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Abstract

The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in
the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2.
Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed
experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models:
undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal
tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with
three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes
(subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the
power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the
undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can
recover the general characteristics of the fully sampled version, provided that enough neurons are measured.
Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is
insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches
recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold
for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce
the statistics of spike avalanches.

Citation: Ribeiro TL, Ribeiro S, Belchior H, Caixeta F, Copelli M (2014) Undersampled Critical Branching Processes on Small-World and Random Networks Fail to
Reproduce the Statistics of Spike Avalanches. PLoS ONE 9(4): e94992. doi:10.1371/journal.pone.0094992

Editor: Michal Zochowski, University of Michigan, United States of America

Received December 23, 2013; Accepted March 19, 2014; Published April 21, 2014

Copyright: � 2014 Ribeiro et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Work supported by Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES), Financiadora de Estudos e Projetos (FINEP) grant
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Introduction

Neuronal avalanches are bouts of scale-invariant spatiotemporal

electrical activity first recorded by Beggs and Plenz from cortical

cultures via multi-electrode arrays (MEAs) [1]. The size s of a

neuronal avalanche (defined as the number of active electrodes) is

power-law distributed with an exponential cutoff: P(s)~s{3=2

exp ({s=s0), with s0 increasing with the number of electrodes of

the MEA [1]. The exponent t~3=2 coincides with the mean-field

exponent of several classes of models, such as directed percolation

and dynamical percolation [2]. In particular, it coincides with the

exponent governing a critical branching process [3]. This

coincidence has been held as evidence that neuronal avalanches

are a statistical signature that the brain as a dynamical system

operates near a critical point, a conjecture that has spurred intense

research (for recent reviews, see [4] and [5]).

In light of this conjecture, several models for this type of brain

activity have been proposed, in which a phase transition occurs

between an inactive state and an active collective state. The

general idea behind these models is that excitable model neurons

can propagate their activity to neighboring model neurons. If

coupling is weak enough, any initial activity in the network is

bound to die out: the only stable collective state is one of inactivity.

However, when coupling is strong enough, activity propagates

from neuron to neuron in a never-ending process: self-sustained

activity is collectively stable.

A critical point marks the boundary between those two phases.

At that point, the theory of critical phenomena predicts that very

particular statistical features should appear [6,7]. For instance,

there is no characteristic size for network activity, which will also

die out (like in the inactive phase), but without a characteristic time

(unlike in the inactive phase). Such lack of characteristic size and

time is reflected in power-law event distributions that have been

compared with those obtained experimentally also in slices [1],

anesthetized rats [8], as well as non-anesthetized resting monkeys

[9].
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To mimic this critical point, models with very different

ingredients have been proposed, such as cellular automata [10–

14], integrate-and-fire units [15–17], or even conductance-based

models [18,19], many of these under diverse underlying topologies

[20–22]. Networks of excitable cellular automata, in particular, are

well-established models allowing simulations of very large system

sizes, belonging to the directed percolation universality class [7]

and which have been used in direct comparison with experimental

results [1,23–25]. For this simple class of models, a very broad

class of topologies lead to the same exponent t~3=2 as the

classical branching process [3,26,27].

Either explicitly or implicitly, the vast majority of these models

treat their elementary units as ‘‘neurons’’. Once the model is tuned

to the critical point (or self-organizes itself around it), avalanches

are measured by counting the number of ‘‘spikes’’ in those

neurons. However, neuronal avalanches are most often measured

experimentally from large deviations of local field potentials

(LFPs). It is important to emphasize that LFPs sample electrical

activity from a radius of up to hundreds of microns, including

currents originating from tens to thousands of spiking neurons, as

well as from non-spiking, subthreshold neuronal activity [28,29].

Even non-local contributions are shown to influence LFP

measurements [30]. Therefore, when comparing results from

these spiking models with experimental data, there has been an

implicit assumption in the literature that, at least for the purpose of

assessing collective activity at the level of avalanches, LFPs and

spikes behave similarly (with the exception of some authors which

carefully state that the activity of each of their model units

represents the LFP measured at an electrode [25]).

