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Excess of mutational jackpot events in expanding
populations revealed by spatial Luria–Delbrück
experiments
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The genetic diversity of growing cellular populations, such as biofilms, solid tumours or

developing embryos, is thought to be dominated by rare, exceptionally large mutant clones.

Yet, the emergence of these mutational jackpot events is only understood in well-mixed

populations, where they stem from mutations that arise during the first few cell divisions. To

study jackpot events in spatially structured populations, we track mutant clones in microbial

populations using fluorescence microscopy and population sequencing. High-frequency

mutations are found to be massively enriched in microbial colonies compared with well-

shaken liquid cultures, as a result of late-occurring mutations surfing at the edge of range

expansions. Thus, jackpot events can be generated not only when mutations arise early but

also when they occur at favourable locations, which exacerbates their role in adaptation and

disease. In particular, because spatial competition with the wild type keeps most mutant

clones in a quiescent state, strong selection pressures that kill the wild type promote drug

resistance.
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O
ne of the hallmarks of spontaneous mutations in growing
populations is the emergence of mutational jackpot
events—large mutant clones arising from mutations that

by chance occur early in the development of a cellular population
so that their progenitors benefit from prolonged growth. Due to
their sheer size, these jackpot events, first discovered by Luria and
Delbrück1, are thought to have momentous roles in short-term
evolutionary processes, including the adaptation from standing
variation2–4, evolutionary rescue5, drug resistance evolution6–10

and the somatic evolution of genetic diseases11,12. However,
because the emergence of jackpot events has been understood
only in uniformly growing populations1,10,13, it is currently
impossible to predict their impact on the evolution of many
naturally structured populations.

The original Luria–Delbrück experiment studied mutant clones
arising in well-mixed microbial populations and detected the size
of resistant clones by counting single colonies on selective plates.
Here, we generalize the assay in two ways: (i) by studying mutant
clones arising in spatially structured populations and (ii) by using
a combination of next-generation sequencing and fluorescence
microscopy techniques to accurately detect size and structure of
high-frequency clones.

We find that high-frequency clones are massively enriched in
microbial colonies compared with well-shaken liquid cultures, as a
result of late-occurring mutations surfing at the edge of range
expansions14–16. We provide a mathematical theory that explains
the observed excess of jackpot events and predicts their role in
promoting rare evolutionary outcomes. In particular, we show that
resistant clones generated by surfing can become unleashed under
high selection pressures, and thus represent a drug resistance hazard
for high-dose drug treatments. In this context, our theory offers an
innovative explanation for the phenomenon of ‘competitive release’,
initially observed in ecology17–19, and more recently in tumour
evolution20, where the craved resource is space rather than
nutrients.

Results
Generalized Luria–Delbrück experiments. To measure the size
of mutational jackpot events, we employed population sequencing
with low error rates (see Methods section), which returned
frequencies of new mutations at many genomic sites simulta-
neously and independently of their phenotypic effect. Specifically,
we sequenced populations of a mutator strain of Escherichia coli
cultured in well-mixed liquid medium, where growth is uniform,
and as colonies on solid agar medium, where most growth occurs
at the colony edge (see Methods section)21,22. By growing from a
small number of initial cells to a similar final size, all populations
went through a comparable number of cell divisions (between
1� 109 and 7� 109, Supplementary Table 1). Counting the
observed frequencies of Single Nucleotide Polymorphisms
(SNPs) in the populations, we obtained the number of sites in
the genomes where the clonal sub-population carrying the derived
mutation had a frequency larger than a given frequency value x,
shown in Fig. 1b. Our deep sequencing procedure allowed us to
detect all clones that have frequencies larger than about 10� 3 (see
Methods section), yielding around 600 such high-frequency events
in each colony, which characterize the statistics of jackpot events.

Populations of the same size and mutation rate are expected to
experience the same total number of mutational events, on average,
independently of the mode of growth (liquid versus solid medium).
Yet, Fig. 1 shows that colonies had approximately ten times more
mutant clones above frequencies of 1%—corresponding to clones
of at least 107 cells—than well-mixed populations. This difference
cannot be explained by the variation in final population size, since
some well-mixed populations had a larger final size than some
colonies (Supplementary Table 1, Supplementary Fig. 1).

To test whether the discrepancy was caused by different mutation
rates in liquid culture and on agar plates, we also sequenced ‘plated
well-mixed’ populations whose growth was kept uniform by
regularly spreading the cells across the plate (see Methods section).
The resulting distribution of SNPs is consistent with the well-mixed
populations in liquid culture (green dashed and blue solid lines in
Fig. 1b), confirming that the mutation rate is not significantly
affected by the mode of growth (see also Supplementary Methods
and Supplementary Table 2). Thus, we conclude that the observed
difference in the clone size distribution must be a consequence of
the non-uniform growth in colonies, which results in a surprising
number of mutations at high frequency.

