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Abstract

Background: As important regulators of the immune system, the human Fcc receptors (FccRs) have been demonstrated to
play important roles in the pathogenesis of various infectious diseases. The aim of the present study was to identify the
association between FCGR polymorphisms and cryptococcal meningitis.

Methodology/Principal Findings: In this case control genetic association study, we genotyped four functional
polymorphisms in low-affinity FccRs, including FCGR2A 131H/R, FCGR3A 158F/V, FCGR3B NA1/NA2, and FCGR2B 232I/T, in
117 patients with cryptococcal meningitis and 190 healthy controls by multiplex SNaPshot technology. Among the 117
patients with cryptococcal meningitis, 59 had predisposing factors. In patients with cryptococcal meningitis, the FCGR2B
232I/I genotype was over-presented (OR= 1.652, 95% CI [1.02–2.67]; P = 0.039) and the FCGR2B 232I/T genotype was under-
presented (OR = 0.542, 95% CI [0.33–0.90]; P = 0.016) in comparison with control group. In cryptococcal meningitis patients
without predisposing factors, FCGR2B 232I/I genotype was also more frequently detected (OR= 1.958, 95% CI [1.05–3.66];
P = 0.033), and the FCGR2B 232I/T genotype was also less frequently detected (OR= 0.467, 95% CI [0.24–0.91]; P = 0.023) than
in controls. No significant difference was found among FCGR2A 131H/R, FCGR3A 158F/V, and FCGR3B NA1/NA2 genotype
frequencies between patients and controls.

Conclusion/Significance: We found for the first time associations between cryptococcal meningitis and FCGR2B 232I/T
genotypes, which suggested that FccRIIB might play an important role in the central nervous system infection by
Cryptococcus in HIV-uninfected individuals.
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Introduction

Cryptococcal meningitis is the most common opportunistic

fungal infection of the central nervous system in AIDS patients.

Among HIV-uninfected patients, several predisposing factors for

cryptococcal meningitis such as corticosteroid medication, solid

organ transplantation and malignancy, etc, have been indentified.

Yet cryptococcal infections in apparently healthy individuals are

also increasingly being reported, especially from Asian data [1–3].

Our previous study has demonstrated an association between

mannose-binding lectin (MBL) genetic deficiency and cryptococcal

meningitis in HIV-uninfected patients [4]. However, MBL

deficiency was present in only 21% of the cases, and for the

remaining 79% of patients the underlying mechanism for

susceptibility remained unclear.

Fc gamma receptors (FccRs) mediate a variety of immune

responses after binding to IgG-opsonized pathogens or immune

complexes, and therefore act as immune regulators in both

autoimmune and infectious diseases [5–9]. According to their

affinity to IgG, FccRs are categorized into high-affinity and low-

affinity receptors. FccRI is the only known high-affinity receptor.

Low-affinity FccRs which include FccRIIA, FccRIIB, FccRIIC,

FccRIIIA, and FccRIIIB, are encoded by FCGR2A, FCGR2B,

FCGR2C, FCGR3A, and FCGR3B genes, respectively.

FCGR polymorphisms had been associated with the susceptibil-

ity and severity of various infections. FCGR2A 131R/R had been

reported to attribute to the susceptibility of meningococcal

infection, community-acquired pneumonia (CAP) caused by

Haemophilus influenza, and the development of severe malaria

[10–12]. FCGR2A 131H/H was reported to contribute to higher

risk of bacteremia in pneumococcal CAP patients [13]. Another

study showed that HIV-infected patients with FCGR2A 131R/R

genotype progressed to a low CD4+ cell count at a faster rate, but

conversely in individuals carried FCGR2A 131H/H there was an

increased risk of Pneumocystis jiroveci pneumonia [14]. FCGR3A

158F/V gene polymorphism was not associated with progression

of HIV infection, but predicted the risk of Kaposi’s sarcoma [14].

A study on infections during induction chemotherapy found that

FCGR2A 131H/H was associated with a decreased risk of

pneumonia, FCGR3B NA1/NA1 associated with infections, and

FCGR3A polymorphisms not associated with infections [15]. Sadki
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et al. investigated the influence of FCGR3A 158V/F and FCGR2A

131H/R polymorphisms on susceptibility to pulmonary tubercu-

losis in the Moroccan population but no association was found

[16]. A study in East Africa found that the FCGR2B 232T/T

genotype provided protectiveness for children against severe

malaria [17].