The need for the above mentioned assumption disappears,

however, if model results are compared with those obtained from

spiking data. In fact, power-law distributed neuronal avalanches of

spiking neurons (instead of LFP activity) were experimentally

observed in intact leech ganglia [31], dissociated cultures of rat

hippocampal [31] and cortical [32] cells, as well as in the primary

sensory neocortices of anesthetized rats [33]. In the in vitro

experiments, the same exponent t^3=2 was observed [31,32],

whereas in the anesthetized rat the exponent was in the range

0:9 v* t v* 1:8. Given the plausibility of branching-process-like

models in mimicking the transmission of spikes across neurons and

the power-law size distribution they produce at their critical

parameter, one could argue that they are a successful minimal

theory of spike avalanches.

Despite this apparent success in reproducing the experimental

results, however, one crucial aspect which has been almost

completely neglected in the models is undersampling: while a

typical 32-electrode MEA can record spikes from about 30–100

neurons in an area of about 1–2 mm2 of brain tissue, 1 mm3 of

mammalian cortex comprises on the order of ~104 neurons [34].

For models to be adequately compared with experimental results,

this fact should be taken into account. Note that this is a

completely different problem from what is known in the statistical

physics literature as finite size scaling (FSS) [7]. FSS amounts to

observing how results change as the model system size increases,

while recording from all sites. What we propose here is quite different:

we simulate large system sizes (mimicking the fact that the brain

comprises a huge number of neurons), but measure avalanches

only in a subset of the units (mimicking the fact that MEAs record

only from a very small fraction thereof).

In the few models which tackled this issue, undersampling was

shown to affect the avalanche size distributions observed in critical

systems. Priesemann et al. [35,36] have focused on classical

models of the statistical physics literature which exhibit Self-

Organized Criticality (SOC), such as the Bak-Tang-Wiesenfeld

sand-pile model [37] and variants thereof as well as the Drossel-

Schwabl forest-fire model [35,38]. We have previously employed

networks of excitable cellular automata [33,39] whereas Girardi-

Schappo et al. have simulated lattices of coupled maps [40], both

of which could be tuned to the critical point.

These lines of research have shown that, when undersampled,

these critical-by-construction models yield size distributions which

are not necessarily power laws. For instance, we have shown that,

when undersampled, excitable cellular automaton models yield

size distributions which are very well fit by lognormal functions, in

remarkable similarity to data obtained from freely-behaving

animals [33]. In this case, therefore, undersampling could

reconcile the hypothesis of an underlying critical system with

non-power-law experimental results. While it solves one problem,

however, it creates another.

Anesthetized animals as well as in vitro preparations do yield

spike avalanches whose size distributions are well fit by power laws

[31–33]. And these are measured with the same MEAs, therefore

subjected to the same undersampling conditions. But if under-

sampled models yield non-power-law distributions, can they be

reconciled with these spiking data?

The main purpose of this paper is to systematically probe what

can be considered the theoretical workhorse in the field of

neuronal avalanches, namely branching-process-like models at

their critical points. Specifically, we investigate whether power-law

distributions emerge when activity from networks with different

topologies is measured only from a subset of their model neurons,

in a MEA-like configuration. We screened parameter space

exhaustively, changing both the dynamical regime of the system

(subcritical, critical, supercritical) as well as the extent of the

undersampling (size and density of the model MEA). We also

compared the distributions obtained through the model to those

obtained experimentally from anesthetized rats.

Results

We have simulated networks of excitable neurons modelled by

cellular automata (see Methods). An N~L|L two-dimensional

array of model neurons was connected following two rules: 1) a

local rule, in which each neuron sends K synapses to neighbor

neurons at a distance r with probability P(r)~e{r=r0 (where r is the

distance measured in lattice units, i.e. cell bodies); 2) a non-local

rule, in which each of the NK synapses can be rewired to a

randomly chosen neuron with probability pr. The emergent

features of the resulting topology depend on pr.