Fluorescence microscopy reveals spatial structure of clones.
To study the nature of the high-frequency clones in colonies, we
monitored the spatial distribution of mutant clones using separate
fluorescent marker experiments. We employed a genetically
engineered budding yeast strain capable of switching from a
red-fluorescing state to a green-fluorescing state at a rate of about
1.6� 10� 3 per replication23. This heritable, non-reversible switch
is mediated by the stochastic expression of Cre recombinase
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Figure 1 | Population sequencing reveals an excess of jackpot events in

spatially growing populations. (a) Starting from few cells of a mutator

strain of the bacterium E. coli (mutT deletion, see Methods section), we

grew 6 colonies and 6 liquid cultures up to an average population size of

3� 109 cells and sequenced each population at a coverage of at least

1000� (Supplementary Table 1). The number of SNPs that occurred at a

frequency higher than x is displayed in panel (b) (solid lines: colonies in

warm colours, well-mixed in cold colours; dashed lines: well-mixed on

plates). We found about 10 times more mutants above a frequency of 1% in

colonies than in well-mixed population, even when the latter were grown on

plates (Methods). The dotted black line is the fit to the well-mixed data

with a mutation rate of m¼0.4 per genome per replication.
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(see Fig. 2a and Methods section for details). As shown in Fig. 2c,
the resulting colonies exhibited both elongated speckles
(dark arrows), which we termed ‘bubbles’, as well as previously
described spoke-like sectors (white arrow)21. Importantly, image
analysis of the clone area obtained from 343 colonies yielded a
histogram consistent with the shoulder-like distribution obtained
from our sequencing approach (Fig. 2b and Methods
section). Thus, both the fluorescent data from just one
‘engineered’ site and the sequencing data covering many
genomic sites seem to reflect the same mechanism shaping the
clone size distribution.

The fluorescence data, moreover, revealed where clones
emerge and how they grow. Time-lapse movies showed that
most high-frequency clones first arise near the front of the
growing colony (Fig. 2e, Supplementary Movie 1). The resulting
clonal patches grow with the advancing frontier until they lose
contact to the front, whereupon they become trapped as bubbles
in the non-growing bulk of the population. Rarely, clones are able
to ‘surf’ at the front until the end of the experiment and give rise
to sectors. Such allele surfing is a characteristic feature of range
expansions14,16,24 and has been demonstrated to be pervasive in
microbial communities21,25–27.

Gene surfing theory explains mutational jackpot events.
To understand how gene surfing generates clones of different
sizes, we studied their emergence in range expansion simulations.
Specifically, colony growth was implemented by the random
addition of new demes to the advancing frontier. The newly

added deems inherited their ancestral genotype unless they
mutated, which occurred at a fixed rate (see Methods section;
Supplementary Movie 2). Interestingly, this simple meta-
population model generated a clone size distribution that
accurately reproduced the measured one, as can be seen in Fig. 3.
Our simulation results, covering over four orders of magnitude,
also reveal that the distribution crosses over between two
power-law distributions with distinct exponents. Analysis of the
clone shapes produced in our simulations shows that the
power-law regimes of low and high frequencies characterize
bubbles and sectors, respectively.

The effect of gene surfing is not limited to two-dimensional
(2D) growth: simulations of spherically growing meta-
populations (Fig. 4b), such as those used to model solid
tumours28,29, still result in mutant spectra with two distinct
power-law regimes corresponding to bubbles and sectors.

The power-law exponents can be derived analytically by
treating the boundaries of the mutant clones as annihilating
random walks. The statistical properties of these random walks
determine the relationship between the length L|| of clones
parallel to the growth direction and the corresponding
perpendicular length L> (see Fig. 4a). For instance, purely
diffusive clone boundaries, which occur when the population
front is completely flat, result in L jj � L2

?; more generally,
L jj � Lz

?, where the dynamical exponent z depends on the details
of how the population grows (dimensionality and roughness
of the growing front). The Kardar–Parisi–Zhang (KPZ) interface
growth model30, which has been found consistent with bacterial
growth patterns21, predicts z2D¼ 3/2 (exact) and z3D¼ 1.63
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Figure 2 | Visualizing mutational jackpot events in colonies. (a) An engineered strain of S. cerevisiae that stochastically switches from RFP (purple) to GFP

(yellow) at a rate of 1.6� 10� 3 per cell division enables us to visualize high frequency jackpot events as they arise during colony growth (c, scale bar, 1 mm).