A previous study by Meletiadis et al. investigated FCGR

polymorphisms in patients with cryptococcosis, and found that

FCGR2A 131R/R and FCGR3A 158V/V were over-presented,

and FCGR3B NA2/NA2 was under-presented in patients with

cryptococcosis [18]. The purpose of this study was to investigate

FCGR polymorphisms in our series of patients to further verify the

association between FCGR and cryptococcal meningitis.

Results

Demographic Characteristics
A total of 117 HIV-uninfected patients with cryptococcal

meningitis were included. Subjects from both the patient and

control groups were of Chinese Han ethnicity. Clinical in-

formation and predisposing factors of the patients are summarized

in Table 1. Of the 190 healthy control subjects, 111 were male

(58.4%). The median age of the control subjects was 44 years

(range, 12–79 years).

Genotype Distribution
Two samples failed genotyping of FCGR3A and 2 samples failed

in genotyping of FCGR2B. Allele distributions of the tested FCGR

genes in the control group were in Hardy-Weinberg equilibrium.

The frequencies of FCGR2A, FCGR3A, FCGR3B and FCGR2B

genotypes were shown in Table 2. An association was found

between FCGR2B 232I/T genotypes and cryptococcal meningitis

based on dominant and over-dominant model. The FCGR2B

232I/I genotype was over-presented (OR = 1.652, 95% CI [1.02–

2.67]; P = 0.039) and the FCGR2B 232I/T genotype was under-

presented (OR = 0.542, 95% CI [0.33–0.90]; P = 0.016) in patients

with cryptococcal meningitis in comparison with controls. No

significant difference was found in the distribution of FCGR2A

131H/R, FCGR3A 158 F/V and FCGR3B NA1/NA2 genotypes.

We further compared the genotype distribution of FCGR2A,

FCGR3A, FCGR3B and FCGR2B between the 58 patients without

predisposing condition and controls. Similar to results from the

overall patient group, associations were also found between

FCGR2B 232I/T genotypes and cryptococcal meningitis based

on dominant and over-dominant model. Specifically, FCGR2B

232I/I genotype was also more frequently detected (OR = 1.958,

95% CI [1.05–3.66]; P = 0.033), and FCGR2B 232I/T genotype

was also less frequently detected (OR = 0.467, 95% CI [0.24–

0.91]; P = 0.023) in patients without predisposing factor than in

controls. For the genotype distribution of other polymorphisms

(FCGR2A 131H/R, FCGR3A 158 F/V and FCGR3B NA1/NA2),

there was also no significant difference between patients and

controls.

Discussion

The distribution of FCGR polymorphisms has been reported to

exhibit substantial inter-ethnic variation. According to our

population, frequencies of FCGR2A 131R/R, FCGR3B NA2/

NA2, and FCGR2B 232T/T in all subjects were 16%, 11%, and

7% respectively, similar to those reported among other Asian

populations (which ranged 9–14%, 11–21%, and 5–11%) [19–26].

Frequencies of these genotypes in Caucasian population were

reported to be 19–34%, 38–43%, and 1–3% [18,23,27–30], which

were different from our data. There seems no marked difference in

the distribution of FCGR3A 158F/V genotypes between the Asian

and Caucasian populations [18,21,23,31,32].

The four polymorphisms of low-affinity receptors genotyped in

our study have each been demonstrated to affect functions of their

encoded receptors. In FCGR2A, the G.A SNP at amino acid

position 131 results in a histidine (H) to arginine (R) change

(FCGR2A 131H/R), resulting in reduced affinity of the correspon-

dent receptor to IgG2 [33,34]. The T.G SNP at position 158 of

FCGR3A causes a phenylalanine (F) to valine (V) substitution

(FCGR23A 131F/V) and FCGR3A 158V/V encoded receptors

show higher affinity to IgG1 and IgG3 [35,36]. In the FCGR3B

gene, five nucleotides (141,147,227,277 and 349) are combined to

form two main haplotypes termed FCGR3B NA1 and FCGR3B

NA2, and receptor encoded by FCG3B NA1 haplotype binds to

IgG1 and IgG3 more easily [37]. Finally, FCGR2B 232I/T causes

an isoleucine (I) to threonine (T) substitution in the trans-

membrane domain [22,38] and receptors encoded by FCGR2B

232T are unable to interact with activating receptors [39].

