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Growth hormone-releasing hormone (GHRH) is produced by the hypothalamus and 
stimulates growth hormone synthesis and release in the anterior pituitary gland. In 
addition, GHRH is an important regulator of cellular functions in many cells and organs. 
Expression of GHRH G-Protein Coupled Receptor (GHRHR) has been demonstrated in 
different peripheral tissues and cell types, including pancreatic islets. Among the periph-
eral activities, recent studies demonstrate a novel ability of GHRH analogs to increase 
and preserve insulin secretion by beta-cells in isolated pancreatic islets, which makes 
them potentially useful for diabetes treatment. This review considers the role of GHRHR 
in the beta-cell and addresses the unique engineered GHRH agonists and antagonists 
for treatment of type 2 diabetes mellitus. We discuss the similarity of signaling pathways 
activated by GHRHR in pituitary somatotrophs and in pancreatic beta-cells and possible 
ways as to how the GHRHR pathway can interact with glucose and other secretagogues 
to stimulate insulin secretion. We also consider the hypothesis that novel GHRHR ago-
nists can improve glucose metabolism in Type 2 diabetes by preserving the function 
and survival of pancreatic beta-cells. Wound healing and cardioprotective action with 
new GHRH agonists suggest that they may prove useful in ameliorating certain diabetic 
complications. These findings highlight the future potential therapeutic effectiveness of 
modulators of GHRHR activity for the development of new therapeutic approaches in 
diabetes and its complications.
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inTRODUCTiOn

Type 2 diabetes mellitus (T2DM) is an important metabolic disease affecting almost 30  million 
Americans with an estimated $250  billion lost yearly, due to effects of morbidity and mortality 
on total medical costs and lost wages. T2DM is associated with a progressive decline in insulin 
secretion by pancreatic beta-cells in the face of insulin resistance (1). Despite its importance, we 
do not fully understand the complex interplay of molecular signals and signal transduction events 

Abbreviations: GHRH, growth hormone-releasing hormone; GHRHR, GHRH G-protein coupled receptor; GLP-1, glucagon-
like peptide 1; GLP-1R, receptor for GLP-1; GSIS, glucose-stimulated insulin secretion; GPCR, G-protein coupled receptor; 
KATP channels, ATP-sensitive K+ channels; PKA, protein kinase A; PLC, phospholipase C, T2DM, type 2 diabetes mellitus.
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FiGURe 1 | Mechanism of the action of GHRH on Ca2+ and K+ 
channels: coupling with protein kinase A (PKA) and protein kinase C 
(PKC) systems. This diagram illustrates the coupling of the Ca2+ and K+ 
channels with GHRH receptors. cAMP–PKA system mediates the action of 
GHRH on voltage-gated Ca2+ currents, and the PKC system is essential for 
the action of GHRH on voltage-gated K+ currents in somatotropes. AC, 
adenylyl cyclase; PLC, phospholipase C. Reprinted by permission from 
Macmillian Publishers Ltd., from Ref (23), Figure 11.
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that control beta-cell functionality and survival. This limits our 
ability to develop novel approaches for prevention and treatment 
of diabetes.

The beta-cell membrane contains a profusion of G-protein 
coupled receptors (GPCRs) that are critical for the regulation 
of insulin secretion by hormones and neurotransmitters (2–4). 
Growth hormone-releasing hormone (GHRH) is an important 
regulator not only of growth hormone secretion but also of a 
variety of cellular functions in many cells and organs. Expression 
of GHRH G-protein coupled receptor (GHRHR) has been dem-
onstrated in different peripheral tissues and cell types, including 
pancreatic islets (5, 6).

Recent studies demonstrate a novel ability of GHRH analogs to 
increase and preserve insulin secretion by beta-cells in islets and 
diabetic mice (7, 8) that makes them potentially useful for treat-
ment of T2DM. Remarkable results from the study of new GHRH 
agonists in wound healing and cardiovascular performance could 
also provide novel treatments in patients with diabetes (5, 7, 9). 
This review addresses the possible role of GHRHR and its unique 
engineered agonists and antagonists for treating diabetes and its 
complications.