(b) Image analysis (see Methods section) of mutant clones in 343 colonies reveals a shoulder-like distribution of clone sizes, roughly consistent with our

predictions for idealized 2D populations (dashed line, see also Methods section). The inset shows the median mutant frequency as a function of radius r. Error

bars are smaller than symbols. (d, scale bar, 0.5 mm) Monitoring the spatial distribution of mutants using fluorescence time-lapse microscopy (see also

Supplementary Movie 1) reveals that mutant clones come either as sectors21 with actively growing front regions (e, left, scale bar, 0.2 mm; c, white arrow) or

as ‘bubbles’ (e, right; c, black arrows), which are non-growing mutant clones that have lost contact with the expanding edge.
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(numerical)31. By computing the area enclosed between two
annihilating random walks, which are unbiased in the neutral
case, one can determine the power-law exponent for bubbles
(see Methods section). The power-law exponent for sectors
follows from the one for bubbles via an exact scaling relationship
(see Methods section). The results for different scenarios are
summarized in Table 1.

Importantly, our scaling arguments predict that the clone size
distributions obtained for different population sizes and mutation
rates should collapse onto one master curve when the clones
frequencies are measured in terms of the characteristic frequency
of the largest occurring bubble xc, and the clone number in terms
of the average probability for a new mutation to establish a sector,
Pc. Indeed, after rescaling, our sequencing data show remarkable
agreement with the master curve obtained from our simulations
(Fig. 3, Supplementary Methods, Supplementary Table 3, and
Supplementary Fig. 2).

Role of jackpot events in the evolution of drug resistance. One
of the striking features of the clone size distribution under
range expansion is the excess of high frequency mutations over
the well-mixed expectation. The primary consequence of more
jackpot events is that, typically, the total number of mutants will
be much larger in a spatially growing population compared with
an equally large well-mixed population. This can be understood
from the following simple mathematical argument.

If mutations arise at a low rate m per cell division as the
population is growing to a final size N, one expects mN mutational
events to occur. In each generation, the frequency of mutants in
the population increases by m, on average. In a well-mixed
uniformly grown population, the number of generation is log2N,
and hence the expected total number of mutants in this case is
proportional to mN log2N. In a range expansion, only cells near the
edge of the colony have access to sufficient nutrients, leading to the
formation of a layer of growing cells of width l (in units of cell
diameters). Since a length l is added per generation to the radius of
the colony, we can estimate that R/lpN1/2/l generations elapse
at the frontier during the growth process. Hence, the final total
number of mutants created during a range expansion is
proportional to mN3/2/l, which for large N is much larger than
in a uniformly grown population of the same size. Note that, as in
the classic Luria–Delbrück case, the mean is usually not a useful
quantity because it is dominated by very rare, large events.
Nevertheless, both the typical and the mean number of mutations
exceed the well-mixed expectations as our stochastic analysis
shows (Fig. 5, Supplementary Note 1 and Supplementary Fig. 3).

Jackpot events can be key in acquiring complex phenotypes,
such as drug resistance or the onset of cancer, which often require
the accumulation of multiple mutations11,32. Range expansions
may promote the acquisition of secondary mutations because the
pool of individuals carrying the first (driver) mutation is, both on
average and typically, larger than in uniformly grown populations
(Fig. 5a). As shown in Fig. 5b, the probability of secondary
mutations can be almost an order of magnitude larger in spatial
populations compared with well-mixed ones, especially when
mutation rates are low (Supplementary Note 2).

Drugs can trigger competitive release of mutant clones.
Evolutionary dynamics is influenced by mutational jackpot
events not only because of their size but also because of their
particular spatial structure. The emergence of sectors, which
sporadically arise from neutral mutations, is strongly suppressed
when mutants carry a cost (Fig. 6a, Supplementary Note 3 and
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Supplementary Fig. 4), commonly observed for drug resistance in
the absence of antibiotics33: deleterious mutants can surf only
briefly before they are overtaken by faster-growing wild-type cells
and fall behind the growing frontier.

In the absence of antibiotics, then, costly resistant clones are
expected to reside in bubbles, encased by an expanding wild-type
population. Upon a sudden environmental change, for example,
by a strong antibiotic attack killing the susceptible wild type, the
trapped mutants may become unleashed, regrowing and thus
rescuing the population from extinction. This evolutionary rescue
is brought about by a particular kind of competitive release, in
which the indispensable resource is space. Competition in this
case is extreme: trapped clones are not only at a disadvantage, but
they have no chance of escaping unless the surrounding wild type
vanishes. Consistently with this idea, we expect minimal net
population growth and successful containment of resistant cells at
intermediate drug concentrations, sufficiently strong to slow
down proliferation of the wild type without eradicating it. Indeed,
when we implemented drug treatment as a tunable death rate for
wild-type cells (Fig. 6b, Supplementary Movie 3, see Methods
section), our simulations showed the smallest net population
growth for intermediate death rates. In contrast, high death rates
not only failed to eradicate the population, but promoted the
spread of resistance by generating an entirely resistant
population.

