
et al., 2008). The Bootstrap confidence scores have been shown to
be more accurate than any other scoring method and the Bootstrap
complexes have the same quality as the best supervised predictions.

All Bootstrap confidence scores are between 0 and 1 and the
original network contains 62 876 interactions. By restricting this
to interactions within the BT-409 complexes, we obtained 9918
interactions (15.8% of the original set). The MST approach extracted
1658 interactions and the extended MST approach (with α=1)
3085 interactions. As baseline classifier a simple algorithm was
used which calculates the connected network for each complex.
The connected network is defined as the network Gτ within each
complex where w(e)≥τ ∀e∈Eτ and τ is the largest value such that
Gτ is connected. This baseline approach predicted 5404 interactions.

3.1 Reference interactions
To compile a reference set of physical interactions, we extracted
all yeast protein–protein interactions from the BioGRID database
(Breitkreutz et al., 2008) (release 2.0.45, October 1, 2008)
determined with the Y2H method. Furthermore, Y2H interactions
from the recently published study by Yu et al. (2008) were included
as they were not yet contained in this BioGRID release. From
the complete set of Y2H interactions, we extracted a second
set of interactions from small-scale experiments in which ≤100
interactions were determined. We used only Y2H interactions for
the reference sets, since other experimental methods, such as
co-immunoprecipitation or pull-down assays, do not only detect
physical but also indirect interactions via other proteins.

Additionally, we inferred physical interactions from large-
scale Y2H studies for other species and known domain–domain
interactions extracted from 3D structures of protein complexes. Y2H
interactions were predicted for yeast from large-scale studies for
other species (Giot et al., 2003; Li et al., 2004; Rual et al., 2005;
Stelzl et al., 2005) using orthology assignments from the Inparanoid
database (Berglund et al., 2008). Interactions were predicted if
both interaction partners had orthologs in yeast. Domain–domain
interactions were taken from the iPfam (Finn et al., 2005) and 3DID
(Stein et al., 2005) databases and mapped to the yeast proteome.
Only interactions between different protein chains in the crystal
structure were considered.

Since the Y2H system is prone to measurement errors, we
also analyzed separately the core (806 interactions) and non-core
(3669 interactions) Y2H interactions determined in yeast by Ito
et al. (2001) to investigate the influence of measurement errors in
the benchmark set. Note that the non-core interactions were not
included in the complete Y2H reference set. Yu et al. (2008) recently
showed that the non-core Ito interactions have tremendously lower
confirmation rates than the core interactions and contain mostly false
positive interactions. This allowed us to compare the evaluation
results for two datasets with large differences in accuracy.

3.2 Evaluation of predictive accuracy
To evaluate the predictive accuracy of the presented methods, true
positive rate (TPR) and false positive rate (FPR) with regard to the
reference networks were calculated. TPR is defined as the fraction
of reference interactions within the BT-409 complexes recovered by
the prediction methods. FPR is the fraction of interactions within
the BT-409 complexes not contained in the reference network but
predicted to be in the scaffold. To compare prediction accuracy of
different methods, we calculated the TPR/FPR ratio for each method.
Analytical results (see Supplementary Material) showed that this
measure allows to determine a correct ranking of the performance
of the different prediction methods despite measurement errors in
the reference networks.

For all reference networks significant improvements in predictive
accuracy were obtained with the MST approach (Fig. 2A) compared
with the baseline approach. Generally, TPR/FPR ratios are almost
twice as high as for the connected networks. For instance, on the
complete Y2H network only 13.6% false positives are identified
by the MST approach at a TPR of 49.1% compared with 49.6%
false positives for the connected approach. Although the connected
approach recovers 87.6% of the true positives, the TPR/FPR ratio
of the MST approach cannot be reached even if only the most
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Fig. 2. (A) Ratio of TPR to FPR for the MST, extended MST (eMST, α=1) and connected (CON) approach on the complete Y2H network (Y2H all), the
small-scale Y2H interactions (Y2H sc), the predicted interactions from Y2H experiments for other species (Y2H pred), the domain–domain interactions from
the 3DID and iPfam databases (DD) and the core [Ito(C)] and non-core [Ito(NC)] interactions from the study by Ito et al. (2001). (B) TPR and FPR for
decreasing values of α and the connected networks on the complete Y2H network. (C) Comparison of prediction accuracy of the MST, eMST and connected
approach to the predictions by Bernard et al. (2007) (BVH) on the complete Y2H network. For this purpose, Y2H interactions from the studies of Uetz et al.
(2000) and Ito et al. (2001) were not included in the calculation of TPR and FPR as they were used for training by Bernard et al. (2007).

