
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14617  | https://doi.org/10.1038/s41598-021-93089-9

www.nature.com/scientificreports

Associations 
between the spatiotemporal 
distribution of Kawasaki 
disease and environmental 
factors: evidence supporting 
a multifactorial etiologic model
Tisiana Low1, Brian W. McCrindle1,5, Brigitte Mueller1, Chun‑Po S. Fan1, Emily Somerset1, 
Sunita O’Shea1, Leonard J. S. Tsuji2, Hong Chen3 & Cedric Manlhiot1,4,5*

The etiology of Kawasaki Disease (KD), the most common cause of acquired heart disease in 
children in developed countries, remains elusive, but could be multifactorial in nature as suggested 
by the numerous environmental and infectious exposures that have previously been linked to its 
epidemiology. There is still a lack of a comprehensive model describing these complex associations. 
We present a Bayesian disease model that provides insight in the spatiotemporal distribution of 
KD in Canada from 2004 to 2017. The disease model including environmental factors had improved 
Watanabe‑Akaike information criterion (WAIC) compared to the base model which included only 
spatiotemporal and demographic effects and had excellent performance in recapitulating the 
spatiotemporal distribution of KD in Canada (98% and 86% spatial and temporal correlations, 
respectively). The model suggests an association between the distribution of KD and population 
composition, weather‑related factors, aeroallergen exposure, pollution, atmospheric concentration 
of spores and algae, and the incidence of healthcare encounters for bacterial pneumonia or viral 
intestinal infections. This model could be the basis of a hypothetical data‑driven framework for the 
spatiotemporal distribution of KD. It also generates novel hypotheses about the etiology of KD, and 
provides a basis for the future development of a predictive and surveillance model.

Kawasaki disease (KD) is an acute vasculitis of childhood which can be complicated by the development of 
coronary artery aneurysms (CAA)1. It is the most common cause of acquired heart disease in children in devel-
oped  countries1, leading to important lifelong morbidity and  mortality2. KD has been reported worldwide, with 
a marked geographic variation in incidence, and is characterized by a male  predominance3,4. Despite extensive 
previous research, the etiology of the disease remains unknown. A genetic component is suggested from global 
epidemiological data, the distribution of the disease amongst ethnic groups, the clustering of cases within families 
and the increased risk of  recurrence5–10. In addition, whole genome association studies have identified multiple 
genetic polymorphisms in inflammatory pathways which may increase the risk of  KD11,12. Previous epidemio-
logical studies have described associations between KD and various infectious diseases, pollen, pollution, early 
childhood environment and seasonality, albeit largely without considering the potential interaction between 
those  factors13–16. Spatiotemporal clusters have been described in the distribution of KD and have been associated 
with local environmental factors and outbreaks of infectious  diseases15,17–19. The prevailing consensus regarding 
the etiology of KD is that it occurs in individuals with a genetic and potential early childhood susceptibility, 
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which predisposes to the development of a hyper-reactive immune response when exposed to an unidentified 
environmental or infectious trigger(s)20. In a recent studies, it was demonstrated that lower habitual exposure 
to environmental allergens and a preceding non-specific infectious exposure were associated with an increased 
risk of developing  KD21. We herein present an integrative model that describes the variation in incidence of KD 
over time and space in Canada and its association with incidence of infections and allergic conditions, weather 
components, pollution, atmospheric biological particles and population composition.

Methods
KD data and identification of KD cases across Canada. Hospital admissions for Kawasaki disease 
were identified based on a primary or secondary discharge diagnosis of mucocutaneous lymph node syndrome 
(ICD-10-CA standard code M30.3). De-identified data from all hospital admissions (ages 0–18) from April 1, 
2004 to March 31, 2017 were obtained from the Discharge Abstract Database (DAD) maintained by the Cana-
dian Institute for Health Information (CIHI). Submission of administrative data to CIHI is legally mandated for 
all hospitals in Canada except for those in Quebec. In Canada, the entire population is covered by a single-payer 
universal health plan. A universal provincial health number was provided in an encrypted format for each case, 
which allowed us to exclude multiple admissions for a given patient. A previously validated algorithm was used 
to exclude all readmissions and transfers between  hospitals22. For each KD case reported in DAD, the date of 
hospital admission and the forward sortation area (FSA)23 for the patient residence were provided. These data 
were previously used to determine and report the epidemiology of KD in  Canada22.

Population at risk, ethnicity, age distribution, population density and rural effect. Informa-
tion on population, ethnicity, medium household income and age distribution was obtained from the Cana-
dian Census  200624–26,  201127 and  201628, and the National Household  Survey29. Values from the 2006 census 
were used for 2004–2008, from the 2011 census/household survey for 2009–2014, and from the 2016 census for 
2015–2017. FSAs without a Census population count were not considered in the analysis. Population density was 
calculated based on the land area file that contains the FSAs codes and sizes in square-km, derived from the FSA 
cartographic boundary file available through the University of Toronto  Libraries30.

Ethnicity data in the Canadian Census is self-reported, based on the individual’s perception of their ethnic 
ancestry and respondents are allowed to select multiple  ethnicity31. Given the strong predilection of KD for chil-
dren of East Asian ethnicity, we considered the percentage of the population who self-reported Chinese, Japanese, 
Koreans and Taiwanese as one of their ethnicity. Finally, the percentages of the population in each FSA who live in 
postal codes classified as “rural” was calculated, with rural being defined as FSAs with a zero in the second digit.