Our simulations provide a uniquely spatial mechanism of how
excessively high drug concentrations can promote the spreading
of drug resistance. This effect can be reproduced in conceptual

experiments in which we embedded resistant cells within a
colony of susceptible cells. We found that the resistant cells
stayed trapped even at intermediate drug concentrations that
severely limit the wild-type growth. For higher drug
concentrations, the mutants were released and grew rapidly
(Fig. 6c). Hence, to optimally curtail microbial growth in our
particular set-up, the drug concentration should indeed be set at
an intermediate sweet spot.

Discussion
In combination with a generalization of the Luria–Delbrück
theory, our experiments show that the process of allele surfing
generates an excess of high-frequency clones: mutations have a
much higher chance of being carried by a high proportion
of the population. These high-frequency clones come as growing
sectors and non-growing bubbles, which are spatially encased
by wild-type cells. Our theory suggests that the excess of
jackpot events is not limited to microbial colonies but arises
generally in populations that exhibit non-uniform growth rates in
two or three dimensions.

In addition to antibiotic resistance evolution in pathogenic
biofilms, an excess of jackpot events could thus be relevant also
during the somatic evolution of some types of cancer12,34,35,
as growing solid tumours often exhibit less growth in necrotic
core regions36 and sectoring has been recently documented29.
Moreover, it has been argued that jackpot events play a crucial
role in the predisposition to cancer and other genetic diseases11.

Table 1 | Predictions for the asymptotic behaviour of the clone size distribution.

Scenario z Low frequency High frequency

Well-mixed 0 x� 1 x� 1

2D flat front 2 x� 1/3 x� 3

3D flat front 2 x� 1/2 x� 2

2D rough front* 3/2 x� 2/5 x�4

3D rough front 1.61 x�0.55 x� 2.3

The dynamical exponent z summarizes the statistical properties of the sector and bubble boundaries. The low-frequency regime corresponds to bubbles, the high-frequency regime to sectors. The
well-mixed scenario, where bubbles and sectors are not distinct, corresponds to D¼N and is characterized by a single power-law regime. The experimental scenario presented here is well described by
the case of 2D rough fronts (*), where z¼ 3/2 is given by KPZ (Kardar–Parisi–Zhang) interface growth dynamics30.
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Based on the classic Luria–Delbrück theory, it was predicted that
a large fraction of cancers may arise from predisposed stem-cell
lineages32. Our results suggest that if growth is non-uniform
during the development of the stem cell pool, predisposed
stem-cell lines may occur even more frequently than previously
hypothesized.

Our sequencing study design can be applied to test this
prediction by measuring the site frequency spectrum in tumours
as well as in multi-cellular organisms at different stages of their
development. Some clues about large-frequency clones could also
be collected from visible phenotypes resulting from somatic
mosaicism, such as Blaschko’s lines11. Plants or animals with
pigmentations caused by mobile elements are particularly
amenable to such pattern analyses.

Our experiments, simulations and theory not only found an
excess of jackpot events but also elucidated their spatial patterns.
Since drug resistance often comes at a selective cost in the absence
of the drug, most resistance mutant clones are expected to be
small and hidden in the bulk of the susceptible wild-type
population. A high-dose treatment removes the wild type as the
natural competitor of the resistant mutants and, consequently,
triggers a competitive release of the dormant mutants. This form
of competitive release is extreme in the sense that mutants stop
growing entirely before the release, due to lack of space and
nutrients. Because a broad spectrum of dormant clones is also
generated in three-dimensional (3D) growth, this spatial form of
competitive release can be particularly relevant in solid tumours.
Indeed, the hypothesis that growth control may, under certain
conditions, be more effective than attempts of complete
eradication has been recently proposed in the context of
cancer37,38 based on mathematical modelling of exponentially
growing tumours treated with a varying dose of chemotherapeutic
drugs over time. A recent study20 tested this hypothesis
experimentally in a mouse model and found that prolonged
chemotherapy with low doses was the most effective at keeping
the tumour in check. In contrast, tumours that had regrown after

an initial shrinkage following high-dose treatment did not
respond to a second round of treatment, possibly indicating the
emergence of resistance. Our results provide a novel mechanism,
based on competition for space, that can explain these
observations.

