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Abstract: Since ancient times, Chrysopogon zizanioides has been utilized as a traditional medicinal
plant for the treatment of numerous ailments, but neither its plant extract form nor its phytocon-
stituents have been fully explored. With this in mind, the present research was designed to isolate
and structurally characterize one of its chemical constituents and evaluate its cytotoxic potential.
Therefore, an ethanolic extract of roots was prepared and subjected to column chromatography
using solvents of varying polarities. The obtained pure compound was characterized using various
chromatographic and spectroscopic techniques such as high-performance liquid chromatography
(HPLC), carbon and proton nuclear magnetic resonance (NMR), and liquid chromatography–mass
spectroscopy (LC-MS) and identified as longifolene. This compound was evaluated for its cytotoxic
potential using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on the
prostate (DU-145), oral (SCC-29B) cancer cell line and normal kidney cell line (Vero cells), taking
doxorubicin as a standard drug. The obtained outcomes revealed that longifolene possesses cytotoxic
potential against both prostate (IC50 = 78.64 µg/mL) as well as oral (IC50 = 88.92 µg/mL) cancer cell
lines with the least toxicity in healthy Vero cells (IC50 = 246.3 µg/mL) when compared to doxorubicin.
Hence, this primary exploratory study of longifolene exhibited its cytotoxic potency along with
wide safety margins in healthy cell lines, giving an idea that the compounds possess some ability to
differentiate between cancerous cells and healthy cells.

Keywords: cancer; vetiver; aromatherapy; longifolene; cytotoxicity

1. Introduction

Cancer is the most perplexing disease of the 21st century and is increasing tremen-
dously without any discrimination based on age, cell, and gender [1,2]. After cardiovascular
disease, cancer is considered the second biggest cause of mortality globally [3]. According
to GLOBOCAN stats, 19.3 million new cases were registered in 2020 and approximately
10 million mortality was reported, with Asia accounting for 58.3 percent of cancer fatali-
ties [4]. Though there are multiple treatment options available for treating this disease,
none of them provides a 100% cure. Among these treatment options, medicinal plants
serve an important role either by providing medicine such as Paclitaxel, Vincristine, and
Vinblastine or by alternative treatment options for treating cancer-linked complications

Molecules 2022, 27, 5764. https://doi.org/10.3390/molecules27185764 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27185764
https://doi.org/10.3390/molecules27185764
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-9832-3868
https://orcid.org/0000-0002-1615-5213
https://orcid.org/0000-0002-1078-2478
https://orcid.org/0000-0003-3236-1292
https://doi.org/10.3390/molecules27185764
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27185764?type=check_update&version=3


Molecules 2022, 27, 5764 2 of 11

such as aromatherapy. The availability of versatile phytochemical constituents accounts
for plants’ medicinal value with the least side effects [5,6]. Several types of research have
reported that herbs are one the best sources for the supply of natural anti-cancer agents. In
the past two decades, a variety of phytoconstituent such as coumarins, curcumin, piperine,
lupeol, rutin, betulinic acid, etc., has revealed their efficacy against cancerous cells [7–11].
Still, the hunt for novel cytotoxic chemicals from medicinal plants with anti-proliferative
action has been a constant focus of research and development [12].

Chrysopogon zizanioides or vetiver belongs to the family Poaceae with around
11,337 more species. It is widely distributed in Asia and Subtropical Asia. It is an ev-
ergreen plant with tallness of around 1–1.5 m and roots up to 3 m. It was previously grown
to protect the land from various environmental issues such as drought, soil erosion, floods,
wastewater management, etc. [13]. However, later its roots become the main center of
attention due to their multiple utilities, such as therapeutic, flavoring, perfumery, etc. Its
uses are well documented in Ayurveda, Charaka Samhita, and Sushruta Samhita. Thera-
peutically, it is used for treating ailments such as urinary calculi, dysuria, spermatorrhoea,
depression, cardiovascular diseases, git issues, and respiratory disorders (asthma, cough,
and tuberculosis) [14–16]; for flavoring, where it is used in many foods and beverages; and
for perfumery in various flowers, decorations, and aromatherapy [17]. Though its roots are
enriched with many phytoconstituents that provide them with versatile usage; unfortu-
nately, the scientific literature still lacks the extensive exploration and documentation of its
hidden potential.