Healthcare encounters associated with infectious diseases and allergies. Population-level inci-
dences of health care encounters associated with specific infections or allergy-related illnesses were obtained 
from both DAD and the voluntary National Ambulatory Care Reporting System Metadata (NACRS), which is 
also maintained by CIHI. Participation in NACRS is determined at the provincial level and achieves complete 
capture of ambulatory care in participating provinces. As it was not mandatory for all provinces to submit data 
to NACRS, models containing healthcare encounters for infections or atopic diseases as covariates were adjusted 
for the percentage of mandatory submission of infection and atopy data for each respective region. Data were 
obtained for all healthcare encounters across Canada which were associated with an ICD-10 diagnostic code for 
selected infections and allergy-related illnesses (see Table 1) in hospital admissions, and outpatient and commu-
nity-based clinic encounters. These data were used to calculate monthly counts for codes and groups of codes. 
Infectious diseases and organisms included in this analysis were selected based on their prevalence in Canadian 
children. Infectious diseases were grouped in 2 separate ways: first, according to the type of etiologic agent 
(viral, bacterial, fungal infections or infections of unknown origins) and the affected physiological system (upper 
respiratory tract, lower respiratory tract, gastrointestinal tract and skin) and second, by the specific pathogen 
involved in the healthcare encounter. This dual system allowed us to consider both the contribution of specific 
pathogens but also of ailments for which clinical care rarely needs the identification of the specific pathogen and 
as such the majority of such encounters remain of indeterminate cause (e.g. viral intestinal infections).

Weather and pollution data. Monthly weather data were obtained from the European Centre for 
Medium-Range Weather Forecasts (ECMWF) reanalysis ERA-Interim product. ERA-Interim uses an integrated 
forecasting system model and the 4D-variational data assimilation  system32. We included variables that are 
known or suspected to directly impact human health, or influence disease vectors and/or the growth and trans-
port of aeroallergens (see full list in Table 1). Air pollution data were obtained from the ECMWF Copernicus 
Atmospheric Monitoring Service (CAMS) Reanalysis  [2018]33. The CAMS Reanalysis provides information on 
aerosol and reactive gases as total column values and are based on assimilation of satellite observations into a 
forecasting model. We included particulate matter smaller than 2.5 µm (PM2.5), nitrogen dioxide, ozone, sulfur 
dioxide and carbon monoxide from the CAMS reanalysis. Given their similar association with the incidence 
of KD, nitrogen dioxide and sulfur dioxide levels were combined into a single variable by summing up the two 
variables. The reanalysis data were obtained on a 1.25-degree longitude and 1.25-degree latitude grid, and values 
for grid cells with a center inside an FSA were aggregated to obtain data per FSA.

Atmospheric biological particles. Daily measures of major biological atmospheric particles are collected 
by Aerobiology Research Laboratories (Ottawa, Canada) via rotational impaction sampling methods. These data 
are representative of the amount of environmental allergens in the atmosphere. Data were obtained for the 10 
cities representing the largest populations in Canada (Vancouver, Edmonton, Calgary, Regina, Winnipeg, Lon-
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Model/predictor (definition) WAIC

Univariable SIR percentile Multivariable SIR percentile

2.5th 25th 50th 75th 97.5th 2.5th 25th 50th 75th 97.5th

Base model 23,134.0

Linear time 23,210.8

Linear time + random walk 23,166.9

Linear time + random walk + seasonality 23,134.0

Adjusted base model 23,128.0

Percentage population 0–4 years old per region 23,133.1 1.008 1.046 1.068 1.089 1.131 1.007 1.042 1.061 1.080 1.117

Percentage population self-identifying as East Asian per region 23,127.0 1.119 1.161 1.184 1.207 1.252 1.089 1.131 1.153 1.176 1.221

Main regression model 23,059.7

Exposures at the FSA level

 Median household income in  FSA† 23,125.5 0.882 0.912 0.929 0.946 0.978 0.900 0.931 0.947 0.964 0.997

 Proportion of rural postal codes in FSA 23,127.5 0.864 0.894 0.910 0.926 0.957 0.898 0.930 0.947 0.964 0.998

 Population density in FSA 23,128.3 1.001 1.049 1.075 1.102 1.154

Weather

 Evaporation (m)† 23,124.7 1.021 1.068 1.093 1.119 1.170

 Soil temperature at 0–7 cm depth (layer 1, K)† 23,125.2 0.812 0.861 0.888 0.916 0.972

 Planetary boundary layer height, lowest part of the atmosphere 
(m)† 23,125.6 1.000 1.024 1.037 1.050 1.075

Instantaneous eastward turbulent surface stress (N  m-2)† 23,126.8 0.994 1.016 1.027 1.039 1.062

Surface pressure (Pa) 23,127.3 0.977 1.035 1.067 1.100 1.164

10 m U (zonal, eastward) wind component at 10 m (m  s−1) 23,127.9 0.982 1.014 1.032 1.050 1.085

2 m temperature (K) 23,128.1 0.846 0.897 0.925 0.954 1.011

Total cloud cover (0–1) 23,128.1 0.929 0.958 0.973 0.989 1.018

Total precipitation (m) 23,128.3 0.950 0.971 0.982 0.994 1.015

10 m V (meridional, northward) wind component at 10 m (m 
 s−1) 23,128.4 0.989 1.009 1.019 1.030 1.051

Low vegetation cover (0–1) 23,128.7 0.893 0.950 0.981 1.013 1.077

High vegetation cover (0–1) 23,129.0 0.936 0.978 1.001 1.024 1.071

Photosynthetically active radiation (J  m−2) 23,129.0 0.811 0.896 0.944 0.995 1.098