As sequencing costs continue to decrease, a growing number of
studies utilizes population sequencing to draw conclusions on
how cellular populations evolve. In this context, our results urge
for caution when employing the classic Luria–Delbrück theory as
a general theory for neutral evolution, as has been proposed in a
recent meta-study of intra-tumour heterogeneity12. For one thing,
spatial effects complicate the estimation of mutation rates and the
amount of resistant tumour cells. More importantly, deviations
from the classic Luria–Delbrück theory may simply indicate non-
uniform growth rather than non-neutral evolution.

Methods
Scaling of clone size distribution in expanding populations. We consider a
population expanding from one to N individuals without death. Our goal is to
characterize the probability P(x) that a mutation randomly introduced at the birth
of one of the N cells generates a clone of frequency equal or larger than x (Fig. 1a).
In other words, P(x) is the reverse cumulative distribution of the size of clone
introduced by a random mutation. The derivative � qxP(x) represents the
population site frequency spectrum that can be obtained directly from population
sequencing. Two extreme values of P(x) are known a priori: P(1/N)¼ 1 because
any mutation will certainly reach at least frequency 1/N if we ignore death. On the
other hand, P(1)¼ 1/N because this requires the mutation to be introduced in the
very first birth, that is, at the root of the genealogical tree.

The behaviour of P(x) in between these boundary points is known in the well-
mixed or infinite-dimensional case, studied by Luria and Delbrück; it is a single
power law (Nx)� 1 (ref. 13). Our experiments and simulations suggest that the
finite-dimensional case is characterized by two asymptotic regimes: a low-frequency
regime (Nx)� a with exponent ao1, corresponding to bubbles, and a high-frequency
regime N� 1x� b with exponent b41, corresponding to sectors. The N-dependent
pre-factors of both regimes are fixed by the boundary conditions, and the crossover
point xc follows from continuity (Supplementary Fig. 5). The described crossover
behaviour can be captured mathematically by the scaling form
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the death rate d of the wild type (see Methods section). After 140 generations, resistance-free colonies showed decreasing population size up to complete

eradication for d40.7, as expected. In contrast, colonies with resistant bubbles exhibited an initial decrease in population size followed by a steady increase

for d40.4 (error bars represent standard deviations over 100 simulations). Visualization of the simulated colonies showed that in this range of death rates,

the previously encapsulated mutants escape the surrounding wild type (red squares) and can then grow indefinitely (Supplementary Movie 3). A high dose

of antibiotics may thus not only fail to eradicate the population, but even promote the spreading of resistance. This effect can be reproduced in conceptual

experiments with E. coli, shown in (c), which demonstrate that high antibiotic concentrations can release trapped mutant clones. A droplet of resistant cells

(yellow) embedded in a larger droplet of susceptible cells (purple) was inoculated at different antibiotic concentrations (see Methods section). After 8 days

of growth intermediate antibiotic concentrations exhibited the least amount of total population growth. The highest drug concentrations eradicated the wild

type and thus allowed the resistant mutants to spread freely. Error bars represent standard deviations over 16 replicates and scale bars correspond to 2 mm.
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in terms of the crossover frequency xc ¼ N �
1� a
b� a and a crossover probability scale

�c ¼ N �
a b� 1ð Þ
b� a . The scaling function w(x) exhibits two power-law regimes

w xð Þ � x� a; x � 1;
x� b; x � 1:

�
ð2Þ

Simulated clone size distributions, displayed in Fig. 4b, confirm the predicted scaling
form. In real systems, the scaling form has a range of validity, say between some
minimal and maximal frequency xmin and xmax that are set by details of the growth
processes, which are beyond the scope of our model. For instance, the maximal
frequency xmax¼O(1) accounts for the discrete nature of growth during the first few
cell divisions. Similarly, xmin¼O(1/N) may reflect mutations that are born behind
the front such that our gene surfing theory does not apply.

The two power-law exponents a and b are constrained by the scaling behaviour
of the mean frequency of mutants, as follows. For a given mutation rate m per
cell division, the expected frequency hXtot(t)i of mutants at the surface of a growing
D-dimensional sphere satisfies

@t Xtot tð Þh i ¼ m 1� Xtoth ið Þ; ð3Þ
where time is measured in units of generations at the front. Hence, as long as
Xtot tð Þh i � 1, we have hXtot(t)i¼ mt. Every generation, the radius grows by l, such

that it takes the population t¼R/l generations to grow to size NpRD. The length
l can be interpreted as a measure for the thickness of the growth layer at the edge
of the colony in units of the linear dimension of the cells. The mean frequency at
radius r then is hXtot(r)i¼ mr/l, and the population mean follows as
Xtoth i / m=lð ÞN1=D . This implies an expected total number of mutants of

Xtoth iN / m
l

N1þ 1=D: ð4Þ
As we ignore cell death, there are on average mN mutations occurring during the

growth of the population. Hence, the frequency of a single clone is, on average,
Xh i / N

1
D� 1=l, which constrains the integral over P(x) since Xh i¼

R 1
0 � xð Þ.