Earlier research has documented that an ethanolic extract of vetiver was found to
contain 107 compounds, out of which only a few have been explored for their potential and
others remain still unknown [18]. As a result, the present research was designed to explore
the cytotoxic potential of one of its phytoconstituents using an in vitro cytotoxicity assay, in
the hopes of attracting the attention of other scientists to this plant and its roots. Although
the vetiver oil finds its utilization in aromatherapy, which deals with reducing cancer-linked
complications by blending with other oils, it was not explored for its cytotoxicity.

2. Results and Discussion
2.1. Percent Extractive Yield Value

An extract contains versatile phytochemical constituents such as alkaloids, flavonoids,
tannins, saponins, etc., which are found to be responsible for multiple pharmacological
activities. Based upon the presence of different phytoconstituents, the method of extraction
can be selected, which further affects the yield value too.

The following formula can be used to calculate the percent extractive yield value of
an extract:

% yield = Amount of extract obtained × 100/Total amount of roots taken (1)

From 100 g roots, a percentage yield of 1.5 g was produced (1.5% w/w).

2.2. Isolation of a Compound from Chrysopogon zizanioides

The crude extract was subjected to column chromatography and 4 bands were ob-
tained, which were eluted and collected using a mobile phase. The band with the highest
color intensity was repetitively purified by preparative thin-layer chromatography to obtain
the purified compound, whose Rf value was found to be 0.79. The purified compound was
obtained as a little yellowish and oily, which was further structurally characterized. The
yield obtained from 300 g roots was 2.64 mL, and from 100 g, it was 0.88 mL.

2.3. Structural Characterization of Isolated Unknown Compound ‘X’
2.3.1. HPLC Analysis of Isolated Unknown Compound ‘X’

The HPLC profile of an isolated unknown compound was carried out to analyze the
purity profile of X. The obtained chromatogram exhibited a single major peak with an area
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percentage of 99.1, at a retention time of 2.133 min, while the other peak was at 1.807 min
with an area percentage of 0.9, which confirmed that the obtained compound was pure
enough to proceed with the structural characterization and cytotoxicity profile studies. The
HPLC profile of the isolated unknown compound is shown in Figure S1.

2.3.2. FTIR of Isolated Unknown Compound ‘X’

The FTIR spectrum of the purified compound X has shown the presence of different
groups, which is revealed in Figure S2 (Supplementary Materials). Each of its values is
found in conformity with the structure of longifolene which are listed below in Figure 1.
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2.3.3. NMR of Isolated Unknown Compound ‘X’
Proton NMR

The 1H NMR spectrum of the purified unknown compound X showed the peak δ at
0.8 to 4.73, which revealed that the compound is aliphatic. The obtained peaks are listed
below and the spectra are shown in Figure S3.

Obtained peaks: 4.73 (1H, singlet, =CH), 4.55 (1H, singlet, =CH), 2.5 (1H, singlet,
-CH-),1.51–1.75 (6H, multiplet, -CH2-), 1.2–1.49 (5H, multiplet, -CH2-), 0.9–1.1 (8H, multi-
plet, -CH3, -CH2-), 0.87 (3H, singlet, -CH3).

Carbon 13 13C NMR

The 13C NMR spectrum of the isolated unknown compound X showed the peak δ

from 20.56 to 123.92. The observed peaks are listed below and shown in Figure S4.
13C NMR (d6– DMSO, 400 MHz, δ, TMS = 0): 20.56, 25.04, 29.14, 29.80, 30.20, 30.38,

33.24, 35.93, 42.74, 43.53, 44.33, 47.21, 61.31, 99.09, and 167.
All the interpreted peaks were also confirmed through the reported literature [19].

2.3.4. LC-MS of Isolated Unknown Compound ‘X’

The MS-ESI spectrum of the purified unknown compound X showed a peak at m/z
204.6 (M+) exhibiting the molecular weight of the isolated compound (Figure S5). MS-ESI
(calculated): m/z 204.36 MS-ESI (experimental): m/z 204.6.

Based on the results obtained from FTIR, 1H and 13C NMR, and LC-MS, the structure
is confirmed as longifolene/junipene and its details are as follows:

Name of compound: longifolene/junipene
Molecular formula: C15H24
Molecular weight: 204.6
Its structure is mentioned in Figure 2.
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2.3.5. Cytotoxicity Profile of Isolated Junipene/Longifolene and Doxorubicin

The cytotoxicity profile of isolated longifolene was explored for the very first time
on the given cell lines by MTT assay, taking doxorubicin as the standard drug. This assay
was performed at SKANDA Life Sciences, Bangalore, and the IC50 values are reported in
Tables 1–4 and Figures 3–5.

Table 1. MTT assay of doxorubicin and longifolene on DU-145.

