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Abstract: The influences of silica fume content and aging on the rheological properties of silica
fume/styrene-butadiene-styrene composite-modified asphalts were investigated via rolling thin-film
oven test simulations. The asphalts rheological properties before and after aging were measured
using three-major-indices, dynamic shear rheology, and bending beam rheometer tests. Fourier
transform infrared spectroscopy was used to examine the changes in the functional groups of the
asphalt. The silica fume did not chemically react with the modified asphalt, and its original structure
was maintained. The aging resistance improved significantly after adding the silica fume. At 6%
silica fume content, the relaxation of the asphalt was the highest, indicating that the asphalt had the
best low-temperature crack resistance at this mixing proportion. Furthermore, the carbonyl index
value of this sample exhibited the smallest increment among all of the samples, and this asphalt
sample had the strongest short-term aging resistance. Thus, the optimum silica fume content in the
composite-modified asphalt was determined to be 6%. This information may be used to fabricate an
asphalt mixture that can improve the service life and aging resistance of pavements.

Keywords: silica fume; composite-modified asphalt; rheological properties; aging resistance;
aging mechanism

1. Introduction

The problem of the insufficient durability of asphalt pavement due to aging has always
been the focus of road researchers both locally and internationally. Aging means that the
asphalt is oxidized, decomposed, and aggregated under the influence of heat, oxygen,
ultraviolet radiation, and water. Its internal molecular structure and chemical composition
change during transportation, construction, and pavement use after it is produced, thus
resulting in the deterioration of its properties [1–3].

The aging of asphalt pavement will result in a series of deformities such as cracks and
subsidence, which will create a vicious cycle under the action of rainwater and driving
that accelerate the aging of asphalt and cause further aggravation of pavement deformities.
Therefore, it is necessary to add modifiers to asphalt to improve the durability and aging
resistance so as to prolong the service life of pavement [4,5].

Modifiers are mainly divided into two categories: organic and inorganic. Among
organic modifiers, styrene-butadiene-styrene (SBS) is the most commonly used modifier.
SBS-modified asphalt exhibits excellent road performance, as well as adequate high-and
low-temperature properties that fulfil the requirements of pavements [6–10]. However,
due to the great difference in composition and structure between the SBS modifier and
asphalt, it is difficult to form a stable system during blending and they are prone to phase
separation during thermal storage [11]. Moreover, SBS can be degraded during thermal
oxygen aging which will further accelerate the aging of the asphalt, resulting in the decline
o+f asphalt durability [12]. Therefore, it is necessary to add stabilizing inorganic materials
to the asphalt to suppress these negative properties. Silica fume is an inorganic material,
which is characterized by its abundance, low cost, high specific surface area, good thermal
stability, and strong adsorption capacity. Asphalt that is modified by silica fume generally
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exhibits improved pavement properties, including its rutting resistance, durability, and
aging resistance [13–16].

Recent research has demonstrated that the performance of base asphalt can be im-
proved to a greater extent by simultaneously adding both organic and inorganic modifiers
compared to adding only one type [17]. Feng et al. [8] studied the high-temperature rheo-
logical properties of silica fume/SBS composite-modified asphalt and demonstrated that
the addition of silica fume increased the plural shear modulus and rutting resistance factor
of the composite-modified asphalt, while also improving its high-temperature rheologi-
cal properties. Li et al. [18] found that Nano-CaCO3, nano-ZnO, and SBR can be evenly
dispersed in the composite-modified asphalt meaning that the structural stability of the
modified asphalt can be improved.

Only when durable materials are selected for construction, can the quality of buildings
be improved, service life be extended, and maintenance costs be reduced. Recently, people
are attaching greater importance to the durability of materials [19,20]. Ye et al. [21] analyzed
the aging properties and viscosity-temperature characteristics of modified asphalt that
contained 5% nano-SiO2. Their results showed that nano-SiO2 effectively improved the
viscosity and durability of asphalt.

The published studies in the literature mainly focused on the rheological properties
of silica fume modified asphalt, however, only a few articles on its anti-aging properties
were evaluated with the data of three-major-indices tests. We share the same viewpoint
with Huang [22] that such evaluation has certain limitations and a more perfect evaluation
system should be used. In addition, it is indispensable to provide an insight into the
microscopic variations of aging materials. Zhang [23] and Lesueur [24] have conducted
in-depth research on this; only with a clear understanding of the aging mechanisms can we
find the more targeted method to improve the durability of asphalt. Despite this, research
on the aging mechanisms of silica fume/SBS composite-modified asphalt is limited.