Instantaneous northward turbulent surface stress (N  m−2) 23,129.0 0.980 1.002 1.014 1.027 1.050

Volumetric soil water layer at 0–7 cm depth (layer 1,  m3  m−3) 23,129.2 0.953 0.981 0.997 1.012 1.043

UV-radiation (J m) 23,129.2 0.828 0.908 0.953 1.001 1.097

10 m wind speed at 10 m (m  s−1) 23,129.6 0.963 0.993 1.010 1.027 1.059

Pollution (total column)

Sulphur dioxide and nitrogen oxide  (SO2 +  NO2) (kg  m−2)† 23,124.2 1.014 1.055 1.077 1.099 1.143 1.055 1.102 1.127 1.153 1.204

Ozone (kg  m−2) 23,128.9 0.969 1.011 1.034 1.057 1.103

Carbon monoxide (CO) (kg  m−2) 23,129.5 0.949 0.993 1.017 1.041 1.088

Fine particulate matter < 2.5 ug (kg  m−2) 23,131.1 0.958 0.984 0.997 1.010 1.034

Spores

Algae†,‡ 23,121.3 1.017 1.040 1.052 1.063 1.085 1.018 1.042 1.054 1.066 1.088

Deuteromycetes (fungi imperfecti)† 23,125.7 0.994 1.030 1.049 1.068 1.105 1.019 1.058 1.078 1.099 1.139

Myxomycetes† 23,126.5 0.993 1.018 1.030 1.043 1.065 0.989 1.014 1.027 1.040 1.063

Dothideomycetes† 23,126.8 0.905 0.937 0.954 0.971 1.004 0.892 0.925 0.943 0.961 0.996

Ascomycetes (other than dothideomycetes) 23,128.1 0.998 1.021 1.032 1.044 1.065

Basidiomycetes 23,130.0 0.939 0.975 0.995 1.015 1.053

Zygomycetes 23,130.0 0.968 0.993 1.004 1.015 1.032

Pollens

Malvids (Acer, Tilia, Aesculus, Cruciferae)† 23,126.8 0.933 0.956 0.968 0.980 1.003

Lamiidis (Fraxinus, Oleaceae, Plantago)† 23,126.8 0.934 0.957 0.968 0.980 1.002

Rosales (Ulmus, Morus, Prunus, Urticaceae, Crataegus) 23,128.1 0.944 0.966 0.977 0.989 1.010

Grasses (Cyperaceae, Gramineae) 23,128.6 0.978 1.010 1.026 1.042 1.071

Poales (Typhacaea) 23,128.9 0.932 0.960 0.975 0.989 1.015

Proteales (Platanus) 23,128.9 0.944 0.971 0.984 0.996 1.016

Malpighiales (Salix, Populus) 23,129.0 0.981 1.004 1.016 1.028 1.050

Caryophyllales (Chenopodiaceae, Rumex, Salsola pestifer) 23,129.1 0.974 1.003 1.018 1.032 1.059

Conifers (Cupressaceae, Larix, Pinaceae, Tsuga) 23,129.4 0.982 1.002 1.012 1.022 1.041

Fagales (Betula, Alnus, Corylus, Quercus, Fagus, Castanea) 23,129.5 0.978 0.998 1.009 1.020 1.040

Continued
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Model/predictor (definition) WAIC

Univariable SIR percentile Multivariable SIR percentile

2.5th 25th 50th 75th 97.5th 2.5th 25th 50th 75th 97.5th

Juglandaceae (Juglans, Carya) 23,130.0 0.962 0.985 0.996 1.007 1.028

Campanulids (Sambucus, Ambrosia, Solidago, Artemisia) 23,130.1 0.955 0.986 1.003 1.020 1.028

Incidence of healthcare encounters for atopy (ICD codes)

Atopic dermatitis (L20)† 23,121.1 1.006 1.026 1.036 1.047 1.067 1.007 1.028 1.040 1.040 1.072

Asthma (J45) 23,127.7 0.951 0.982 0.998 1.015 1.047

Rhinitis (J30) 23,128.5 0.934 0.959 0.972 0.986 1.011

Urticaria (L50) 23,132.1 0.971 0.994 1.007 1.019 1.043

Incidence of healthcare encounters by infectious categories (ICD codes)

Viral intestinal infections (A08)† 23,120.0 1.017 1.041 1.054 1.066 1.091 1.028 1.054 1.068 1.082 1.108

Bacterial skin infections (A69.2, K05.0, L00–L03, L08)† 23,126.7 0.883 0.914 0.930 0.947 0.979 0.870 0.906 0.925 0.945 0.983

Viral LRTI (J09, J10, J11, J12, J17.1, J20.3/.4/.5/.6/.7/.8^, 
J21.0/.1/.8^) 23,127.5 0.955 0.976 0.987 0.997 1.017

Viral URTI (B27, J00, J02.8^, J03.8^,  J04^, J05.0^) 23,127.6 0.953 0.976 0.988 1.000 1.024

Intestinal infections no organism identified (A06, A07, A09) 23,127.8 0.933 0.960 0.975 0.990 1.019

Bacterial LRTI (A15, A16, J13, J14, J15, J16.0, J17.0, 
J20.0/.1/.2/.8^, J21.8^) 23,127.9 0.961 0.981 0.992 1.003 1.022

Bacterial intestinal infections (A01–A05) 23,128.4 0.951 0.975 0.987 1.000 1.025

Bacterial URTI (J02.0/.8^, J03.0/.8^,  J04^,  J05^, J36.0^) 23,129.4 0.888 0.918 0.933 0.949 0.980