Inserting the scaling relation reported in equation (1), we obtain for large
population Nc1

Xh i ¼
Z 1

0
� xð Þ � �cxc

Z x� 1
c

0
w xð Þ ¼ N �

1þ b� 2ð Þa
b� a : ð5Þ

Here, we used that ao1 and b41 such that integral over the scaling function w(x)
is finite and dominated by x-values in the crossover region, x¼O(1). Equation (5)
can only hold for all N if we have the scaling relation

a� 1ð Þ b� 1ð Þ
a�b

¼ 1
D

ð6Þ

Thus, computing the exponent for either the bubble or the sector regime uniquely
determines the exponent of the other regime. Note that in the well-mixed case,
D-N, equation (6) correctly reproduces a single power law with a¼ b¼ 1. Here,
we derive the exponent for the bubble regime in two dimensions; the sector regime
and higher dimensions are described in Supplementary Notes 4 and 5.

Bubble distribution in two dimensions. The area A, length L|| and width L> of a
bubble are determined by the statistical properties of its boundaries, which result in
the general relationship L jj � Lz

? (see Fig. 4a). We can relate the distribution of the
area A� L?L jj � L1þ z

? of a bubble to the distribution of the lateral bubble size L>
through

Pr A4að Þ ¼ Pr L?4‘? að Þ� a
1

1þ z

� �
: ð7Þ

For neutral mutations, we must also have the conditional probability
Pr L?4w? ‘?jð Þ� ‘?=w? of reaching transverse size w> given an initial size ‘? ,
because, asymptotically, each front segment of size ‘? has the same chance of
expanding up to size w>. This implies Pr L?4w?ð Þw?� Pr L?4‘?ð Þ‘? . Since the
choice of w> is arbitrary, it must hold that Pr L?4‘?ð Þ� ‘� 1

? for large enough ‘? .
Combining this with equation (7) yields the distribution of clone frequencies

Pr A4að Þ� a�
1

1þ z ð8Þ
for asymptotically large bubbles, that is, a¼ 1/(1þ z) in two dimensions. In D
dimensions, a¼ [1þ z/(D� 1)]� 1 (Supplementary Note 5). The scaling relation in
equation (6) can be used to find the exponent in the sector regime b¼ [1þ
D(z� 1)]/[(D� 1)(z� 1)]. Numerical values for the exponents in a variety of
scenarios are given in Table 1.

Meta-population model simulations. We simulated range expansions using a
meta-population model based on the Eden model39: space is divided into a 2D or
3D square grid, whose voxels can be empty, wild type or mutant type. In general,
each voxel represents a sub-population, also called deme, consisting of multiple
individuals, and the lattice size a is a model parameter that characterizes the spatial
extent of a deme.

The grid is initialized by filling the central voxel with wild type. In each step, we
choose a filled voxel i that has at least one empty neighbour and one of its empty
neighbouring voxels j at random and copy the state of i into j. If i is wild type, we
switch (‘mutate’) voxel j to the mutant type with probability m. A generation

corresponds to a number of steps equal to the number of voxels that have at least
one empty neighbour at the beginning of the generation.

To accommodate the limited number of observable SNPs in the experimental
data when comparing with simulations, we sample M mutations with frequency
above the minimum experimentally detectable frequency from the simulated
distribution. Here, M is the number of observed mutations in one experiment
(Supplementary Table 1). The sampling is repeated 10,000 times, and the resulting
distributions binned across frequencies. The result is shown as the grey area in
Fig. 3 containing 95% of the sampled distributions.

To simulate the effect of intermediate antibiotic concentrations on colony
growth and spreading of resistant individuals observed in experiments (Fig. 6c), we
extended the meta-population model simulation to accommodate sudden changes
in the environment and death of the wild type. Environmental changes are
modelled by changing the relative growth rate of mutants, gmut, and wild type, gwt,
at time T during the simulations, which corresponds to when the antibiotic is
administered. We define the selective advantage/disadvantage s of the mutant as
s¼ gmut/gwt� 1. Without death of the wild type, the environmental change would
only be felt by the individuals at the front, in contradiction to experiment, where
we frequently observe the escape of mutants from the bulk of the population.
Therefore, we introduce the possibility of death: after time T, any of the nwt wild
type cells has a chance d of dying each generation. In addition to the standard
algorithm above, each generation then incurs dnwt additional iterations, in which
one wild-type voxel is deleted. More details on the algorithm are reported in
Supplementary Methods. To simulate the experimental scenario in Fig. 6, we first
grow a population with deleterious mutations until time T (m¼ 2� 10� 4,
s¼ � 0.4), whereafter new mutations are not allowed, mutants switch to having a
selective advantage (s¼ 0.4), and wild-type death is switched on. Supplementary
Movie 3 shows the qualitative agreement with the experimental results in
identifying an intermediate death rate that minimizes colony growth.