GHRH AnD iTS AnALOGS

Hypothalamic growth hormone-releasing hormone is one 
of the “humoral factors” that is critical for growth hormone 
secretion. The discovery of hypothalamic hormones, such as 
thyrotropin-releasing hormone, luteinizing hormone-releasing 
hormone (also known as gonadotropin-releasing hormone), 
which regulate the secretion of anterior pituitary hormones led 
to the awarding of the Nobel Prize (1977) to one of us (Andrew 
V. Schally) (10). GHRH, expressed in the arcuate nucleus of 
the hypothalamus and released into portal vasculature, directly 
stimulates growth hormone synthesis and secretion from the 
pituitary somatotropes by activating the corresponding GHRH 
receptors (5, 11). GHRHR is present in several other tissues, such 
as myocardium, lymphocytes, testes, ovaries, skin, and pancreas 
and is involved in a variety of biological processes (5). The roles 
of GHRHR in other cells and tissues continue to be explored. In 
addition, GHRHR have been detected in various tumor cells and 
in some stem cells (5, 6).

It should be noted that GHRH undergoes rapid enzymatic 
degradation in blood. Dipeptidylpeptidase IV inactivates the 
active form of GHRH in blood to its more stable inactive metabo-
lite GHRH(3-44)-NH2 (12, 13). For this reason, concentration of 
active GHRH (that is produced in the hypothalamus) in blood 
may be insignificant, and so without significant influence on 
organs beyond the pituitary somatotropes. Interestingly, inhibi-
tors to dipeptidylpeptidase IV are in widespread use now for 
type 2 diabetes treatment to increase GLP-1 concentration in 
blood (14). These agents should also lead to increased GHRH 
blood concentration. However, this interesting possibility and the 
effect of GHRH on various target tissues where the GHRHR is 
expressed have not been investigated.

Accumulating evidence also suggests that, in addition to the 
neuroendocrine action of GHRH, extrahypothalamic GHRH 
has been implicated in many peripheral actions via autocrine/

paracrine mechanisms. Exogenous GHRH can regulate prolifera-
tion, survival, apoptosis, and differentiation in several tissues and 
cell types (5, 15).

The GHRHR is a member of the class II B GPCR family, 
which couples predominantly to the Gs-adenylate cyclase-cAMP 
signaling pathway. Peptide hormones that activate class II GPCRs 
include GHRH, secretin, glucagon-like peptides, gastric-inhibi-
tory peptide (GIP), pituitary adenylate cyclase-activating peptide, 
corticotropin-releasing hormone, vasoactive intestinal peptide, 
parathyroid hormone, and calcitonin-related peptides (16, 17).

The mechanism of the acute action of GHRH on the pituitary 
somatotrope to increase growth hormone synthesis and secretion 
has been studied (Figure  1). Binding of GHRH to its receptor 
activates a stimulatory G protein, which activates adenylyl cyclase 
to produce cAMP, leading to activation of protein kinase A 
(PKA). This stimulates an influx of calcium, most likely through 
plasma membrane depolarization, and activation of voltage-
sensitive Ca2+ channels. Increased Ca2+ and cAMP stimulates 
the growth hormone exocytosis process (18–21). For example, 
forskolin (adenylate cyclase activator) increases Ca2+ influx in 
somatotrophs, and inhibition of phosphodiesterase increases 
the electrical activity of somatotrophs confirming the relevance 
of cAMP in GHRH action (22). Regulated secretion of growth 
hormone involves movement of secretory vesicles along microtu-
bules, transient “docking” in the cell membrane, and subsequent 
release of vesicles (21).