URTI no organism identified (J01, J02.8/.9, J03.8/.9, J04, J05.0, 
J06, J36, J39) 23,129.7 0.929 0.958 0.974 0.990 1.020

Fungal infections (B37, J17.2) 23,129.9 0.900 0.930 0.946 0.962 0.993

Viral skin infections (B00–B02, B05–B09) 23,129.9 0.909 0.940 0.957 0.974 1.007

LRTI no organism identified (J16.8, J17.3/.8, J18, J20.8/.9, 
J21.8/.9, J22) 23,130.1 0.921 0.950 0.966 0.982 1.013

Incidence of healthcare encounters for specific pathogens (N of admissions)

Mycoplasma (8296)† 23,117.2 1.021 1.038 1.047 1.056 1.073 1.024 1.041 1.050 1.059 1.076

Candida (283,837)† 23,123.6 0.869 0.900 0.917 0.934 0.966 0.848 0.884 0.903 0.923 0.962

Campylobacter (8368)† 23,123.6 0.996 1.015 1.025 1.036 1.055 1.005 1.025 1.036 1.047 1.067

Coronavirus (1658)† 23,124.2 1.000 1.014 1.020 1.027 1.040 0.998 1.011 1.018 1.025 1.038

Measles (2262)† 23,124.4 0.998 1.012 1.019 1.027 1.040 1.000 1.015 1.022 1.029 1.042

Klebsiella (120,905)† 23,124.8 0.983 1.011 1.027 1.042 1.073 1.003 1.036 1.053 1.071 1.105

Haemophilus influenzae (19,927)† 23,125.9 0.988 1.007 1.017 1.027 1.047

Salmonella (16,585)† 23,126.0 0.991 1.009 1.019 1.029 1.048 0.990 1.009 1.019 1.029 1.048

Clostridium (214,593)† 23,126.1 0.920 0.947 0.962 0.976 1.005

Herpes simplex (103,857)† 23,126.2 0.918 0.945 0.959 0.974 1.002

Borrelia (6955)† 23,126.3 0.936 0.960 0.972 0.984 1.006

Adenovirus (10,012)† 23,126.3 0.988 1.005 1.015 1.024 1.041

Metapneumovirus (2655)† 23,126.6 0.957 0.975 0.983 0.992 1.008 0.952 0.970 0.979 0.987 1.004

Cytomegalovirus (8749)† 23,126.8 0.989 1.006 1.015 1.024 1.041

Pseudomonas (103,288)† 23,127.0 0.930 0.957 0.971 0.986 1.014

Mycobacterium (23,866) 23,127.0 0.959 0.979 0.990 1.001 1.021

Molluscum contagiosum (10,336) 23,127.0 0.942 0.963 0.974 0.985 1.006

Meningococcus (1839) 23,127.0 0.961 0.977 0.986 0.995 1.011

Varicella (53,077) 23,127.0 0.972 0.995 1.007 1.019 1.042

Papillomavirus (77,856) 23,127.3 0.922 0.951 0.966 0.981 1.008

Mumps (10,498) 23,127.3 0.981 1.000 1.009 1.019 1.037

Bordetella (13,630) 23,127.5 0.953 0.973 0.983 0.993 1.012

Influenza (410,237) 23,127.6 0.957 0.976 0.986 0.996 1.014

Epstein Barr Virus (6007) 23,127.7 0.974 0.990 0.999 1.007 1.024

Herpes virus (5167) 23,127.7 0.977 0.994 1.003 1.012 1.029

Parainfluenza (2490) 23,127.8 0.967 0.983 0.992 1.000 1.016

Zoster (248,482) 23,127.8 0.891 0.921 0.937 0.953 0.985

Hepatitis (2826) 23,127.8 0.981 0.997 1.005 1.013 1.028

Shigella (1274) 23,127.8 0.984 0.998 1.006 1.014 1.028

Norovirus (7507) 23,127.8 0.974 0.992 1.001 1.009 1.026

Respiratory Syncytial Virus (86,764) 23,128.0 0.970 0.989 0.999 1.009 1.028

Continued
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don, Toronto, Ottawa, Moncton and St. Johns). Previous studies have shown that biological atmospheric particle 
concentration can be regionalized up to ranges of ~ 100 km from the sampling site (~ 30,000  km2) for  analysis34. 
As such, for each FSA, atmospheric biological particle data were assigned from the closest city (i.e. the closest 
particle collection point). These data are only available during the growing season of the year. Pollen counts 
before and after the growing season were set to zero.

Data preparation for modelling. Due to the different scales and units of the covariates, all covariates 
were centered to mean zero and scaled to variance one before the analysis, except for wind direction which was 
not centered to conserve the wind direction.

Aggregation of spatial units. All data except for weather and pollution data was originally available on 
an FSA level. FSA boundaries were obtained from the 2011 Canadian  Census35. FSAs designate a geographical 
area based on the first 3 digits of the postal code (equivalent to the US zip code) that corresponds to an average 
of ~ 20,000 individuals. In order to maintain sufficient case density for analysis, Northern regions, where popula-
tion density was extremely low, were excluded. The remaining FSAs were combined using a data driven strategy.