E. coli experiments. For the sequencing experiments, we used a K12 E. coli strain
MG1655 where the mutT gene was replaced by CmR, conferring resistance to
chloramphenicol. This strain has an elevated mutation rate for A/T-C/G
transversions over wild-type MG1655 by a factor of about 150 on average40. For
the trapping experiments in Fig. 6, we used a pair of MG1655 strains, one
expressing CFP from a plasmid, the other expressing YFP and a resistance gene to
chloramphenicol.

In liquid culture, E. coli were grown continuously shaken at 37 �C in Luria-
Bertani (LB) broth (10 g l� 1 tryptone, 5 g l� 1 yeast extract and 10 g l� 1 NaCl). For
plates, 2% w/v bacto agar was added to the media before autoclaving. Antibiotics
were added after autoclaving to cooled media.

To prepare cells of mutT E. coli for sequencing, we grew them in liquid culture
up to a density of 108 cells per ml and then (i) plated single cells for colonies and
(ii) inoculated well-mixed cultures from single cells following a 107 dilution.
Parallel tubes (86) were inoculated with 100 ml of the dilution and incubated well
shaken for about 10 h (around 30 generations). Cells were harvested in log phase,
judged by OD600 (Supplementary Table 1). To grow well-mixed populations on
plates, 16 LB plates were inoculated with 100ml of the dilutions and incubated.
Every 90 min, 100 ml PBS was pipetted onto each plate and vigorously spread using
glass beads. After B20 h, seven plates displayed a uniform bacterial lawn. Two
lawns were resuspended via vortexing. Colonies were grown for 3 to 5 days up to a
diameter between 1 and 1.5 cm (Supplementary Fig. 2). For five colonies (colonies
1–5 in Supplementary Table 1 and Supplementary Fig. 6), cells were resuspended
by vortexing and the genomic DNA extracted for each population. For the last
colony (colony 6), the colony was cut in four parts via a glass pipette for the centre
portion (IN) and a razor blade (for the remaining outer ring). The outer ring was
divided into three parts: 1/8, 1/4 and the remainder of the ring (around 1/2 ring), as
shown in Supplementary Fig. 6. The DNA of each portion was extracted separately
(details are in Supplementary Table 1). Genomic DNA was extracted from all
population following the Epicentre MasterPure DNA Purification Kit Protocol.

Illumina library preparation was performed on each sample and final libraries
were used at similar concentrations to achieve similar coverage across samples. The
average insert size of the library was B200 bps. The sample libraries were then
sequenced on the HiSeq 2500 at the QB3 Vincent J. Coates genomic facility at UC
Berkeley using 150 paired-end reads. Because the library insert size is on average
smaller than 300 bps, the two paired-end reads overlap, providing two independent
calls for each base in the overlapping region41,42. Each sequencing lane
accommodated six distinct samples providing, on average, a coverage of 1,000�
per sample. One colony (colony 5 in Supplementary Table 1) was also sequenced
separately in one lane, generating a 6,000� coverage for this sample.

Processing of sequencing data. The reads of each sample were processed
according to the following pipeline. Read quality was assessed via FastQC to check
for base sequence quality, GC content bias, length distribution and adaptor
contamination. Because some adaptor contamination was determined, reads were
filtered for library adaptors and trimmed when necessary.

Paired-end reads were then merged using BBmerge (available at
http://sourceforge.net/projects/bbmap), which identifies the optimal relative
position of corresponding read pairs and generates a unique consensus read with
combined quality scores (on average, 90% of the reads were uniquely merged and
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used for the subsequent analysis). The resulting sequencing error was on average
lower than 10� 6 for all samples.

BreSeq43 was then used to map the merged reads to the reference genome of
E. coli strain MG1655 (NCBI id: NZ_CP009685.1, ref. 44). SNP-calling and
frequency calculation was also performed via BreSeq conditioning on at least four
independent read calls.