In pituitary somatotrophs, upon binding of the ligand GHRH 
to the GHRHR, the activated second messengers include not 
only the adenylate cyclase–cAMP–PKA and Ca2+-calmodulin but 
also inositol phosphate–diacylglycerol–protein kinase C (PKC), 
L-type calcium channels, and arachidonic acid–eicosanoic path-
ways as well, these ultimately result in the stimulation of growth 
hormone production and secretion (23–25). Increased cAMP also 
stimulates PKA to activate the cAMP response element-binding 
protein (CREB), which stimulates GHRHR gene transcription.
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FiGURe 2 | Schematic of the beta-cell signaling pathways and 
hypothetical role of GHRHR. Arrows indicate activation or an increase in 
concentration. The line ending with a bar indicates inhibition or closure. 
Glucose metabolism increases the ATP/ADP ratio, leading to the closure of 
KATP channels, reduction of K+ efflux, membrane depolarization, increase of 
intracellular Ca2+, and insulin secretion. Glucose also leads to insulin secretion 
through amplifying pathways that are independent of KATP channels. 
Carbachol stimulation enhanced insulin secretion via the acetylcholine 
(muscarinic) receptor and phospholipase C pathways. IP3 is inositol 
1,4,5-trisphosphate, DAG is diacylglycerol. As depicted, GLP-1 and GHRH 
both enhance insulin secretion via the cAMP pathway.
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It is also likely that GHRH function relates to the ability 
to stimulate somatotroph cell proliferation. The activation of 
MAP kinase and ERK phosphorylation has been observed in 
the pituitary in a cAMP/PKA/PKC-dependent manner (26, 
27). Alternatively, GHRH can stimulate the Ras/MAPK via 
βγ-subunits, to promote cell growth (26). In the myocardium, 
GHRHR-mediated inhibition of apoptosis involves modulation 
of ERK1 and ERK2 and PI3K−Akt signaling because ERK1/2- 
and PI3K/Akt-specific inhibitors abolished these effects (28).

Numerous high affinity and high specificity agonists and 
antagonists of GHRHR have been developed (9, 29–31). There 
are remarkable results from studies of GHRH agonists for 
wound healing, cardioprotective action, and protection from 
pneumolysin-induced pulmonary permeability edema (5, 7, 9, 
32, 33). On other hand, GHRHR antagonists show prominent 
effects in augmenting apoptosis and decreasing proliferation of 
multiple types of cancer cells (30, 34, 35).

eFFeCTS OF GHRH AnD ReLevAnT 
GHRHR AGOniSTS in PAnCReATiC 
BeTA-CeLL AnD iSLeTS

Insulin is produced by pancreatic beta-cells in the islets of 
Langerhans. GHRH receptors have been described in primary 
as well as clonal pancreatic beta-cells (insulinoma cells) and 
isolated islets (7, 8, 36, 37). Human GHRH can acutely stimulate 
insulin secretion from isolated rodent islets and dispersed beta-
cells (38, 39) and from perfused dog pancreas (40). Intravenous 
injection of human GHRH to rats increased plasma concentra-
tion of insulin being released into the hepatic portal vein (39). 
In another functional assay, pretreatment with synthetic GHRH 
analogs improved the engraftment and the metabolic function 
of islets, following transplantation to streptozotocin (STZ)-
induced diabetic mice (36). Pretreatment of rat islets with the 
GHRH agonist, JI-36, significantly enhanced graft function by 
improving glucose tolerance and increasing beta-cell insulin 
reserve in rats (41). Novel high affinity and high specificity 
agonists of GHRHR improve insulin secretion and preserve 
beta-cells and islets in lethality assays (7, 8). Based on these 
findings, GHRH and its corresponding receptor hold promising 
therapeutic potential for improving beta-cell function and pos-
sibly treating T2DM.