Although FCGR polymorphisms have been demonstrated to be

associated with susceptibility and severity of numerous infections,

there has only been one previous genetic association study on the

relationship of FCGR genotypes and cryptococcosis [18]. Meletia-

dis and colleagues genotyped FCGR2A 131H/R, FCGR3A 158F/V

and FCGR3B NA1/NA2 in 103 cryptococcosis patients and 395

Table 1. Clinical information and predisposing factors in 117
patients with cryptococcal meningitis.

Characteristics N (%)/median (range)

Male 74 (63.2)

Age (years) 45 (14–78)

Confirmed cases 101 (86.3)

Probable cases 16 (13.7)

Predisposing factorsa 59 (50.4)

Autoimmune diseases 18 (15.4)

Diabetes mellitus 13 (11.1)

Liver cirrhosis 6 (5.1)

Chronic kidney diseases 5 (4.3)

Solid malignancies 2 (1.7)

Kidney transplantation 2 (1.7)

Corticosteroidsb 21 (17.9)

Immunosuppressionc 12 (10.3)

Idiopathic CD4+ T lymphocytopenia 13 (11.1)

Severe cryptococcal meningitisd 35 (29.9)

Disturbance of consciousness 31 (26.5)

Cerebral herniation 9 (7.7)

Death 5 (4.3)

NOTE: aPredisposing factors including immunocompromising diseases (liver
cirrhosis, chronic kidney diseases, autoimmune diseases, malignancies, solid
organ transplantation, diabetes mellitus), and corticosteroid or
immunosuppressive medications, and idiopathic CD4+ T lymphocytopenia.
Some patients had more than one predisposing factors.
bDefined as receiving prednisone of a mean minimum dose of 0.3 mg/kg/day,
or equivalent doses of other corticosteroids for .3 weeks.
cImmunosuppressive agents including cyclosporine, tripterygium glycosides,
vincristine, etc.
dPatients with one or more conditions including disturbance of consciousness,
cerebral herniation, and death were classified as severe cases.
doi:10.1371/journal.pone.0042439.t001
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healthy controls. They found that in patients with cryptococcosis

FCGR2A 131R/R and FCGR3A 158V/V were over-presented (P-

values were 0.04 and 0.04), while FCGR3B NA2/NA2 was under-

presented (P-value was 0.04).

In our study, we found for the first time that cryptococcal

meningitis was associated with the FCGR2B 232I/T genotypes,

which was not reported in Metediatis’ study. As the only known

inhibitory FccR, FccRIIB has an immunoreceptor tyrosine-based

inhibitory motif (ITIM) in its cytoplasmic domain, and thus it plays

an important role in regulating the immune system [40]. FCGR2B

232I/T is located in the transmembrane domain, and the

FccRIIB receptors encoded by FCGR2B 232T are unable to

interact with activating receptors and exert inhibitory activity [38].

Published data have suggested the mutation genotype FCGR2B

232T/T to be a susceptible genotype for systemic lupus

erythematosus [17,22,32], and this genotype also provided pro-

tective effect for severe malaria in East African children [17]. The

role of FccRIIB in cryptococcal infection is still not very clear. Like

the activatory FccRs, FccRIIB can also recognize the major

component of the capsule of C. neoformans, glucuronoxylomannan

(GXM). In a previous study by Monari et al., the immunosup-

pressive effect of GXM was demonstrated to be dependent on

FcRcIIB, based on the evidences that FccRIIB blockade inhibits

GXM-induced IL-10 production and induces TNF-a secretion,

and that the addition of monoclonal antibody to GXM reverses

GXM-induced immunosuppression by shifting recognition from

FccRIIB to FccRIIA [41]. Another study subsequently demon-

strated that GXM triggered NO-induced macrophage apoptosis,

which was dependent on FccRII [42]. These data support that

FccRIIB plays a critical role in the pathogenesis of cryptococcal

infection. In our study, it is the FCGR2B 232I/T heterozygote

instead of the minor homozygote 232T/T that is under-presented

in patient group. One study on children with idiopathic

thrombocytopenia (ITP) also showed a similar pattern, that the

FCGR2B 232I/T was less frequently detected in acute ITP in

comparison with chronic ITP [27]. The reason for the hetero-

zygotes 232I/T rather than 232T/T under-presenting in our

patients and those acute ITP children has not been clarified.