For pr~0, the network is essentially two-dimensional (when

L&r0). In this case, each site has a well-defined neighborhood

and, for large N , the mean distance between sites increases as

N1=2. We refer to these networks as two-dimensional (2D). For

pr *> 0, a small-world network (SW) is observed. While a well-

defined neighborhood is present (like in the 2D network), there are

also long-ranged connections (unlike in the 2D network). For large

N, the mean distance between sites increases as log N [41]. For
prv* 1, the network is random (RG). In this case, the concept of

neighborhood is meaningless, with each site sending its post-

synaptic connections to randomly chosen sites across the network.

The mean distance between sites, as in the small-world network,

also increases as log N. A general picture of these topologies can

be seen in Figure 1. Panels A, B, and C (top) show the outgoing

synapses from five sites at the center of a L~100 network with

pr~0, 0:01 and 1, respectively. The red arrows indicate links

which have been rewired. At the bottom, the distributions of link

distances are shown. Although the difference between the two-

dimensional and the small-world networks seems tiny (note the
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very small difference in the amount of large links in the insets), the

critical exponents observed in the SW network at criticality put it

in the same universality class as the random network.

As discussed before, each active site has a chance of propagating

the spike to its post-synaptic sites. The transmission probability per

link, p, is the control parameter of this model. The next step is,

therefore, to find the values of p in which each of those network

topologies are at their critical points.

Determining Criticality in the Model
In order to determine the critical point for each topology used,

we measured how the mean density of active sites r (the order

parameter of this model) depends on the Poissonian rate of

external stimulus h (see Methods). The response curves r(h) can be

seen in Figure 2 (panels A, B and C).

Independently of the underlying topology, when p is low

enough, once a site is activated by the external stimulus, the

activity does not propagate too far. For each incoming stimulus, a

characteristic number of spikes will be generated. In this case,

therefore, for h?0, the response scales linearly, r~h (see the blue

curves in Figs. 2A, B and C). This is the subcritical regime.

When p is large enough, the activity is amplified to an extent

that external stimuli is no longer needed to maintain neurons

spiking: self-sustained activity becomes stable. For h?0, therefore,

the response r converges to a nonzero value (see the green curves

in Figs. 2A, B and C). This is the supercritical regime.

At the critical point there is no self-sustained activity but, since

the system is governed by fluctuations, there is no longer a

characteristic number of spikes generated by each incoming

external stimulus. Therefore, unlike the subcritical case, the

response function is no longer linear at criticality, and one expects

instead r(h; p~pc)~h1=dh , where 1=dh is a critical exponent [6].

Our model is known to belong to the universality class of the

directed percolation model [21,42] (i.e. both models have the same

set of critical exponents [6]). For two-dimensional networks, the

expected result for this universality class is r~h0:285 [2,7], which is

confirmed in Fig. 2A (red curve). For both the small-world and

random networks, we recover the mean-field result r~h0:5 [2,7]

(red curves in Figs. 2B and C).

What are the effects of the subcritical, critical and supercritical

regimes on the avalanche size distributions? Avalanches are

created by firing the central neuron of a quiescent network, their

size being defined as the number of spikes that occurred until the

network returns to rest (see Methods). This corresponds to the limit

h?0 of infinite separation of time scales, in which avalanches do

not overlap (in contrast to, say, the situation in Figs. 2A, B and C).

For subcritical systems, short-tailed curves are obtained, with

avalanche characteristic sizes independent of the network size

(blue curves in Figs. 2D, E and F). For supercritical systems, a

finite fraction of the avalanches propagate indefinitely. Since in the

simulations we set a maximum time for avalanche spreading (see

Methods), these infinite avalanches contribute to the high-value

bumps in the size distributions (see the green arrows in Fig. 2E, for

example).