confident interactions in the connected network are considered
(see Supplementary Fig. 1). As the accuracy of the non-core Ito
interactions within complexes is comparable with the core network
(see Supplementary Material), it showed the same ranking of the
methods as the other networks.

The higher specificity of the MST approach results in a
significantly lower sensitivity which can be increased by extending
the MSTs. Although the FPR consequently increases as well, the
overall performance of the extended MSTs is still significantly better
than for the baseline predictions. Figure 2B illustrates TPR and FPR
on the complete Y2H network in yeast for decreasing values of α

used for extending the MSTs. The more conditions are relaxed for
extending the networks, the more interactions are added. Thus, more
true interactions are recovered, but also more wrong predictions
are made. Even so more true positives can be recovered with the
extended MST approach for α=0.95 at a lower FPR than for the
connected network.

We also compared our approach against the predictions by
Bernard et al. (2007) (Fig. 2C). The predictions of Scholtens et al.
(2005) were not evaluated as they are used only as an intermediate
step in complex prediction and cannot be obtained from the R
implementation of the algorithm. Since Bernard et al. used Y2H
interactions from the studies of Uetz et al. (2000) and Ito et al.
(2001) as training data, these interactions were excluded in the
calculation of TPR and FPR to obtain unbiased estimates. The
resulting TPR/FPR ratios show that although the Bernard et al.
approach is superior to the connected baseline classifier, it has a
lower accuracy than the extended MST and in particular the MST
approach. Since the focus of the Scholtens et al. method is on
modeling co-complex membership and not specifically physical
interactions, we expect that its prediction accuracy is also lower.

Apart from prediction accuracy, our method improves
significantly on runtime. Applying the extended MST approach to
the complete Bootstrap network took < 3 min on one processor of
an Intel Core2Duo with 2.4 GHz. Even if we include the runtime
of the Bootstrap algorithm (∼1.5 h), this is one order of magnitude
less than the 12.5–15 h reported by Bernard et al. (2007). Due to the
large memory requirements of the R implementation by Scholtens

et al. (>8 GB for both the Gavin et al. and Krogan et al. dataset),
runtime of their algorithm could not be evaluated.

3.3 Substructure resolution in the scaffold network
An analysis of the 195 complexes with more than two proteins
showed a negative correlation between the density of the complex
scaffolds predicted by the extended MST approach and the size of
the complexes (Spearman correlation coefficient: −0.34, P-value:
1.3×10−6). Eighty-three (42.6%) of these complexes are fully
connected, but they have an average size of only 3.8. Thus, for
small complexes a globular structure is predicted in most cases
where the majority of proteins interact physically. For the remaining
larger complexes (average size 9.5) sparser networks are predicted
(∼28.4% of interactions not contained in the MST networks) and,
as a consequence, more complex substructures.

Proteins in the same subcomplexes are more closely associated
in the network of physical interactions than proteins in different
parts of the complex. Thus, we investigated whether the distance of
two proteins in the scaffold network, i.e. the number of interactions
on the shortest (unweighted) path between them, accurately reflects
the similarity of the subcomplexes they are part of. Similarity of
the subcomplexes of two proteins was calculated as the fraction of
Gene Ontology (GO) (Ashburner et al., 2000) cellular component
annotations they have in common. For this purpose, only GO terms
corresponding to protein complexes were considered. This simple
overlap measure allows for a more fine-grained analysis of the
subcomponents within complexes than more sophisticated between
measures and which take into account the hierarchical structure of
the GO and yield similar results for a complex and its subcomplexes.