Unlike results from Meletiadis’ study, no association among

FCGR2A 131H/R, FCGR3A 158F/V, FCGR3B NA2/NA2 and

cryptococcal meningitis was found in our study. The cause for

discrepant results may be multifactorial. One was the ethnic

differences between the two studies. Subjects in our study were of

Chinese Han ethnicity, while the majority of subjects in

Meletiadis’ study were Caucasians (60%). As a matter of fact,

the FCGR3A 158V allele was significantly increased only in

patients who were Caucasian in Meletiadis’ study. Secondly, all

the cases in our study were diagnosed with cryptococcal

meningitis, while some patients from Meletiadis’ study were

cryptococcosis without central nervous system involvement.

Table 2. Distribution of FCGR2A, FCGR3A, FCGR3B, FCGR2B genotypes in patients with cryptococcal meningitis and controlsa.

Genotypes All patients (117) Patients without predisposing factors (58) Controls (190)

N % P OR (95% CI) N % P OR (95% CI) N %

FCGR2A

131H/H (Dominant b) 47 40 0.335 0.795 (0.50–1.27) 28 48 0.740 1.105 (0.61–1.99) 87 46

131H/R (Over-dominantb) 48 41 0.859 1.043 (0.65–1.67) 23 40 0.963 0.986 (0.54–1.80) 76 40

131R/R (Recessive b) 22 19 0.286 1.398 (0.75–2.59) 7 12 0.678 0.829 (0.34–2.02) 27 14

131H (Allelicb) 142 61 0.201 0.803 (0.57–1.13) 79 75 0.644 1.110 (0.71–1.73) 250 66

FCGR3A

158F/F (Dominant) 52 45 0.889 0.967 (0.61–1.54) 28 48 0.687 1.129 (0.63–2.03) 86 45

158F/V (Over-dominant) 54 46 0.740 1.082 (0.68–1.72) 22 38 0.397 0.771 (0.42–1.41) 84 44

158V/V (Recessive) 11 9 0.751 0.882 (0.41–1.91) 8 14 0.491 1.360 (0.57–3.27) 20 11

158F (Allelic) 158 68 0.969 1.007 (0.71–1.43) 76 74 0.980 0.994 (0.64–1.55) 256 67

FCGR3B

NA1/NA1 (Dominant) 34 29 0.852 0.953 (0.57–1.58) 15 26 0.576 0.827 (0.43–1.61) 57 30

NA1/NA2 (Over-dominant) 73 63 0.276 1.301 (0.81–2.09) 38 67 0.176 1.533 (0.82–2.85) 107 57

NA2/NA2 (Recessive) 9 8 0.178 0.578 (0.26–1.29) 4 7 0.341c 0.519 (0.17–1.56) 24 13

NA1/NA3d 0 0 – – 0 0 – – 1 –

NA1 (Allelic) 141 61 0.626 1.087 (0.78–1.52) 68 65 0.868 1.037 (0.68–1.60) 221 58

FCGR2B

232I/I (Dominant) 75 65 0.039* 1.652 (1.02–2.67) 40 69 0.033* 1.958 (1.05–3.66) 101 53

232I/T (Over-dominant) 31 27 0.016* 0.542 (0.33–0.90) 14 24 0.023* 0.467 (0.24–0.91) 77 40

232T/T (Recessive) 9 8 0.614 1.259 (0.51–3.09) 4 7 1.000c 1.099 (0.34–3.55) 12 7

232I (Allelic) 131 79 0.128 1.352 (0.92–1.99) 94 89 0.097 1.547 (0.92–2.59) 279 73

NOTE: aThe patient group included 101 confirmed cases and 16 probable cases of cryptococcal meningitis, among which 59 were with predisposing factors and 58 were
apparently healthy.
bDominant: heterozygotes and homozygotes for mutant allele vs. homozygotes for wildtype allele. Over-dominant: homozygotes for mutant and wildtype allele vs.
heterozygotes. Recessive: homozygotes for mutant allele vs. heterozygotes and homozygotes for wildtype allele. Allelic: mutant alleles vs. wildtype alleles.
cAnalyzed by Fisher’s exact test. The other data were all analyzed with 262 x2 test.
dThere was a haplotype of FCGR3B NA (141G-147C-227G-277A-349A) in controls which has not been reported in previous studies. We defined it as NA3.
*P,0.05.
doi:10.1371/journal.pone.0042439.t002
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Furthermore, both studies had relatively small sample sizes, which

could be underpowered to generate positive results.

In conclusion, our study suggested that FccRIIB genetic

polymorphism may contribute to the susceptibility of cryptococcal

meningitis. The overall association is relatively weak, which

warrants validation in larger population.