At the critical point, avalanche size distributions follow power

laws with well-defined exponents. Once again in agreement with

the literature [2,7], mean-field exponents were obtained for small-

world and random networks, P(s)~s{t, with t~3=2 (as repre-

sented by the dashed lines in Figs. 2E and F). For the two-

dimensional network a crossover between two regimes was

observed. For the larger avalanches the d~2 exponent was

obtained (t~1:268), while the size distribution for the smaller

avalanches was well fit by the mean-field exponent (Fig. 2D). The

explanation of this phenomenon is straightforward: since link

distances are exponentially distributed with a characteristic value

of r0~5 lattice sites, but are otherwise unstructured, small

avalanches (s~r0) propagate as if they were in a small-world-like

network (in the sense that, at that scale, there is a well-defined

neighborhood, but also exponentially rare shortcuts to more

distant sites). As for the avalanches that keep spreading and

Figure 1. Network topology. Examples of synaptic reach (top) as well as the link size distribution P(r) (bottom) for the: A) two-dimensional
network; B) small-world network; C) random network. Red arrows in top panels represent synapses which have been rewired (pr is the rewiring
probability). Dashed lines represent the network limits.
doi:10.1371/journal.pone.0094992.g001
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become large enough, the range ~r0 of interaction among neurons

is much less than the avalanche size s. At the large scale,

interactions become effectively local, and the governing dynamics

is that of a two-dimensional network.

Size Distributions of Undersampled Model Avalanches
To check whether those power laws persist when the system is

not completely sampled, or if non-power-law size distributions

observed in subcritical and supercritical systems can turn into

power laws under certain sampling configurations, we implement-

ed a sampling matrix mimicking the MEAs employed in

extracellular recordings.

The sampling matrix is a square Lm|Lm array (centered in the

network) of ‘‘virtual electrodes’’, with a distance dm between

electrodes. As in the experimental MEAs, each electrode can

measure the spiking activity from zero up to nm neighboring sites.

We investigated how avalanche size distributions change when Lm

and dm vary. For these simulations, avalanches are created by

activating the site at the center of the network, and letting the

avalanche spread until it dies out. However, due to the fact that we

are not ‘‘measuring’’ at all sites, the activity generated by that

single initial excitation may be ‘‘read’’ as a smaller avalanche, or

even a series of smaller avalanches. Consider, for instance, the

example of Fig. 3, which for simplicity depicts a 2D network of

7|7 model neurons connected to their nearest and next-nearest

neighbors. The activity initiated at the top left site propagates

during 6 time steps, which would be the duration of the avalanche

if all sites were sampled. During this avalanche 12 spikes occurred,

so s~12 would be the size of the avalanche if all sites were

sampled. Note, however, that if we were to assess the network

activity from what is measured in the 3|3 sampling matrix (empty

circles in Fig. 3), 1 spike would be measured at the second time

step, followed by one time step of silence, which would be

interpreted as the end of an avalanche. Then two avalanches

would follow, of sizes 2 and 1. The three avalanches detected

would all have duration of 1 time step. The question then is how

the statistics of avalanche size, which are well known for fully

sampled systems, are affected by undersampling.

We started by investigating the situation in which the distance

between electrodes was fixed, and varied the number of electrodes

(Figure 4A). Virtual electrodes were set apart by dm~8 lattice sites

(i.e. cell bodies), which corresponds roughly to the 250 mm

distance among electrodes in a typical MEA. The size distributions

are shown in Figure 4B for the three network topologies

considered, as well as the three dynamical regimes (subcritical,

critical and supercritical).

For the subcritical systems (top row of Fig. 4B), the size

distributions do not change significantly as Lm increases. This is

expected, since in this case avalanches are unlikely to travel much

farther than a characteristic distance. However, in the RG, we do

see a decrease in the probability of observing large avalanches as

the sampling matrix gets smaller. This is also expected. Due to the

lack of a well-defined neighborhood, avalanches will often spread

to sites distant from the sampled ones. This becomes more

frequent as the number of sampled sites decreases.

Figure 2. Determining the critical point. A) Response curves for the two-dimensional network, with varying transmission probability p. Blue

curves are obtained from subcritical systems, with the dashed blue line indicating a r~h1 relationship. Green curves are obtained from supercritical

systems, whereas the red one is obtained from a critical system. The red dashed line indicates a r~h0:285 relationship. B) Same as in A, but for a small-

world network. The red dashed line here indicates a r~h0:5 relationship. C) Same as in B, but for a random network. D) Avalanche size distributions for