Interestingly, the discovery of GHRH was due in part to the 
recognition of ectopic GHRH secretion from human pancreatic 
islet tumors causing ectopic acromegaly (42–45). GHRH was, 
thus, found in human pancreatic tumor tissue extracts, leading 
to its structural elucidation (44). These data suggest that perhaps 
GHRH is expressed at low levels by pancreatic islet cells and 
possibly during development also at low levels. This suggests 
that GHRH may be part of a paracrine system in islets, but this 
possibility has not yet been investigated. It is also possible that 
the GHRHR exerts an influence on cell function even without 
receptor activation through some tonic receptor function.

Despite these advances, the details of GHRHR expression, 
signaling pathways, and function in pancreatic islet cells have not 
been fully elucidated. We will consider the possible mechanisms 

of regulation of insulin secretion as well as mechanisms relating 
to beta-cell proliferation to evaluate the possible roles of GHRHR 
activation.

The primary role of pancreatic beta-cells is to regulate 
metabolism by sensing changes in blood glucose concentration 
and responding by secreting precisely regulated amounts of insu-
lin. The action of hormones and neurotransmitters contribute 
to such signaling and amplify the glucose-stimulated insulin 
secretion (GSIS) (46) (Figure 2). GSIS is Ca2+-dependent and is 
regulated by metabolic signals generated by glucose catabolism. 
Glucose-dependent signal transduction begins with uptake of 
glucose into beta-cells via the GLUT2 transporter. Cytoplasmic 
glucose molecules are rapidly phosphorylated by glucokinase and 
converted to pyruvate in the cytosol via the glycolytic pathway, 
then oxidized within the mitochondria via the tricarboxylic 
acid cycle and oxidative phosphorylation pathways, respectively. 
Glucose catabolism generates ATP. The membrane potential of 
beta-cells is controlled by KATP channels. Under basal conditions, 
sufficient KATP channels are open so that the plasma membrane 
is hyperpolarized. Blocking KATP channels by an ATP-dependent 
mechanism initiates plasma membrane depolarization that opens 
voltage-gated Ca2+ channels; Ca2+ enters the beta-cell from the 
extracellular milieu through of these channels and increases 
cytoplasmic Ca2+. Glucose-induced increases in cytoplasmic Ca2+ 
and insulin secretion are directly correlated (46, 47).
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The beta-cell membrane contains a profusion of GPCRs that 
are implicated in regulation of insulin secretion by hormones 
and neurotransmitters. GPCRs may have complimentary or 
antagonistic actions on insulin secretion (2–4). For example, a 
stimulation of insulin secretion by food begins with a “cephalic” 
phase due to sensory stimulation by sight and taste of food. 
This is largely mediated by the release of acetylcholine from 
nerves innervating pancreatic islets. The subsequent cholinergic 
stimulation via the muscarinic (acetylcholine) GPCR leads to an 
activation of the phospholipase C (PLC) pathway (48, 49).

Incretin hormones also play a critical role in insulin secre-
tory response following meal ingestion. These hormones have 
significant influence on GSIS primarily through activation of the 
cAMP pathway that also leads to plasma membrane depolariza-
tion and an increase in cytoplasmic Ca2+ (50, 51). For example, 
glucagon-like peptide I (GLP-1) is one such potent incretin 
hormone activating the GPCR alpha(s) that can increase cAMP 
and activate the PKA pathway in beta-cells. GLP-1 agonists (and 
DPP4 inhibitors to prolong the half-life of endogenous incretins) 
have been successfully adopted for T2DM treatment (3, 50).

Growth hormone-releasing hormone and the incretin hor-
mones such as GLP-I and GIP belong to the same class of the 
structurally related hormones that activate class B GPCRs. As dis-
cussed above, these incretin hormones activate the Gs-adenylate 
cyclase-cAMP signaling pathway, that is, this mechanism can be 
identical to that of GHRHR in somatotroph cells (see Figures 1 
and 2). Interestingly, GHRHR agonists significantly increased the 
levels of cellular cAMP in rat beta-cell line (INS-1) (7). For this 
reason, it is reasonable to conclude that GHRHR agonists also 
employ a cAMP-based signaling mechanism and, therefore, they 
would have beneficial effects on insulin secretion and beta-cell 
survival (7). There is also a possibility that activation of cAMP 
pathway can lead to an increase in cytoplasmic Ca2+ concentra-
tion that can activate PLC and correspondingly activate this 
pathway [see, for example, Ref. (4)].