Ethics Statement
This study was reviewed and approved by the Ethic Commit-

tee/Institutional Review Board (HIRB) of Huashan Hospital,

Fudan University, and informed written consent was obtained

from each participant.

Materials and Methods

Subjects
A total of 200 volunteers and 117 unrelated patients with

proven or probably diagnosed cryptococcal meningitis who were

referred to Huashan Hospital, Fudan University, China, from

2001 through 2011 were recruited for the present study. Patients

who met at least one of the following criteria were considered as

proven cryptococcal meningitis: (1) Isolation of C. neoformans from

cerebrospinal fluid (CSF) by culture or positive India ink smear,

and (2) compatible histopathological findings, which are 5–10 mm

encapsulated yeasts observed in brain tissue. Patients who had no

microbiological or pathological documentation but present with

positive cryptococcal antigen titer ($1:10) in CSF and met at least

one of the following criteria were regarded as probable crypto-

coccal meningitis: (1) abnormal laboratory tests or an increased

open pressure ($200 mmH2O) of CSF, (2) abnormalities of

cranial imaging (Computerized Tomography or Magnetic Reso-

nance Imaging) which could not be explained by other factors, and

(3) comorbidities that compromise the host immune system.

Cryptococcal antigen was determined using diluted CSF with the

Latex-Cryptococcus antigen detection system (Immuno-Mycologics).

Patients and volunteers were assessed for predisposing factors as

follow, immunocompromising diseases (liver cirrhosis, chronic

kidney diseases, autoimmune diseases, malignancies, solid organ

transplantation) [2,3,43], and corticosteroid (at prednisone equiv-

alent dose of .0.3 mg/kg/day of for .3 weeks) or immunosup-

pressive medications (within 90 days before onset of cryptococcal

meningitis) [44], and idiopathic CD4+ T lymphocytopenia (un-

explained CD4+ T lymphocytopenia with CD4+ T lymphocyte

count ,300 cells/mm3) [45]. Diabetes mellitus was also included,

although this common condition is a controversial predisposing

factor [3,46]. Patients without any of the above mentioned

predisposing factors were considered as apparently healthy hosts.

Ten volunteers were excluded because of disclosed predisposing

conditions, and the remaining 190 healthy volunteers were

included in the control group.

Polymorphisms Selection and Genotyping
Four functional FCGR polymorphisms including FCGR2A

131H/R, FCGR3A 158F/V, FCGR3B NA1/NA2, and FCGR2B

232I/T were selected for genotyping after literature review of

previous studies on association between FCGR polymorphisms and

infectious diseases [11–17].

Venous blood was obtained by venepuncture from each subject.

Genomic DNA was extracted using the QIAamp DNA kit

(Qiagen, Hilden, Germany) according to manufacturer’s instruc-

tions. Genotyping of 8 SNPs in FCGRs (Table 3) was performed by

multiplex SNaPshot technology using an ABI fluorescence-based

assay discrimination method (Applied Biosystems, Foster city, CA,

USA), which has been described in detail in previous studies

[47,48]. The multiplex SNaPshot detection of single-base extend-

ed probe primers was based on fluorescence and extended length

detected by capillary electrophoresis on ABI3130XL Sequencer

(Applied Biosystems, Foster City, CA, USA).

Four pairs of primers for PCR amplification including 5

fragments of 587–2394 bp and 8 primers for SNaPshot extension

reactions were designed by Primer3 online software (v.0.4.0)

(http://frodo.wi.mit.edu/primer3/) according to the reference

sequences from dbSNP (http://www.ncbi.nlm.nih.gov/SNP).

There were homologous sequences between FCGRs, the specificity

sequences were checked with the sequence databases using

BLAST (http://www.ncbi.nlm.nih.gov/blast/blast.cgi). These se-

quences were also verified by SNPmasker1.1 (http://bioinfo.ebc.

ee/snpmasker) to make sure that the different bases were caused

by SNP [49]. And each primer pair was tested for potential

primer-dimer and hairpin structures using the AutoDimer

software (http://www.cstl.nist.gov/biotech/strbase/

AutoDimerHomepage/AutoDimerProgramHomepage.htm). The

primers used in this study were listed in Tables 3.

The PCR reactions were performed with 1 mL of DNA and

1 mL multiple PCR primers (the concentration was 1 mM) in a total

volume of 20 mL containing 16 HotStarTaq buffer, 2.0 mM

Mg2+, 0.3 mM dNTP, and 1 U HotStarTaq polymerase (Qiagen,

Hilden, Germany). The cycling conditions for FCGR2A and

Table 3. Product size and primers of eight SNPs in FCGRs.