Our results showed that the similarity of subcomponents of two
proteins decreased with the distance between the corresponding
proteins (Fig. 3). It decreased less rapidly for the MST and extended
MST networks since these networks are more sparse. Thus, proteins
involved in different subcomponents of a complex are separated
from each other by many interactions in the predicted scaffolds,
whereas proteins involved in the same subcomponents are close
to each other. As the small distances in the baseline predictions

2143



[17:47 15/7/2009 Bioinformatics-btp353.tex] Page: 2144 2140–2146

C.C.Friedel and R.Zimmer

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distance in network

S
im

ila
ri

ty
 (

ce
ll.

 c
o

m
p

.)
COMP
CON
MST
eMST
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Here, only GO terms corresponding to protein complexes were considered.
Averages are taken over all protein pairs with the same distance.
Subcomponent similarity increases at a distance of 4 for the connected
network due to outliers among the few protein pairs with this distance.

make it difficult or even impossible in many cases to identify
a substructure in the networks, resolution of the subcomponent
structure is significantly improved by the MST and extended MST
approaches.

3.4 Evaluation of subcomplex identification
Our results showed that the scaffold network determined with the
extended MST network reflects the subcomponent structure of the
complexes. To determine the actual subcomplexes, we applied our
subcomplex identification algorithm described in Section 2.3 to this
network. For 50 of the 195 complexes containing more than two
subunits at least two subcomplexes were identified. The majority
of these complexes (44/50 = 88%) were not fully connected in
the extended MST network and their average size (13.7) was
significantly larger than for complexes which were not subdivided
(4.8). For 46 of these complexes with available GO annotations, we
compared subcomponent similarity within the complete complex
with the predicted subcomplexes using the same measure as before.
On average, the similarity within the subcomplexes identified was
increased by ∼20% compared with the complete complex. Thus,
the subcomponent structure of the complexes could be better
characterized by identifying subcomplexes in the scaffold network
with our method.

Subcomplex predictions were analyzed in more detail for the
21 complexes with at least 10 subunits, at least two predicted
subcomplexes and available protein complex annotations in the GO
(see http://www.bio.ifi.lmu.de/Complexes/Substructures/). For three
complexes, which consisted of partially overlapping complexes
clustered together due to a few shared proteins (DNA-directed RNA
polymerases; SWI/SNF and RSC chromatin remodelers; INO80,
SWR1 and NuA4 complexes), this allowed us to identify the
different complexes. Here, physical interactions were only predicted
between proteins in the same complex. Shared proteins were found
at the interface between the subcomplexes and were strongly
associated with more than one subcomplex. Another two complexes
also corresponded to overlapping complexes (SAGA and TFIID
complexes; Rpd3L and Rpd3S complexes), but the overlaps were too
large to separate the complexes. Nevertheless, meaningful subsets
of proteins were identified which are contained together in some

but not all of the overlapping complexes. For the SAGA complex,
for instance, we could distinguish two proteins which are contained
in the SAGA complex but not (SPT8) or only in a C-terminally
truncated form (SPT7) in the SAGA-like complex (Pray-Grant et al.,
2002).

For six complexes (spliceosome; the vacuolar ATPase; the
90S preribosome in two overlapping forms; a splicing factor
complex; and the kinetochore), known subcomplexes were correctly
identified to a large extend. For another five complexes (Proteasome,
regulatory particle; mitochondrial large ribosomal subunit; small
subunit of the ribosome; RNase MRP; and vesicle transport
complexes), subsets of proteins were identified for which it was not
quite clear how they corresponded to the subcomponent structure of
the complex as it was not sufficiently described in the literature.