the two-dimensional network. Different p (same color code as in top panels) and system sizes N~L|L (symbols) are shown. Dashed lines represent
exponents of 1.5 (top line) and 1.268 (bottom line). E) Same as in D, but for the small-world network. The dashed line represents an exponent of 1.5.
Green arrows highlight the infinite avalanches observed in supercritical systems (see Results). F) Same as in E, but for the random network.
doi:10.1371/journal.pone.0094992.g002
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Avalanche size distributions in undersampled supercritical

systems (Fig. 4B, bottom row) behave exactly as the fully sampled

system when Lm is large enough: there is a fast decrease in the

probability of measuring avalanches of size s, as s increases, and

there is a fraction of the avalanches which will propagate

indefinitely. In critical systems (Fig. 4B, middle row), size

distributions slowly become more heavy-tailed as Lm increases.

However, the power-law shape is not recovered, even for sampling

matrices with a number of electrodes much larger than what is

employed experimentally (note that Lm~30 corresponds to 900

electrodes, which is near the state of the art of multi-electrode

recordings [43]).

Next we experimented with keeping the number of electrodes

fixed (Lm~8) while varying the sampling density via changes in

the inter-electrode distance dm (Fig. 5A). In this case, distributions

from the 2D and SW networks behave similarly (left and central

columns of Fig. 5B, respectively). Subcritical and critical curves

increase their tail gradually as the distance between sampled sites

decreases. The supercritical systems, for all topologies, present

essentially the same size distributions, independently of the

sampling density (Fig. 5B, bottom row). The self-sustained activity,

spread through all the network, explains that result. Interestingly,

for the random network, all dynamical regimes are similar

regarding undersampling: size distributions do not depend on

the sampling density (Fig. 5B, right column).

Comparison with Experimental Data
Avalanche size distributions in the model change due to

undersampling, as shown in the previous section. For any

combination of the three topologies and three regimes considered

in our simple branching-like model, power-law distributions were

not observed when the systems were subjected to the same

conditions of a typical experiment (tens of electrodes). This, in

principle, suggests that, once undersampling is taken into account,

this model fails at reproducing spike avalanche size distributions

obtained from anesthetized animals and in vitro preparations.

However, there is another aspect to consider when comparing

model avalanches with experimental ones: the binning procedure.

Since neuronal avalanches are defined as a sequence of active bins

preceded and followed by empty bins, the temporal bin width

plays a fundamental role in avalanche sizes and durations. Clearly,

larger bins favor larger avalanches and vice versa. The now

standard procedure originally proposed by Beggs and Plenz [1] to

address this issue is to calculate the temporal bin width from the

data, using the average inter-event interval, or the average interval

between consecutive spikes with all neurons considered. We refer

to the resulting temporal bin as the optimal bin (see Methods). So

far, we have shown size distributions using the natural temporal

scale of the model, which is one time step. In order to properly

compare model and experimental distributions, however, the same

binning procedure should be employed for both.

We focused on SW networks sampled with 16 electrodes fixed at

a distance of dm~16 cell bodies. We simulated subcritical, critical

and supercritical networks and, for each of these regimes, the

optimal bin was calculated and used to obtain the size distributions

shown in Fig. 6A. The first observation is that the optimal bin

renders distributions which are closer to the full-sampling than

those obtained with a bin of one time step (compare with Fig. 4B).

Nonetheless, the subcritical (blue circles) and supercritical (green

circles) distributions still fail to exhibit a power-law behavior.

Furthermore, although the critical distribution (red circles) seems

more likely to be well fit by a power law, the expected cutoff for

avalanche sizes close to the system size is absent. In fact, very large

avalanches ( s~100) are observed despite the fact that only ~24

neurons are sampled (average of 1.5 neurons per electrode).

Experimental size distributions from anesthetized rats (AN), on

the other hand, are very well fit by a power law with a cutoff (black

curve at Fig. 6A). We recorded spiking activity from 4 rats while

they were under the effects of ketamine-xylazine anesthesia

through MEAs with 32 electrodes and 500 mm spacing (see

Methods and Ref. [33]). A subset of 16 electrodes was analyzed,

comprising the largest square matrix (4|4) that could be

compared to the configuration employed in the model (Lm~4,

dm~16).