DU-145

Test Sample Concentration (µg/mL) Optical Density at 590 nm % Inhibition IC50 (µg/mL)

Control 0 0.656 0.00

Doxorubicin

1.7 0.523 20.27

10.67

3.4 0.413 37.04

6.8 0.365 44.36

13.6 0.241 63.26

27.16 0.168 74.39

54.32 0.069 89.48

Longifolene

10 0.578 11.89

78.64

20 0.501 23.63

40 0.423 35.52

80 0.306 53.35

160 0.227 65.40

320 0.109 83.38

Table 2. MTT assay of doxorubicin and longifolene on SCC-29B.

SCC-29B

Test Sample Concentration (µg/mL) Optical Density at 590 nm % Inhibition IC50 Value (µg/mL)

Control 0 0.521 0.00 0

Doxorubicin

1.7 0.423 18.81

9.56

3.4 0.336 35.51

6.8 0.284 45.49

13.6 0.206 60.46

27.16 0.146 71.98

54.32 0.067 87.14
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Table 2. Cont.

SCC-29B

Test Sample Concentration (µg/mL) Optical Density at 590 nm % Inhibition IC50 Value (µg/mL)

Longifolene

10 0.468 10.17

88.92

20 0.417 19.96

40 0.346 33.59

80 0.275 47.22

160 0.198 62.00

320 0.109 79.08

Table 3. MTT assay of doxorubicin and longifolene on Vero cell line.

Vero

Test Sample Concentration (µg/mL) Optical Density at 590 nm % Inhibition IC50 Value (µg/mL)

Control 0 0.498 0.00 0

Doxorubicin

1.7 0.467 6.22

29.12

3.4 0.429 13.86

6.8 0.389 21.89

13.6 0.352 29.32

27.16 0.260 47.79

54.32 0.189 62.05

Longifolene

10 0.486 2.41

246.3

20 0.456 8.43

40 0.410 17.67

80 0.369 25.90

160 0.320 35.74

320 0.213 57.23

Table 4. Cytotoxicity profile with IC50 (µg/mL) values of longifolene and doxorubicin.

Cell Type Cell Line
Cytotoxicity Profile (IC50 µg/mL)

Longifolene (µg/mL) Dox (µg/mL)

Prostate Cancer DU-145 78.64 ± 0.5 10.67 ± 0.5

Oral Cancer SCC-29B 88.92 ± 0.5 9.56 ± 0.5

Healthy cell line Vero cells 246.3 ± 0.5 29.12 ± 0.5
Where, Dox = Doxorubicin, ±0.5 = standard error mean.

The aforementioned results were statistically analyzed using one-way ANOVA, and
the obtained f-stat value was 3.77 and the p-value was 0.124. As the obtained f-stat value is
more than the tabulated value (α = 0.05), so we reject the null hypothesis of ANOVA and
concluded that the two samples exhibited statistically significant outcomes. The results
exhibited that the isolated compound longifolene exhibited cytotoxicity against both kinds
of cancer cell lines but was more sensitive toward DU-145 than SCC-29B. Furthermore,
when the cytotoxic profile was compared with the standard drug doxorubicin, it was
determined to be substantially safer for the healthy Vero cell line confirming the safety
of non-cancerous cells. The safety margins allow for an increase in the concentration of
longifolene thrice without any effect on the healthy cell lines. We know that almost all
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potent chemotherapeutic agents possess good cytotoxicity, but they lack the differentiation
between cancerous cells and non-cancerous cells. This inability of distinction makes the
patient suffer from many side effects such as baldness, weight loss, loss of appetite, weak
immunity, etc.
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Its safety profile on human health is also reported by Api et al., in 2019. He reported
that longifolene does not cause any genotoxicity, repeated dose toxicity, developmental and
reproductive toxicity, or phototoxicity on human health [20].

Another study by Zhu et al., (2020) reported the cytotoxicity profile of seventeen
longifolene-derived tetralone derivatives bearing 1,2,4-triazole moiety, amongst which few
compounds were found to be comparable or even with more efficient cytotoxicity than
5-Fluorouracil. This study concludes that few alterations in the chemical structure of longi-
folene can give comparable or better results than the already existing chemotherapeutic
agents [21].

The differentiation between cancerous and non-cancerous cells could be attributed
to some mechanism that can separately identify the two types of cells based on their pro-
liferative activity. Similar results were reported by Li et al., (2022) about potent novel
longifolene-derived tetralin pyrimidine compounds that exhibited the least cytotoxicity
toward human normal liver cells L02 [22]. Another study revealed that sesquiterpenes
exhibit cytotoxic activity by inhibiting TNF-α, IL-1 [23], Farnesyltransferase, tubulin pro-
liferation [24], G2/DNA [25], and lipase [26], as longifolene is also a sesquiterpene so a
similar mechanistic pathway can also be explored for it.