Interestingly, activation of the cAMP pathway in beta-cells 
by the incretin hormones leads to increased insulin secretion in 
part due to plasma membrane depolarization and an increase in 
cytoplasmic Ca2+ [for review see Ref. (4, 52)]. Mechanisms by 
which GHRH increases growth hormone-release also include 
plasma membrane depolarization and an increase in cytoplasmic 
Ca2+ (see above) that also point to significant similarities between 
the mechanisms of GLP-1 in beta-cells and the mechanisms of 
GHRH in the pituitary somatotropes.

Activation of GHRH receptors may also lead to activation 
of gene transcription, proliferation, and survival in beta-cells. 
For example, the mechanisms of beta-cell proliferation and 
survival include ERK and Akt signaling pathways (53). GHRHR 
agonists activate these pathways in various cell types (see above). 
Experiments in rat insulinoma cells (INS-1) showed that the 
GHRH agonist MR-409 significantly increased cell proliferation 
and induced activation of ERK and Akt pathways (7).

GHRH G-protein coupled receptor agonists significantly 
increased the levels of the phosphorylation of CREB in rat beta-
cell line (INS-1) (7) as well as in somatotrophs, where GHRHR 
agonists can stimulate growth hormone gene transcription (see 
above). This may also be similar to one of the mechanisms of 

GLP-1. GLP-1 has also been shown to promote beta-cell prolifera-
tion and survival in rodents by activating ERK and Akt pathways 
(50). cAMP induced by GLP-1 caused elevated phosphorylation 
of CREB/activating-transcription-factor-1 in insulin-secreting 
beta-cells (54). However, the exact mode(s) of GHRHR signal-
ing in the pancreatic islets and the most important mechanisms 
of stimulation of insulin secretion and/or beta-cell survival are 
unknown.

Causal interrelationships between GHRHR agonists and the 
variety of GPCRs in beta-cells and the role of such networks in 
insulin secretion are unknown. We have recently employed our 
general beta-cell mathematical modeling approach for beta-cell 
GPCRs for a comparison of action of GPCRs for GLP-1 and GIP 
(4). Both of them couple predominantly to the Gs-adenylate 
cyclase-cAMP signaling pathway. Based on those models, we 
suggest that GHRHR agonists can have a similar role as GIP in 
its interaction with GLP-1. In this case, GHRHR agonists can 
act in a competitive manner with GLP-1 in their mechanisms of 
stimulating insulin secretion. This testable hypothesis remains to 
be directly demonstrated.

There are several possible ways as to how pancreatic beta-cell 
GHRH signaling can have implications in T2DM treatment. 
One of the root causes of T2DM is the altered signaling system 
in beta-cells, which leads to decreased insulin production and 
exocytosis. Our previous published data and that of several other 
groups suggest that some signaling systems in insulin-secreting 
cells are damaged or attenuated in diabetic states. “Diabetic con-
ditions” – such as hyperglycemia and hyperlipidemia – can lead 
to the loss of the GLP-1 receptor (GLP-1R) from the cell surface 
and, thereby, impair GLP-1 signaling, which may underlie the 
reduced clinical efficacy of GLP-1R activators (50, 51). GHRHR 
agonists can have beneficial effects under these conditions since 
these agonists activate the same cAMP pathway as GLP-1R, 
assuming the GHRHR is not also downregulated. Therefore, we 
can hypothesize that glycemic insensitivity to GLP-1R agonists 
in T2DM can be improved by simultaneous or sequential appli-
cation of GHRHR agonists, thus replacing a possible deficit of 
GLP-1R.