To quantify the contrast between model and experimental

avalanche size distributions, we tried fitting a power law with a

sharp cutoff to each of the distributions obtained:

P(s)~s{t exp½{(s=s0)c�, with t, s0 and c as free parameters.

Figure 6A shows that this function fits the data and the simulations

in all scenarios. In Fig. 6B, however, we observe that the fitted

parameters t and s0, together with their associated errors, are

consistently different between model and experimental distribu-

tions. While AN data fitting errors are very limited and the cutoff

region is in agreement with the number of neurons in each case (s0

Figure 3. Avalanche propagation. Example of one avalanche
propagating in an undersampled 7|7 network for 6 time steps. The
3|3 sampling matrix is denoted by empty circles. Red circles represent
active sites, blue indicates sites that were activated during avalanche
propagation. Red lines show spike propagation.
doi:10.1371/journal.pone.0094992.g003
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divided by the number of neurons is of order one), the model

errors are very large and, more importantly, the values of s0 are

typically very small. This essentially means that, for the model

distributions, the exponential part of the fit is actually dominating

the curves, reflecting the fact that they are not well fit by power

laws.

Discussion

We have simulated two-dimensional networks of excitable

elements modeled by cellular automata, which have been used in

recent works to mimic the propagation of neuronal avalanche

[1,23–25]. In particular, we have investigated how undersampling

affects spike avalanche size distributions, under different topologies

and dynamical regimes. The effects of the investigated topologies

can be summarized as follows: two-dimensional and small-world

networks are more severely affected by decreasing sampling

densities because they have a well defined local neighborhood, in

contrast to random graphs, whose size distributions do not change

significantly when sampling density decreases.

Undersampled avalanche size distributions obtained from

networks with different dynamical regimes have very distinct

properties. In subcritical networks, increasing the size of the

sampling matrix does not lead to improvement in the distributions

(in the sense of bringing it closer to that of a fully sampled system),

while increasing the sampling density slowly moves the distribu-

tions toward larger avalanches. In supercritical networks, on the

other hand, sampling density has no effect on the distributions.

However, provided that enough sites are sampled, the behavior of

fully sampled supercritical networks can be completely recovered.

Critical networks improve with both increasing number of

sampled sites as well as increasing sampling density.

Taken together, these results suggest that the dynamical regime

of such systems can be retrieved by varying the sampling

conditions and comparing the obtained distributions. This could

further confirm that the spike avalanches observed in freely-

behaving rats [33] come from an underlying critical system.

Lognormal size distributions from a critical model (in a simpler

version than the one studied here) were shown to be very similar to

those found in the experiments. On the other hand, as previously

remarked, spike avalanches obtained from in vitro preparations and

anesthetized rats follow power laws. We have not observed power-

law distributions from any undersampled model system, regardless

of dynamical regime or network topology. We speculate that the

Figure 4. Undersampled size distributions: varying the number of sampled sites. A) Examples of the sampling matrix. Only the colored
sites are considered for avalanche measuring. Colored circles indicate virtual electrodes center, with diamond indicating possible sampling sites (see
Methods). B) Avalanche size distributions obtained from different underlying topologies (columns) and dynamical regimes (rows), while sampling the
systems with a MEA-like configuration. Colors represent different sizes of the virtual sampling MEA (black for fully sampled systems).
doi:10.1371/journal.pone.0094992.g004
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dynamics of in vitro and anesthetized systems have additional

ingredients which mask the undersampling effects, preserving the

power-law size distributions. These ingredients are absent from the

models presented here. We have previously shown that, at least for

small system sizes, a modified version of the critical model can

indeed produce size distributions which seem compatible with

power laws even when undersampled [33]. A more complete

exploration of the effects of undersampling in that model should be

considered for future research.

We conclude that excitable cellular automata in undersampled

2D, SW and RG topologies fail to reproduce spike avalanches

from in vitro preparations and anesthetized animals. It is important

to emphasize that this does not apply to LFP measurements, which

is the most common way to record neuronal avalanches. Since

LFP captures local currents, it is possible that it can overcome the

undersampling effects, thus rendering power-law size distributions.