To begin with, the FSA with the smallest population (R1B with 10 inhabitants) was selected. FSAs that share at 
least one common boundary with this initial FSA were identified (R1A and R3C). The neighbouring FSA with the 
smallest population (R3C with 1620 population) was then combined to the initial FSA, i.e. the spatial polygons 
of R1B and R3C were aggregated by dissolving their internal boundaries. We obtain a new map, for which we 
have one new area (R1B ∩ R3C) with a population of 1630. From this new map, we again selected the FSA with 
the smallest population (V4G). This FSA had 5 neighbours from which the one with the smallest population 
was selected for spatial aggregation. This procedure was repeated until FSAs were combined into 100 groups. 
The supplementary map (online auxiliary material) shows the combined regions as well as lists of all FSAs that 
were aggregated for each region. Spatial aggregation was performed in order to preserve the granularity of the 
data and achieve sufficient case density for modelling.

Bayesian disease model. A hierarchical Bayesian model framework is used to address the issues posed 
by the sparseness of the data and the spatial dependencies between the  data36,37. The standardized incidence 
rate for KD in each area and month was modelled with the Besag-York-Mollie (BYM)  model38, which includes 
spatial random effects that account for the spatial autocorrelation of the data. Temporal effects have been added 
to the model sequentially. We added a linear trend, dynamic non-linear  trend39, specified through a random 
walk model of order 1, and a seasonal term. More details on the model parameterization can be found in the 
supplement.

To approximate posterior marginals, we used an integrated nested Laplace approximation (INLA) approach, 
which is a deterministic algorithm for Bayesian inference proposed by Rue et al.40 The computation was 

Model/predictor (definition) WAIC

Univariable SIR percentile Multivariable SIR percentile

2.5th 25th 50th 75th 97.5th 2.5th 25th 50th 75th 97.5th

Bacillus (3224) 23,128.0 0.969 0.987 0.997 1.006 1.024

Proteus (42,125) 23,128.0 0.958 0.981 0.993 1.005 1.028

Staphylococcus (348,123) 23,128.0 0.941 0.973 0.991 1.008 1.043

Rotavirus (11,846) 23,128.1 0.978 0.997 1.006 1.016 1.033

Enterovirus (73,642) 23,128.2 0.955 0.977 0.989 1.001 1.024

Escherichia coli (588,333) 23,128.4 0.915 0.947 0.965 0.983 1.017

Streptococcus (348,123) 23,128.4 0.888 0.919 0.936 0.953 0.985

Parvovirus (14,450) 23,128.6 0.952 0.973 0.984 0.995 1.016

Table 1.  Comparison of hierarchical models with different temporal structures, adjustment factors and 
covariates. In the Bayesian model framework, a decrease in the Watanabe-Akaike information criterion 
(WAIC) is an indication of improved predictive accuracy. The simplest model in the table is the linear time 
model which consists of the spatially structured and unstructured term (Besag-York-Mollie model) and a 
linear time trend. A random walk of order 1 (temporally structured effect) and a seasonal cycle with length 
12 months are sequentially added. The latter model shows the lowest WAIC and is therefore used as the base 
model. The WAICs for the adjustment factors (percentage of population age 0–4 and East Asians) were only 
listed for completeness, but not used as a selection criterion. In all models listed under ‘Main regression model’, 
candidate variables were added to the adjusted base model one-by-one and listed by ascending WAIC within 
the variable category. Variables which, when added to the adjusted base model, resulted in a model with a 
lower WAIC (> 1 change), were included in a preliminary multivariable model. These variables were further 
subject to selection through backward elimination based on them increasing the multivariable WAIC. The 
percentile landmarks of the posterior coefficients of the fixed effects for all univariable models (‘Screening’) 
and that were included in the multivariable model are presented with standardized incidence rate associated 
with a 1 standard deviation change in the predictor. The original units for each variable are indicated for 
general information. FSA forward sortation area, ICD international classification of disease, SIR standardized 
incidence rate, WAIC Watanabe-Akaike Information Criterion. †  Improved (i.e. lowered) WAIC by >1 over the 
adjusted based model. ^ ICD code associated with a known organism indicate by ICD codes B95–B98.
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performed with the R-INLA  interface41. To select the best temporal structure of the model and to select vari-
ables, we compared the Watanabe-Akaike information criterion (WAIC) of different models (see Table 1). The 
calculation of WAIC followed Gelman et al.42.

All statistical analyses and maps creation for this project were performed using R version 4.0.2 (https:// 
www.R- proje ct. org). Base map and data obtained from OpenStreetMap and OpenStreetMap Foundation (www. 
opens treet map. org).

Results
KD incidence and spatial and temporal variation. From April 2004-March 2017, a total of 5,882 
acute hospital admissions for KD were identified in the discharge abstract database maintained by the Cana-
dian Institute of Health Information (CIHI) based on the ICD-10-CA standard code M30.3, of which 266 were 
excluded according to our previously designed algorithm to identify readmissions and between-hospital trans-
fers (Fig.  1)22. The final number of acute admissions included in this study was 5,616, with an annual inci-
dence of 22.3 per 100,000 children under the age of four, 7.2 per 100,000 children from 5 to 9 years of age and 
0.8 per 100,000 children from 10 to 18 years of age. Spatiotemporal variations of KD were modelled with a 
Bayesian hierarchical model (see Expanded methods and Supplementary information for details), which includes 
covariates related to environmental exposure (list in Table 1). We compared several spatiotemporal models that 
accounted for the temporal structure differently, but were all based on the Besag-York-Mollie model to account 
for spatial  autocorrelation38. The final multivariable model included a linear and non-linear time component, 
and covariates that improved the performance of the model.