3. Experimental Section
3.1. Materials

For carrying out the research study, all the chemicals were purchased from Sigma-
Aldrich, Loba, and CDH, India, and taken into use without further purification.

3.2. Plant Roots and Their Extraction

For the execution of the present research work, the roots of Chrysopogon zizanioides
were purchased in July 2018 from Khari Baoli, Delhi, India, and validated by emeritus
scientist Dr Sunita Garg and Mr Jayasomu, senior principal scientist at NISCAIR Delhi,
with voucher no. NISCAIR/RMD/Consult/2018/3239-40-1. A specimen sample was also
submitted to RHMD, NISCAIR as a sample. Afterward, accurately weighed 100 g of the
roots were cleaned, dried, and grounded [18,27]. The grounded roots were soaked into 1 L
of ethanol solvent for extraction by the cold maceration method for one week. Based on the
results obtained from the cytotoxic profile of different solvents of Chrysopogon zizanioides,
ethanol solvent was selected for further isolation of susceptible phytoconstituents [15].

3.3. Isolation of a Pure Compound
Separation of Bands and Their Fractions

The obtained ethanolic extract was concentrated at an ambient temperature to omit
the loss of any phytoconstituent. For isolation, this concentrated extract was mixed with
purified silica gel (1:8) to prepare the slurry. Afterward, the obtained slurry was chro-
matographed by taking silica gel as stationary phase (60–120 mesh, 1500 g) and hexane:
chloroform (85:15) as mobile phase (validated using TLC). The mobile phase was run
initially in a gradient way and the fraction of each band was collected (200 mL). A total of
four different bands (V1–V4) were also detected on TLC (SiO2) using vanillin–sulfuric acid
as a spray reagent. Out of four bands, the color intensity of third band V3 (eluted at third
position) was found to be maximum. Assuming to have a higher yield of phytoconstituent,
V3 was selected for in-depth investigation. The fraction V3 was found to be a complex
mixture that further resolved into three bands (V3a, V3b, V3c) on preparative thin-layer
chromatography (PTLC) using mobile-phase hexane: CHCl3: methanol (65:34:1). The band
obtained was eluted with CHCl3 (100%) to yield three subfractions from V3a to V3c.

Isolation of Unknown Compound X

The intense brightened band V3a was further purified (93 mg) using PTLC, which
again resolved into three bands on PTLC. Out of these three bands (V3aa, V3ab, V3ac), the
middle one V3ab was further resolved using PTLC, which ultimately yielded a further
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three constituents (V3ab1, V3ab2, V3ab3). The most intense constituent was eluted using
CHCl3 and selected for further analysis. The isolated compound V3ab3 was subjected to
MS, NMR, and IR analysis, for structural confirmation. Its isolation procedure is described
in Figure 6.
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3.4. Structural Characterization

All these spectroscopic analyses were carried out at SIMA Labs Pvt. Ltd., Delhi, India,
and SICART LAB Pvt. Ltd., Gujarat, India.

3.4.1. HPLC Analysis

Under simple conditions, the isolated unknown compound X was evaluated using the
reverse phase HPLC technique in a Shimadzu LC-Prominence 20AT, Japan equipment fitted
with a C18 HPLC column from Alltech Associates. A volume of 10 µL sample was filtered
and processed for analysis using 80:20:0.1 acetonitrile (MeCN), water, and phosphoric acid
(HPLC grade) solvent system, wavelength 425 nm, flow rate1.0 mL/min, and temperature
of 35 ◦C.

3.4.2. Infra-Red (IR) Spectroscopy

The liquid sample of an unknown isolated compound was mixed with solvent Nujal
mull for the analysis. The spectroscopy was performed on an IR 400 Spectrophotome-
ter (Shimadzu, Kyoto, Japan) [28] in a wavelength ranging from 400 to 4000 cm−1 and
resolution of 4 cm−1.

3.4.3. Nuclear Magnetic Resonance (NMR)

The proton (1H) and carbon (13C) NMR spectra of the unknown compound X were
carried on Supercon NMR Spectrometer from Bruker, West Germany. The analysis was
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carried out by mixing the sample in D2O and then operating at 500 and 125.7 MHz,
respectively. The obtained spectra were interpreted to obtain the structure of the compound.