Priesemann and colleagues employed an LFP model to test its

robustness against undersampling [36]. In that work, they show

that an undersampled LFP model can yield power-law size

distributions for avalanches. However, the definition of avalanche

size in their undersampled model is not the same as the usual. For

instance, there is no binning in the spike time series and

information from the underlying (fully sampled) avalanche

propagating through the critical system is used to define the end

of the undersampled avalanches. The power law becomes an

expected result in that scenario. Furthermore, their LFP definition

could not be applied to our model, due to the instant transition

from inactive to active state in the latter. The hypothesis that LFP

could explain power laws observed for neuronal avalanches

remains to be investigated.

There are other candidates to reconcile the experimental results

with undersampling. It could be a different model, such as the one

employed by Poil and colleagues [44], in which neurons are

represented by integrate-and-fire units, inhibitory synapses are

considered and the transition is from a collectively non-oscillating

to an oscillating phase. Or it could be a different topology, such as

the one employed by Moretti and Muñoz [45]. The hierarchical

modular topologies they propose may sustain robust power laws

even with undersampling. These possibilities are beyond the scope

of this paper and have yet to be tested. Although undersampling is

unavoidable in experiments, it has been generally overlooked in

model studies. We propose that it can in fact be a very essential

Figure 5. Undersampled size distributions: varying the density of sampled sites. A) Examples of the sampling matrix. Only the colored sites
are considered for avalanche measuring. Colored circles indicate virtual electrodes center, with diamond indicating possible sampling sites (see
Methods). B) Avalanche size distributions obtained from different underlying topologies (columns) and dynamical regimes (rows), while sampling the
systems with a MEA-like configuration. Colors represent different spacing between electrodes of the virtual sampling MEA (black for fully sampled
systems).
doi:10.1371/journal.pone.0094992.g005
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tool to evaluate models when avalanche dynamics are being

investigated.

Materials and Methods

Ethics Statement
All animal work including housing, surgical and recording

procedures were in strict accordance with the National Institutes

of Health guidelines, and the Duke University Institutional Animal

Care and Use Committee, and was approved by the Edmond and

Lily Safra International Institute of Neuroscience of Natal

Committee for Ethics in Animal Experimentation (permit # 04/

2009).

Cellular Automaton Model
We have employed a two-dimensional network of excitable

cellular automata. In this model, each site i (i~1, . . . ,N;

N~L|L) cyclically goes through its n states: xi(t)~0 if the i-th

site is quiescent at time t; xi(t)~1 if it is excited;

xi(t)~2, . . . ,n{1 if it is refractory. The model rules are:

N A quiescent site at time t becomes excited at time tz1 if any of

its pre-synaptic neighbors is excited at time t and transmits

successfully, each independently with probability p;

N An excited site at time t becomes refractory at time tz1 and

subsequently runs through the refractory states until it is back

to quiescence: xi(tz1)~½xi(t)z1� mod n (deterministic dy-

namics for refractory period).

The network topology is built in a two-step process. Firstly, for

each site i, K post-synaptic sites are drawn according to an

exponential probability distribution of distance between sites,

P(r)~r{1
0 e{r=r0 (with r measured in lattice units), and a uniform

distribution for the angle between sites, P(h)~(2p){1. Each

synapse has a probability p of transmitting a spike. More than one

synapse between the same pre- and post-synaptic sites are allowed

(in this case increasing the likelihood that a spike is propagated

from pre- to post-synaptic sites). Secondly, each synapse has a

probability pr of being rewired and a new post-synaptic site is

randomly chosen from all the sites in the network.

The boundaries of the networks are open. The parameters used,

their meaning and values are listed in Table 1.

Response Curves and Avalanches
In order to measure the density of active sites r, each model

neuron is independently driven by a Poissonian stimulus with rate

h. We then average the number of spikes per time step for a long

time (at least 105 time steps) after waiting for a transient time (~103

time steps), necessary for the network activity to become stable. In

the statistical physics literature, r is known as the order parameter

for this model. To find the critical point we varied p until a power-

law behavior for r(h), with the expected critical exponent [2], was

obtained.