Standardized incidence rates obtained from the mean of the posterior distribution of the temporal and spatial 
random effects are presented in Fig. 2. The model suggests that the risk for KD was highest between late 2010 
and 2011, and reached its lowest point at the end of 2007 (Fig. 2A). As expected, a distinct seasonal distribution 
with higher risk for KD during the winter months and relatively lower risks at the end of the summer months 
was found (Fig. 2B). Spatial areas with increased risk for KD were identified in some areas around Toronto and 
Halifax (spatial standardized incidence rate of larger 1.5 and 1.8 respectively), with a posterior probability > 99% 
(Fig. 2C). Further hotspots were found in region of Northern Ontario and the city of Calgary (spatial standard-
ized incidence rate > 1.3). A detailed map including posterior probabilities is provided in Appendix 2.

Environmental factors and exposures associated with distribution of KD. For each of the covari-
ates, a base model that included only spatial and temporal effects and adjusted for distribution of age and ethnic-
ity in the population was compared with models that additionally included one of the covariates of interest based 
on model fit, measured by the Watanabe-Akaike information criteria (WAIC). The WAIC for the base model was 
23,134.0, while the adjusted base model WAIC was 23,128.0 (see top of Table 1). Only variables that reduced the 
WAIC from the base model by more than 1, i.e. improved the model fit, were included in a multivariable model. 
In a second step, the deletion of each variable from this multivariable model was tested in a backward selection 
to identify and remove variables that did not contribute to the multivariable model fit (see Table 1 and Fig. 3).

Both adjustment factors, the percentage of population under 4 years of age and the percentage of population 
self-identifying as Taiwanese, Korean, Japanese or Chinese (‘East Asian’) were associated with increased risk for 
KD. In the final multivariable model, environmental factors contributing to an increased risk of KD included 
lower median income, lower proportion of an area classified as rural, increased atmospheric concentration of 
spores from Myxomycetes (slime molds), Deuteromycetes (fungi imperfecti) and algae concentrations, lower 
atmospheric concentration of Dothideomycetes spores and higher combined smog  (NO2 +  SO2) concentration in 
the atmosphere. Increased incidence of KD was also associated with higher incidence of healthcare encounters 
for atopic dermatitis, viral intestinal illnesses, bacterial pneumonia (associated with Mycoplasma, Klebsiella and 
possibly Haemophilus influenzae), and multisystem infections with a heterogeneous group of pathogens known to 
be potentially associated with hyperinflammatory or autoimmune syndromes (Campylobacter, cytomegalovirus, 
coronavirus, measles, Salmonella). Higher incidence of healthcare encounters for bacterial skin infections or 
fungal infection secondary to Candida were associated with reduced incidence of KD. The WAIC for the final 
multivariable model was 23,059.7.

Correlation between modelled and observed KD rates. The correlation between the multi-year 
mean of observed and modelled KD incidence across the regions was 0.98 (Fig. 4A). The correlation across 
time was 0.86 (Fig. 4B). The time series of the observed and modelled KD incidences averaged across Canada 
(Fig. 4C) shows that the model reproduced the temporal variation well. Adding environmental factors, aeroal-
lergen exposure and infectious agents to the model improved the observed-to-modelled correlation across years 
and provinces compared to our model that only adjusted to the population numbers, age and ethnicity distribu-
tion (correlation of 0.56 vs. 0.47).

Discussion
In this study, a mathematical model of the spatiotemporal distribution of KD in Canada over a 13-year period 
was derived. Factors found to be associated with the spatiotemporal incidence of KD included numerous envi-
ronmental and infectious factors which were integrated into a comprehensive model for the distribution of KD. 
This study is significant both from the mathematical approach used to combine numerous dimensions of risk 
measured on different scales into a single model and by the high degree with which it could recapitulate the 
spatiotemporal distribution of KD. Such a model could eventually form the basis of a prediction and surveil-
lance model for the future incidence of KD in a specific location. Careful examination of associated factors and 

https://www.R-project.org
https://www.R-project.org
http://www.openstreetmap.org
http://www.openstreetmap.org
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how they contribute to the risk of KD can also substantially contribute to our understanding of the etiology and 
pathogenesis of KD (Fig. 5).

Some well known features of the epidemiology of KD were readily apparent in the associations observed in 
this study, including an increased risk in children 0–4 years old (although up to 30% of cases occur after 5 years 
of age), presence of seasonal  patterns14 and spatiotemporal  clusters17–19, as well as a higher risk in people of East 
Asian  ancestry11. Numerous additional environmental factors were also identified in this study, some of which 
had already been reported in previous studies. Without a known etiological agent, epidemiological patterns 
and associations can be used to extrapolate some aspects of the etiology and pathogenesis of the disease. Posit-
ing a framework where KD is an immunological reaction to a still unidentified trigger(s) in genetically and/
or immunologically susceptible individuals, epidemiological patterns and associations can reflect the inherent 
susceptibility of the population, the local or global distribution of the trigger or can be reflecting the presence of 
factor(s) modulating the risk of developing KD when encountering said trigger(s). Some environmental factors 
identified in this study might fit those scenarios and are discussed below.