3.4.4. Mass Spectrometry (MS)

The mass of the sample was revealed using TSQ Quantum Access MAX Triple Quadru-
ples LCMS2010A (advanced version), Shimadzu, Japan. This instrument analyzes polar
as well as non-polar compounds with maximum weights up to 2000. For performing this
technique, 5 µL sample was injected and analyzed in a range of 50–1050 daltons after
setting some parameters such as curtain gas 10, gas 1 (20), and needle voltage 5000 V. The
obtained molecular peak was noted in the spectra.

3.5. Cytotoxic Studies
3.5.1. Cancer Cell Lines

All three cell lines, prostate cancer cell line (DU-145), oral cancer cell line (SCC-29B),
and healthy cell line (Vero cells), were procured from American Type Culture Collection
(ATCC, Rockvilled, MD, USA) for the cytotoxicity assay. The stock cells were grown
in DMEM (Dulbecco’s Modified Eagle Medium) (ATCC, Rockvilled, MD, USA) at 37
◦C in a humidified environment of 5% CO2. The cytotoxicity of experimental drugs
(longifolene and doxorubicin) were checked on these cell lines using an MTT assay at
different concentrations:

Standard drug (Doxorubicin): 1.7 µg/mL, 3.4 µg/mL, 6.8 µg/mL, 13.6 µg/mL,
27.16 µg/mL, and 54.32 µg/mL [19].

Test drug (longifolene): 10 µg/mL, 20 µg/mL, 40 µg/mL, 80 µg/mL, 160 µg/mL, and
320 µg/mL [14].

3.5.2. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) Assay

An MTT assay mainly employs MTT dye, which is converted to purple formazan by
mitochondrial dehydrogenase enzymes of viable cells (Figure 7) that turns the solution
purple in color with the addition of DMSO, acidified isopropranolol, etc. The colored
solution is spectrophotometrically measured indicating the effect produced by the test and
standard sample to provide the result in the form of IC50. This MTT assay was carried
out at SKANDA Life Sciences Private Limited, using a CO2 incubator and Spectramax I3X
Plate reader, United States.
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Figure 7. Conversion of MTT dye to Formazan.

Using an appropriate medium containing 10% FBS, the cell density was adjusted to
5.0 × 105 cells/mL density, or 100 µL was added to each well of the 96-well microtiter
plate. The supernatant was discarded after 24 h, and the generated layer was rinsed with
media. Then, 100 µL of longifolene (varying concentrations) was added to the microtiter
plates and the plates were incubated at 37 ◦C and 5% CO2. After the completion of 24 h,
100 µL of MTT (0.5 mg/mL) was added to each well and incubated for 4 h again at 37 ◦C
and 5% CO2. The supernatant was discarded once more, and 100 µL DMSO was added to
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solubilize the formazan that had formed. At a wavelength of 590 nm, the absorbance was
measured and the % growth inhibition was computed using Equation (1).

% Inhibition = ((OD of Control − OD of sample)/OD of Control) × 100 (2)

where OD represents the optical density of control.
The IC50 value was determined using the sigmoid dose-response curves, and curve

fitting method and computed using Graph Pad Prism 6 software, Version 5.03 (Windows),
California USA at SKANDA Life Sciences, Bangalore, India. The obtained values were
statistically analyzed for their significance using one-way ANOVA.

4. Conclusions

The current research documented for the first time the isolation procedure of longi-
folene from Chrysopogon zizanioides and evaluated its cytotoxic potential too. The results
obtained indicated that longifolene possesses more cytotoxic potential against the prostate
cancer cell line (DU-145) than the oral cancer cell line (SCCC-29B) with a high safety margin
in healthy cells. However, if we compare the IC50 values of longifolene with doxorubicin,
there is a huge gap, but its safety in healthy cell lines provides a great advantage. The
present finding of this research revealed that longifolene possesses a natural inclination
to develop as a safe anti-neoplastic drug with high efficacy. Moreover, in vivo studies can
be taken up in the future for obtaining more reliable and standardized results. Further-
more, the above outcomes provide scientific evidence for utilizing natural compounds as
anticancer agents.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27185764/s1, Figure S1: HPLC analysis of isolated un-
known compound ‘X’, Figure S2: FTIR of the standard and isolated unknown compound ‘X’,
Figure S3: Proton [1H] NMR of isolated unknown compound ‘X’, Figure S4. Carbon [13C] NMR of
isolated unknown compound ‘X’, Figure S5. LC-MS of isolated unknown compound ‘X’.
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