For the 16 complexes described above, similarity of the
subcomponents as described in the GO was increased in the
subcomplexes compared with the complete complex (15 complexes)
or stayed the same (1 complex). For the remaining five of the 21
analyzed complexes, similarity of subcomponents was slightly lower
(by ∼2.4%) in the subcomplexes we identified than in the complete
complex as no detailed subcomplex structure has been described
in the GO. However, we could recover several subcomplexes
that have previously been described in the literature such as the
RIX1 and YTM1-ERB1-NOP7 subcomplexes of the preribosome
(Krogan et al., 2004) (see http://www.bio.ifi.lmu.de/Complexes/
Substructures/ for detailed results). In the following, we illustrate
with the example of the DNA-directed RNA polymerase complexes
how a detailed analysis of the complex scaffold and the predicted
subcomplexes can lead to a better understanding of the complex
structure.

3.5 Analysis of the DNA-directed RNA polymerase
The DNA-directed RNA polymerase complex is one of the largest
predicted complexes in the BT-409 set and contains 46 proteins. It
effectively consists of three separate RNA polymerase complexes
(RNA polymerase I, II and III), which have been clustered into
one complex since they have many proteins in common. Such
complexes which overlap to a large degree are a general problem
for complex prediction algorithms and other complex prediction
approaches also cluster the three polymerases together. The crystal
structure of polymerase II is known, whereas only little structural
information is available for polymerases I and III (Cramer et al.,
2008).

In the extended MST network (Fig. 4), the subdivision of
the complex into polymerase complexes I, II and III is clearly
visible which is not the case for the complete or connected
networks. Due to the clear separation of the three complexes in
the extended MST network, they could be successfully determined
using our subcomplex identification approach. Physical interactions
were only predicted between proteins contained in the same
polymerase and no interactions are observed between different
polymerases. The polymerase III complex is connected by two
shared proteins (RPC19, RPC40) to the polymerase I complex.
The latter one is connected to the polymerase II complex via a
group of five proteins (RPB5, RPO26, RPB8, RPB10 and RPC10)
contained in all three RNA polymerase complexes. Since our
complex identification algorithm predicts a disjoint partitioning of
the complex, each of the shared proteins was assigned to only one
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Fig. 4. Predicted subnetworks for the DNA-directed RNA complex with the extended MST approach. Colors indicate the three subcomponents: Polymerase
complexes I (gray), II (black) and III (light gray). Rectangles denote the actual polymerase proteins, diamonds transcription regulators and circles the DSIF
transcription elongation factor complex. Proteins not previously reported to be involved in transcription are indicated by triangles. Interactions between
predicted subcomplexes are dashed.

of the subcomplexes. Nevertheless, as these shared proteins connect
the different subcomplexes and are strongly associated to several
subcomplexes, they can be identified in a straightforward way.

In the MST and extended MST network, the five proteins
contained in all three polymerases are not directly connected to
the other polymerase III proteins although they are subunits of
this complex. If we relax the criterion for extending the MSTs (α
= 0.99), the interaction between RPB10 and RPC40, which was
reported previously (Flores et al., 1999), is added to the scaffold
(see http://www.bio.ifi.lmu.de/Complexes/Substructures/). At first
glance, this suggests that the interactions of the common proteins to
polymerase III are mediated via this interaction. However, if we look
at the crystal structure of polymerase II and the model for polymerase
III (Cramer et al., 2008), we find that none of the common proteins
are actually in physical contact in the complexes (possibly with the
exception of RPB10 and RPC10).

Going back to the original purification experiments, we find that
of the seven interactions predicted between the common proteins,
six interactions are bait–prey interactions which have been found to
be very reliable (Bader et al., 2004) and three of those are identified
in both directions (bait–bait interactions). This indicates that the
association between these proteins is very strong. Since they do not
appear to physically interact, this is probably a consequence of the
fact that they are contained together in three different complexes.
This close association of the five proteins can be identified reliably
from the extended MST network.