Beyond the genetic susceptibility to KD, which is evidenced by the strong association between Asian ances-
try and various genetic polymorphisms and increased risk of  KD11, other factors might increase the inherent 
susceptibility of a population to KD through early childhood experience. It has been proposed that KD partially 
develops through the hygiene hypothesis, where lack of early microbial experience and limited exposure to 
allergens may promote atopy and predisposes children to a hyper-reactive response to a normal  trigger43. A 

Acute or recurrent 
KD cases identified

N=5,882

Final cohort
N=5,616

Excluded (N=266)
N=2      age >18 years old
N=56    invalid postal code
N=45    residence in Quebec
N=10    missing FSA data
N=153  northern FSAs

erutaef
gnitciderP

Spatial distribution

D
Kfo

ecnedicnI

Spatial distribution

1151 FSAs in 100 groups of adjacent FSAs

1 month 
intervals

Abbreviations: KD, Kawasaki disease; n, number; FSA, Forward Sortation Area

Figure 1.  Identification of KD patients and theoretical framework of the spatiotemporal matrix for use for 
modelling. The spatial and temporal scales were held constant for incidence of KD and the distribution of all 
predictive features so that data points at the same position in the matrix are aligned with each other in time 
and space. The temporal (1 month) and spatial (group of ~ 10 FSAs) calipers were decided based on density 
distribution of the incidence of KD. The example below (red bar) shows the alignment of the incidence of KD 
and of a generic predicting feature at a specific time and location in our spatiotemporal matrix. KD Kawasaki 
disease, n number, FSA Forward Sortation Area.
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study in Japan reported that children living in households with up to three persons had a 1.6 fold increased risk 
of developing KD compared to those from households with more than five  persons16.

The seasonal pattern of KD noted in this study was concordant with previous  findings22,44. Seasonal varia-
tions in KD have been the subject of multiple previous studies, and is one of the most consistently described 
epidemiological  features14. Multiple environmental factors found to be associated with the incidence of KD 
in this study also have a seasonal distribution. Thus, these may contribute, in a multifactorial manner, to the 
seasonal distribution of KD.

Results from previous studies have shown that some environmental exposures might be associated with the 
risk of KD, either positively or negatively. Several studies have reported higher incidences of KD associated 
with urbanized settings which might reflect the presence of modulating  factors16,21,45. In a previous case–control 
epidemiological study we showed that children living in areas with more trees, farms and closer proximity to 
a natural body of water were at lower risk of KD than children living in areas with reduced  exposures21. In this 
study, some of the factors identified for KD are consistent with these previous findings, including the presence of 
spatial hotspots in cities, decreased risk in rural areas and in environment with denser vegetation and increased 
atmospheric concentration of some biological particles.

At the same time, activation of the inflammasome via various environmental exposures might be increas-
ing the risk of  KD46. One such example is pollution exposure. In this study, an association between higher 
atmospheric concentration of  SO2 and  NO2 and increased risk of KD was noted. A recent Japanese publication 
reported that a 1-μg/m3 increase in NO and  SO2 were associated with a higher incidence of KD (3.94, 95% CI 
0.04–7.98 and 3.60, 95% CI 1.12–6.14 respectively)47. Air pollution has also been shown to negatively affect 
the respiratory mucosa through an interaction with several defense mechanisms leading to increased mucous 
production, epithelial barrier dysfunction and attenuated cytokine  response48–50. The association between lower 

Figure 2.  Posterior mean value for the temporal and spatial effects for the risk of Kawasaki disease (KD) in 
Canada from April 2004 to March 2017 based on the Bayesian hierarchical model. Standardized incidence rate 
above 1 indicate increased risks, and below 1 decreased risks. (a) Monthly temporal unstructured and structured 
trends. An increasing trend is visible for the unstructured effect (solid line) across time. The structured effect 
(dashed line) shows nearly no fluctuation. (b) The seasonal effect illustrates a below average standardized 
incidence rate for KD in September and a high risk in the winter months. (c) Mean spatially autocorrelated 
random effect, expressed as area-specific standardized incidence rate. Areas with standardized incidence rate 
larger than 1 have an above average risk compared to the rest of Canada, while standardized incidence rate 
smaller than 1 indicate a below average risk. The red colours in the Greater Toronto Area and around Halifax 
for example indicate a 50 to 90% increase of risk. For better visibility of small regions, an interactive map can 
be found in the online appendix. The spatial units (of the analysis regions consisting of several forward sorting 
areas) are indicated with boundaries and grey filling. White regions were added to the plot for easier orientation. 
For uncertainty estimates, see online appendix.
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household income and increasing KD risk found in this study could also be related to activation of the inflam-
masome. Children from lower socioeconomic areas are known to have generally greater exposure to pollution, 
dust, toxins and allergens, and are at higher risk of multiple atopic and inflammatory disease, such as asthma 
and KD because of those  exposures16,51,52.

Beyond susceptibility, case distribution and modulation, environmental associations might point to potential 
targets for the trigger(s). Higher atmospheric levels of Deuteromycetes (fungi imperfecti) and Myxomycetes 
(slime molds), both spore-producing, were found to be associated with higher incidences of KD, as were greater 
atmospheric concentrations of algal spores. Many spore-producing fungi and some algae have allergenic prop-
erties, and are known to be capable of initiating an immune response in human in addition to activating the 
 inflammasome53,54. In a mouse model mimicking KD, intraperitoneal injection of Candida albicans extract has 
been shown to induce coronary  arteritis55. Fungi are also capable of producing MAMPs such as beta-glucans 
and chitin, which may stimulate an inappropriate immune response through pattern recognition  receptors56.