In order to study avalanche propagation we start with a

completely quiescent network and fire the central site. Then we

wait until it dies out (except for supercritical systems, in which we

stop when Tmax~103 time steps is reached). The size of an

avalanche is defined as the number of spikes during its

propagation. For better visualization, avalanche size distributions

were obtained through logarithmic binning. In other words, we

calculate the probability density of observing an avalanche in a

range of values. This range is chosen so that points in the x-axis of

the log-log plots are equally spaced.

Undersampling
In order to investigate undersampling effects in the model we

implemented a sampling matrix mimicking the experimental

MEAs. The sampling matrix is a square Lm|Lm array (centered

in the network) of ‘‘virtual electrodes’’, with a distance dm between

electrodes. Each one of these electrodes can capture the activity

from up to nm of the 9 closest sites. The actual number of sampled

sites in each electrode is drawn from a uniforme distribution

between 0 and nm. The parameters used can be seen in Table 2.

Unless otherwise stated, all calculations employed a temporal

bin of one time step of the model. When comparing with

experiments, the average inter-event interval (IEI) was employed.

The IEI corresponds to the time difference between consecutive

spikes of the network, regardless of the identity of the neuron. Due

to the infinite separation of time scales in the model, we calculated

the inter-event interval only during the propagation of the

avalanches.

Experiments
A total of 4 adult male Long-Evans rats (300–350 g) were used

for electrophysiological recordings. Multielectrode arrays (35 mm

tungsten wires, 32 wires per array, 500 mm spacing, 1 MV at

1 kHz) were surgically positioned within the primary somatosen-

sory (S1) and visual (V1) neocortices on the left hemisphere.

Positioning was verified during or after surgery by spontaneous

and evoked activity profiles, and confirmed by post-mortem

histological analysis [33,46].

Figure 6. Size distributions for anesthetized animals and
undersampled models. A) Avalanche size distributions for the model
(subcritical blue, critical red and supercritical green) and an anesthe-
tized rat (black). The MEA employed is the same for all cases (Lm~4,
dm~16). Temporal bins calculated from mean inter-event interval in all
cases. Lines represent the best fit of a power law with a sharp cutoff. B)
Parameters fitted for each of the model distributions showed in panel A,
together with experimental distributions from 4 anesthetized rats. Error
bars indicate standard deviation for the values.
doi:10.1371/journal.pone.0094992.g006
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One to five weeks after a 10-day recovery period, animals were

recorded during anesthesia (n~4). From each electrode spike

times from up to 4 nearby neurons were sampled at 40 kHz,

whereas LFP were sampled at 500 Hz. Multiple action potentials

(spikes) and LFPs were simultaneously recorded using a 96-

channel Multi-Neuron Acquisition Processor (MAP, Plexon Inc,

Dallas, TX), as previously described [33,46]. Briefly, single-unit

recordings were performed using a software package for real-time

supervised spike sorting (SortClient 2002, Plexon Inc, Dallas, TX).

Spike sorting was based on waveform shape differences, peak-to-

peak spike amplitudes plotted in principal component space,

characteristic inter-spike-interval distributions, and a maximum

1% of spike collisions assuming a refractory period of 1 ms.

Candidate spikes with signal-to-noise ratio lower than 2.5 were

discarded. A waveform-tracking technique with periodic template

adjustment was employed for the continuous recording of

individual units over time. In order to ensure the stability of

individual neurons throughout the experiment, waveform shape

and single neuron clustering in principal component space were

evaluated using graphical routines (WaveTracker software,

Plexon, Dallas, TX). Ellipsoids were calculated by the cluster

mean and 3 standard deviations corresponding to two-dimensional

projections of the first and second principal components over

consecutive 30 min data recordings. Strict superimposition of

waveform ellipsoids indicated units that remained stable through-

out the recording session and were therefore used for analyses,

while units with nonstationary waveforms were discarded. Animals

received a single intramuscular administration of ketamine

chlorhydrate (100 mg/kg) and xylazine (8 mg/kg), plus a subcu-

taneous injection of atropine sulfate (0.04 mg/kg) to prevent

breathing problems. Anesthetized animals were placed inside a

dark chamber and recorded for 4–6 hours, until they recovered

waking behavior.
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