Genomic regions with unusually high density of SNPs were omitted. To
determine whether SNPs were to be disregarded, a sliding window of 5 kbps was
passed across the genome counting the number of SNPs with frequency lower than
a varying threshold. For each frequency threshold i, the average number of SNPs
per window ni was recorded. If a window showed a number of SNPs with P-value
lower than 0.001 (assuming a Poisson distribution with mean ni), all the SNPs in
that window were removed. This procedure takes into account that SNPs with
lower frequency are more numerous and thus more densely populate the genome,
while providing a more conservative approach than simply removing regions with
high SNP density regardless of their frequency. The flagged regions were often
shared among samples and annotated as repetitive regions in the reference genome.

Among the remaining putative mutations, SNPs present in more than 40% of
the population were deemed mutations carried by the seeding cell(s) and removed.
Three of the liquid cultures appeared to have been seeded by multiple cells,
since they contained SNPs at frequency equal to 50%. The remaining SNPs with
corresponding frequency were then used to generate the clone size distribution in
Fig. 1 for all samples, with the exception of colony 6. The details on how we
combined the SNPs from the different portions of colony 6 are reported in
Supplementary Methods.

S. cerevisiae experiments. For the fluorescent marker experiments in budding
yeast (Fig. 2), we used the W303 S. cerevisiae strain JRY10643 derived from JRY9628
(ref. 23). This strain employs the Cre-loxP recombination system to switch
stochastistically from a red to a green fluorescent state at a rate m¼ 1.6� 10� 3 per
cell division. S. cerevisiae were grown at 30 �C in yeast extract peptone dextrose
(YPD) (20 g l� 1 peptone, 10 g l� 1 yeast extract and 20 g l� 1 dextrose). For plates,
2% w/v bacto agar was added to the media before autoclaving. To grow colonies
from single cells, saturated overnight culture was diluted 1:10 in fresh media and
grown for another 4.5 h. The resulting culture was diluted in PBS to give about 50
cells per ml. A volume of 100ml of this dilution was spread on YPD plates
(containing roughly 20 ml of YPD with 2% agar) that had been dried at room
temperature for at least 24 h. After drying, the plates were wrapped with parafilm
and incubated at 30 �C for 5 days.

Image analysis. For the timelapse movie (Supplementary Movie 1), single cells of
JRY10643 were inoculated on YPD plates, incubated in a stage-top incubator fitted
to a Zeiss AxioZoom microscope and grown overnight. One colony was selected and
imaged every 30 min in both the red and the green fluorescent channel. For Fig. 2d, a
colony was imaged every 24 h and images overlaid in Adobe Photoshop. To image
sectors and bubbles on the single-cell scale, a colony was cut out from the agar plates
and imaged on a Zeiss LSM700 confocal microscope, using 488 and 555 nm lasers.
A z-stack was recorded and later combined by maximum intensity projection.

Colonies were imaged on a Zeiss AxioZoom v16 upright microscope. The red
and green fluorescent channel were recorded separately, and exposure times were set
automatically by the software for each colony and channel. To measure the mutant
clone size distribution in the converting budding yeast strain, we used an automated
thresholding algorithm with a locally adaptive threshold. To detect large clones, we
removed small object by computing the geodesic opening of the green channel image
before binarizing with a locally (50 pixel radius) adaptive threshold. For the detection
of small bubbles, we computed the top hat transform of the green channel, using a 15
pixel radius disk as the structuring element, which effectively removes large elements
from the image. The resulting image was then segmented using an adaptive
threshold in a 15 pixel radius neighbourhood. Finally, the two segmented images
were overlaid and eroded by 1 pixel to obtain the final segmentation. In Fig. 2b, we
also show the result for no erosion and 2 pixel erosion (grey area).

The imaged budding yeast colonies are not strictly 2D but have a roughly
conical shape. Small clones thus occupy stretched 3D volumes V � L jj L2

? , of which
only the projection can be observed under the microscope. To take this projection
error into account, we consider the volume V of bubbles growing in 3D, and,
assuming isotropic growth, we compute the projected area Aproj�V=L? , where L>
is the size of the bubble section transverse to the growth direction. Using
z3D¼ 1.61, this leads to

Pr Aproj4A
� �

�A� 0:77; ð9Þ

which serves as an upper bound for the case where bubbles are equally extended
horizontally as they are vertically. Experimentally, the best fit to the low-frequency
regime of the clone size distribution in Fig. 2b gives an exponent of roughly 0.61,
which is consistent with bubbles that have a small degree of three-dimensionality
but grow mostly in the x-y plane.

Data availability. The alignment files obtained from sequencing the E. coli
populations are available in the Sequence Read Archive (SRA) with access code

SRP078606. The rest of the data that support the findings of this study are available
from the corresponding author upon request.
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