There is also a longstanding recognition that a substantial number of patients with KD present either with a 
documented infection, a recent history of an infectious illness or with infectious disease  symptoms57. Numerous 
previous studies have postulated that one or more infectious agents is/are the trigger for KD, but no consistent 

Figure 3.  Association of factors with the standardized incidence rate for Kawasaki disease (KD). Distribution of 
the standardized incidence rate (line = median) based on the posteriors of the fixed effects (same as multivariable 
results in Table 1). The values represent the change in standardized incidence rates for a 1 standard deviation 
change in the predictor. A value below 1.0 (blue) indicates a negative association between the predictor and the 
standardized incidence rate for KD, and values above 1.0 (red) indicate a positive association. The background 
color of the labels indicates the type of predictor, with grey representing genetic and demographic factors, blue 
representing atmospheric pollution, red representing the incidence of healthcare encounters for various causes 
and green representing atmospheric concentration of biological particles. at.c atmospheric concentration, HE 
healthcare encounters.
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or definitive findings have been  reported58. Both respiratory and gastrointestinal diseases have been reported 
with KD and, indeed, in a previous case–control study, children with KD were found to exhibit respiratory and 
gastrointestinal symptoms in a higher proportion than controls up to 8–31 days before the appearance of the 
first KD  symptoms21.

In this study, we identified groups of healthcare encounters for infections that were associated with increased 
incidence of KD. One interesting finding is the association between viral intestinal infections and increased inci-
dence of KD. In North America, the most common causes of viral gastroenteritis (i.e. rotavirus, adenovirus and 
norovirus infections) exhibit a winter peak; notably in our previous environmental case–control study, rotavirus 
vaccination was associated with a lower risk of  KD21. However, an autumn or spring peak is seen in other parts 
of the world, consistent with the global epidemiology of  KD59. The association between viral intestinal infections 
and increased incidence of KD possibly reflect the facilitation of the entry of the trigger into the blood stream 
and as such would represent a modulating factor as opposed to a potential trigger. This being said, in the absence 
of direct experimentation, it remains unknown whether spores or infections can actually trigger KD or whether 
they are additional modulators.

Figure 4.  Correlation between observed and modelled Kawasaki disease (KD)  rates. Modelled rates have 
been obtained from the exponentiated risk ratios of the multivariable hierarchical Bayesian model posteriors, 
multiplied by the expected rate. (a) Multi-year mean of observed and modelled KD rates, where each dot 
represents 1 of the 100 regions (groups of forward sorting areas). (b) Regional mean of observed and modelled 
KD rates. The rates were aggregated across all of Canada, and each dot represents 1 month of the 13 years. (c) 
Time series of observed (black) vs modelled (red) KD rates averaged over Canada from April 2004 to March 
2017.
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This study must be viewed in light of some limitations. Firstly, this is an observational epidemiological study 
and, as such, associations are ecologic in nature. Any causal inferences are implied. Secondly, some dimensions 
of environmental risk dimensions which have previously been linked to KD, such as the microbiome, could not 
be included in our population-level model. Third, we were limited regarding the granularity of our model, given 
that KD is a rare disease and cases are dispersed in space and time. Therefore, any smaller, unpredicted changes 
in factor levels displayed over days or hours would not be captured. In addition, Census data were only avail-
able every 5 years, as such we were not able to fully adjust for the temporal variation in ethnicity across Canada 
across our study period, but fluctuations were expected to be minor. All spatial effects were regionalized, which 
meant that local environmental factors could not be considered. Moreover, atmospheric biological data were 
only available for 10 stations situated across Canada, but were extrapolated to the nearest FSA region for each 
of the 100 FSA groups. This limitation may potentially impact the validity of our pollen findings, as pollen dis-
persal is likely a local phenomenon. While KD incidence varies strongly with age, we cannot exclude that some 
factors may be more relevant to certain age groups than others, although no evidence of such an effect has been 
previously reported. The lower number of patients with KD > 5 years of age precluded a sub-analysis stratified 
by age. Finally, it is important to note that our proposed theoretical framework is a hypothesis and should not 
be construed as being confirmed.

Conclusion
Our model of the spatiotemporal distribution of KD across Canada over a 13-year period was able to explain 
a substantial portion of the variation in the incidence of KD over that time period and identified multiple 
environmental factors that could be integrated into a theoretical etiological and pathophysiological framework 
for the spatiotemporal distribution of the incidence of KD. This framework includes a child’s susceptibility to 
the disease, the presence of modulating factors and the spatiotemporal distribution of the trigger(s) and/or of 
modulating factors. Findings from this study strengthen our understanding of the epidemiology of KD, which 
is likely affected by various factors reflecting the complex reality of KD.

Data availability
Both the Hospital for Sick Children Ethics Committee and the Canadian Institute for Health Information have 
placed legal restrictions on sharing the data used in this study. The data from this study contain personal health 
information and as such, disclosure and distribution, even in an anonymized format, is restricted under the 
Ontario Personal Health Information Protection Act (PHIPA). Some data will only be available until March 
31, 2025 after which it must be destroyed as per the Non-Disclosure/Confidentiality Agreement required by 
the Canadian Institute for Health Information. Data used in this study can be accessed by qualified researchers 
who meet the criteria for access to confidential health information. In addition to contacting the PI to access the 
data, requestors will be required to obtain approval from the Hospital for Sick Children Ethics Committee and 
the Canadian Institute for Health Information Data Access Program. The authors are legally prohibited from 

Figure 5.  Hypothetical framework of Kawasaki disease (KD) etiology and risk based on published evidence, 
our previously published environmental case control  study21 and the evidence presented in our current 
spatiotemporal model of the spatiotemporal distribution of KD. Red indicates higher risk while green indicates 
lower risk.
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disclosing the raw aeroallergen data; interested parties would need to obtain this data directly from Aerobiology 
Research Laboratories (Ottawa, Canada).
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