SNP ID Product size (bp) PCR primer sequence Extension primer sequence

FCGR2A 131H/R (rs1801274) 587 F:TTGCCTATAAGAGAATGCTCACATCT
R:AAGCTCTGGCCCCTACTTGTT

SR: TTTTTTTTTTTTGGAGAAGGTGGGATCCAAA

FCGR3A 158F/V (rs396991) 1537 F:GAATTGCCAGGCTGAGCAA
R:CAGGCTTTGAAGTCTTTGATGTG

SR: TTTTTTTTTTTTTTTTTTCTGAAGACACATTT
TTACTCCCAA

FCGR2B 232I/T (rs1050501) 2394 F:CCTCAGCACATATCAGTGGTGGT
R:AGCCCAAAGAGAGGGATTCTG

SR: AACAATGGCCGCTACAGCA

FCGR3B NA1/NA2 (rs403016,rs447536,
rs448740, rs428888, rs2290834)

1413 F:CACATCTATAGCTGTGGATTGAGGTA
R:TCCATATGGGGATTCTTGGAA

rs403016SF: TTTTTTTTTTTTTTTTTTTTTTTTCCTGGAGC
CTCAATGGTACAG
rs447536SR: TTTTTTTTTACTTCAGAGTCACACTGTCCTTC
TC rs448740SR: TTTTGGCCTGGCTTGAGATGAGG
rs428888SR: TTTTTTTTTTTTTTGCACCTGTACTCTCCACT
GTCGT
rs2290834SF: TTTTTTTCGGTGCAGCTAGAAGTCCAT

Note: F indicates forward primer, R indicates reverse primer.
doi:10.1371/journal.pone.0042439.t003
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FCGR3A were 95uC for 2 min, 35 cycles using 96uC for 20 s, 62uC
for 2 min, and 72uC for 3 min, then 72uC for 10 min, and finally

kept at 4uC. The cycling conditions for FCGR2B and FCGR3B

were 95uC for 2 min, 7 cycles using 96uC for 20 s, 55uC for 2 min,

and 72uC for 3 min, then 72uC for 10 min, and finally kept at

4uC. PCR products were then purified (add 1U SAP enzyme to

10 mL PCR products, incubate at 37uC for 1 hour, then,

inactivate at 75uC for 15 min).

The extension reaction to identify single nucleotide polymorph-

isms in the PCR products was performed in a total volume of

10 mL containing 2 mL purified PCR product, 1 mL primer (the

concentration was 0.8 mM), 5 mL SNaPshot Multiplex Kit

(Applied Biosystems, Foster City, CA, USA), and 2 mL ultrapure

water. The cycling conditions for extension were 96uC for 1 min,

28 cycles of 96uC for 10 s, 52uC for 5 s, and 60uC for 30 s, and

kept at 4uC. Then each extended product was added to 1 U

shrimp alkaline phosphatase, incubated at 37uC for 1 hour, and

the enzyme inactivated at 75uC for 15 min. Then, 0.5 mL was

added to 0.5 mL Liz120 SIZE STANDARD (Applied Biosystems,

Foster City, CA, USA), 9 mL Hi-Di (Applied Biosystems, Foster

City, CA, USA), and sequenced by ABI3130XL Sequencer

(Applied Biosystems, Foster City, CA, USA). Finally, the primary

data was analyzed by GeneMapper 4.0 (Applied Biosystems,

Foster City, CA, USA). Genotypes were determined by the type of

nucleotide presented at SNP site, which was visualized by one or

two different color peaks on the figures.

For quality control, a random sample of 5% of the cases and

controls was genotyped twice by different researchers, with

a reproducibility of 100%. The minor allele counts were compared

with database (http://www.ncbi.nlm.nih.gov/projects/SNP), and

the data were matched well. Genotyping was performed blind to

group status.

Statistical Analysis
Dominant, over-dominant, recessive and allelic models were

applied for the analysis of genotype distribution. Hardy-Weinberg

equilibrium, differences in gene polymorphism distributions

between patients and controls were analyzed with 262 x2 tests

or Fisher’s exact test where appropriate. P-values, odds ratios

(ORs) and 95% confidence intervals (CIs) were obtained by SPSS

16.0 for Windows (SPSS, Inc, Chicago, IL). P-values ,0.05 were

considered statistically significant.
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