4 DISCUSSION
We presented an approach for predicting the topology of protein
complexes, i.e. the scaffold of direct interactions which spans the
complex. First, our method calculates the union of all MSTs in the
interaction score network for a protein complex. In a subsequent
step, this network is iteratively extended by interactions which
cannot be explained by a path of alternative indirect interactions.
The MST approach is applicable to all weighted interaction networks
and in particular to interaction scores calculated from affinity

purification assays with any of the recently published scoring
methods. Confidence scores which are required for extending the
MSTs in our algorithm, can be obtained by scaling any type of
scores to [0,1] or using our Bootstrap approach implemented in
the ProCope software package (Krumsiek et al., 2008, available at
http://www.bio.ifi.lmu.de/Complexes/ProCope/) to calculate scores
from affinity purification experiments.

Predictive performance of subnetworks calculated from Bootstrap
confidence scores was evaluated on experimentally determined
physical interactions from Y2H experiments and domain–domain
interactions from 3D structures. We could show that, despite
measurement errors, these networks can provide an accurate ranking
of the performance of different prediction algorithms. Furthermore,
the accuracy of reference interactions within complexes is
significantly higher than the overall accuracy of the Y2H system.
The evaluation of our method on these reference networks
showed a significantly higher predictive accuracy than for the
baseline classifier and the method by Bernard et al. (2007). Thus,
physical interactions can be identified with high accuracy from the
purification results alone. Since < 50% of the complexes in the
predicted complex set contain at least one Y2H interaction, and
only 7% of the complexes are actually non-trivially connected (i.e.
they are connected and contain more than two proteins) in the Y2H
network, many of the direct interactions within complexes have not
been identified yet. Here, the interactions predicted by our approach
but not found in the Y2H network are promising starting points for
experimental validation.

Protein complexes are not simply disordered clumps of proteins
but they have an internal substructure and a well-defined spatial
arrangement in which not all proteins interact physically. Our results
show that the similarity of subcomponent annotations of two proteins
is negatively correlated to their distance in the MST and extended
MST network. As a consequence, these networks reflect the modular
substructure of the corresponding complexes. Although the same
negative correlation was also observed for the baseline prediction
approaches, distances in these networks are very short and, thus, do
not allow for a reasonable resolution of the complex structure.
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The extended MST approach predicts a globular structure for
the majority of small complexes, while sparser networks with
more intricate structures are predicted for larger complexes. The
corresponding subcomplexes can then be identified in the extended
MST network using a straightforward partitioning approach.
A detailed analysis of the 21 largest complexes showed that in this
way known subcomplexes can be recovered and complexes can
be determined which have been clustered together due to several
shared proteins. These shared proteins can be easily identified as
they connect the different subcomplexes and associate strongly with
them. A further analysis of the subcomplexes we predicted, but
which have not been described in the literature yet may lead to
new insights into the structure and function of these complexes.

We illustrated this approach on the complex of DNA-directed
RNA polymerases. While the substructure of the complex with
three different RNA polymerases can only be partly observed
in the baseline predictions, it is clearly evident in the network
predicted with our approach and the subcomplexes can be easily
identified. By relaxing the conditions for extending the MSTs
slightly, the substructure of the complex can be further emphasized
and important interactions can be identified. A further comparison
of the predictions and the original purification experiments to the
3D structure revealed limitations of the TAP system in distinguishing
between indirect interactions and the actual physical ones.

The approach we developed can be easily extended to include
additional information in the form of known physical interactions
or information from crystal structures on which proteins are too
far apart to be physically interacting. In this way, interactions may
be either enforced or forbidden when extending the MSTs and
alternative indirect paths can either be created or removed.

5 CONCLUSIONS
In this article, we presented an approach for post-processing protein
complex predictions to allow for a more detailed analysis and
comparison of complexes predicted from affinity purification results.
Based on MSTs, we infer physical interactions to identify and
visualize the substructure of protein complexes in an intuitive
way. We showed that physical interactions are enriched within
the predicted networks and that the scaffold network reflects the
subcomponent structure. Furthermore, individual subcomplexes can
be identified from the scaffold network with a straightforward
partitioning approach. This shows that the complex topology can
be inferred from purification results alone despite the experimental
limitations of purification assays in distinguishing the actual physical
interactions. Accordingly, the algorithm presented here supports the
in-depth analysis of the predicted protein complexes beyond the
individual complex subunits.
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