Ex vivo treatment of isolated islets with GHRH agonists may 
also improve results of islet transplantation in animal models. 
Preconditioning of encapsulated pancreatic islets with GHRHR 
agonists significantly enhanced graft function by improving glu-
cose tolerance and increasing beta-cell insulin reserve in diabetic 
rats (41). This effect is of sufficient interest to further examine it 
in human islet transplantation.

Interestingly, GHRH stimulated and GHRH antagonist 
inhibited the expression of the major antioxidant enzymes in the 
LNCaP human prostate cancer line (55). Additional expression 
of the major antioxidant enzymes may have additional benefits 
in T2DM (56) as well as T1D (57), and this may be another 
potentially beneficial effect of GHRHR agonists in both major 
types of diabetes.

Based on these studies, we suggest that GHRHR analogs have 
the potential to enhance beta-cell function, proliferation, and 
survival in vivo. Further studies with human islets and beta-cells 
will help determine if the GHRHR expression levels and signaling 
systems are similar in human and rodent models.
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DiABeTeS AnD ACTiviTY OF GHRH 
BeYOnD BeTA-CeLLS

Remarkable results from the study of new GHRH agonists in 
wound healing and cardiovascular performance could also sug-
gest novel treatments in patients with diabetes or perhaps help 
understand the pathways involved (5, 7, 9). GHRHR antagonists 
may target certain complications of diabetes, especially in Type 1 
diabetes and insulin-dependent T2DM, where insulin production 
by the beta-cell is at least clinically insignificant. For example, 
GHRH antagonism may improve some of the lipid, renal, and 
vascular complications of low insulin-associated diabetes (58). 
Another potential target for GHRH antagonists could be diabetic 
retinopathy, which is the main cause of blindness in patients with 
diabetes and diabetic nephropathy (glomerulosclerosis) (30). 
Despite remarkable advances in treatment and prevention of 
these complications, they are still dramatic components of the 
long-term costs of diabetes.

Gastrointestinal effects are also complications of diabetes. 
There was upregulation of GHRHR expression in intestinal cells 
in a mouse model of type 2 diabetes (58). Treatment with the 
GHRHR antagonist, MIA-602, interfered with GLP-1-dependent 
diabetes-related dyslipidemia in mice. It also decreased the plasma 
levels of GLP-1, glucagon, and TRL in these mice (58), which 
might lead to worsening of diabetes rather than improvement. 
Cross-talk between the GHRHR antagonist and acetylcholine 
signaling (M3 receptor) was observed in the aorta, where MIA-
602 prevented the diabetes-related block of carbachol-mediated 
vasodilation (58).

Interestingly, human GHRH can reduce glucagon release from 
isolated mouse islets (39). We can explain this by the increased 
insulin secretion that suppresses glucagon secretion in this 
case [see, for example, Ref. (59)]. However, enhanced glucagon 
secretion by islet cells in diabetes was also lowered by application 
of antagonist MIA-602 (58). The decreased glucagon secretion 
in this case can be explained by cAMP decrease in alpha cells 

[see, for example, Ref. (60)] through blocking the corresponding 
GHRH receptor when insulin secretion is insignificant in islets 
from diabetic animals or humans. Decreased glucagon release 
by GHRHR antagonists could have a beneficial effect in diabetes 
through decreasing hepatic glucose production and perhaps 
decreasing ketogenesis (59, 61).

COnCLUSiOn

This review of recent data with GHRHR agonists shows them to 
be capable of acutely increasing insulin secretion and enhancing 
rodent beta-cell proliferation and survival, when administered 
systemically. On the other hand, the modulators of GHRHR 
activity may be useful in ameliorating certain complications of 
diabetes. Studies are currently ongoing to determine the dose 
and treatment regimes of GHRHR modulators for the treat-
ment of other diseases. The results demonstrate a clear connec-
tion of GHRH and its receptor with glucose metabolism and 
pancreatic beta-cell function. We believe that there is a sound 
basis for further studies evaluating GHRHR agonists and/or 
antagonists as promising therapeutic agents for diabetes and 
its complications.
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