Based on the excellent performance of silica fume/SBS composite-modified asphalt,
this study investigates the short-term thermal-oxygen aging of composite-modified asphalt
with different silicon powder contents. By analyzing the rheological properties and the
functional group changes before and after aging, the influence of the silicon powder content
and aging on the properties of the composite-modified asphalt and its aging mechanism
were examined. The results of this study will be used to further promote the application
of inorganic materials and organic polymers in composite-modified asphalt for pavement
construction projects.

2. Materials and Methods
2.1. Materials

The 4% SBS-modified asphalt was prepared by mixing AH #90 base asphalt (Panjin,
China) with an YH-791H SBS modifier (Type 1301). The properties of the resulting asphalt
are listed in Table 1.

Table 1. Properties of the 4% styrene-butadiene-styrene-modified asphalt.

Penetration (100 g, 5 s, 25 ◦C) × 0.1/mm Softening Point (Ring and Ball Method)/◦C Ductility (5 cm/min, 5 ◦C)/cm

81.1 60.4 35.8

The micro-silica fume was obtained from the American Trade Industrial Development
Co., Ltd. (Anshan, China), and its properties are listed in Table 2.

Table 2. Silica fume properties.

Color Mass Fraction of SiO2% PH Fineness/% Particle Size/µm Loss on
Ignition

Moisture
Content/%

Specific Surface
Area/m2g−1

Gray ≥96 6~8 3 0.1–0.3 ≤5 <5 25.37
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2.2. Preparation Methods
2.2.1. Asphalt Preparation

According to the research of [25,26], when the content of SBS modifier is 4%, it can be
miscible with asphalt to form the most stable network structure. As such, the percentage of
the SBS modifier that was added to asphalt was chosen to be 4%.

A review of past literature [4,27] revealed that the low temperature performance of
asphalt will greatly reduce when the silica fume content exceeds a certain level. After
comprehensive consideration of previous research [28,29], the silica fume content with
mass fractions of 2%, 4%, 6%, and 8% of asphalt was selected in this study.

After heating the SBS-modified asphalt to a molten state, different percentages of
silica fume were added. A FLUKOAF25 high-speed shear stirring machine was used to
shear at 165 ◦C and 5000 rpm for 60 min, followed by stirring at a rate of 300 rpm for
5 min to remove the small bubbles that were remaining in the asphalt after undergoing
high-speed shearing. According to the specifications of the JTG E20—2011 T0610-2011, the
test samples were aged using the rolling thin-film oven (Changji Geological Instrument
CO., LTD, Shanghai, China) test at 163 ◦C for 85 min, with an air flow rate of 4000 mL/min,
and then prepared for subsequent testing.

In this study, three groups of parallel samples were conducted for each test to ensure
the accuracy of data.

2.2.2. Three-Major-Indices Tests

According to the specifications of the JTG E20—2011, the three-major-indices tests of
the asphalt were first conducted.

2.2.3. Dynamic Shear Rheological (DSR) Test

Through the DSR test, the variations in the rutting factor (G*/sin δ) and phase angle (δ)
were analyzed, which were used to evaluate the high-temperature deformation resistance
of asphalt, as well as the indices of the high-temperature rheological properties of the
composite asphalt. Based on the test standard of AASHTO 315-09, this experiment used a
MCR302 DSR (Anton Paar, México, Germany), and a constant 12% strain to conduct the
temperature sweep test. The loading frequency was 10 rad/s, the initial temperature was
58 ◦C, the temperature-rise range was 6 ◦C, and the highest temperature was 76 ◦C. The
sample size was 25 mm and the spacing was 1 mm [30].

2.2.4. Bending-Beam Rheometer (BBR) Test

In a low-temperature environment, asphalt changes from a viscoelastic to a brittle
state. Therefore, improving the low-temperature performance of asphalt materials is a
critical issue. According to AASHTO 313-09 test standard, the low-temperature CANNON
TE-bending-beam rheometer (BBR) (State College, PA, USA) was used to perform the
loading test. The loading test was carried out at −12, −18, and −24 ◦C for 240 s, and
measurements were obtained at 8, 15, 30, 60, 120, and 240 s. The creep stiffness modulus (S)
and the creep rate (m) at 60s were selected for the subsequent analysis.

2.2.5. Fourier Transform Infrared (FTIR) Test

This experiment was based on the test standard of DB14/T 2320-2021. A PerkinElmer
Spectrum 400 series FTIR spectrometer (PerkinElmer, Shanghai, China) was used to dissolve
the asphalt samples in dichloromethane to make a 10% solution. The KBr wafer was
scanned as a blank background before testing, and one drop of the solution was added
to the KBr wafer. The asphalt sample was analyzed using the above-mentioned infrared
spectrometer. The scanning range and number of scans were 4000–400 cm−1 and 120,
respectively. The infrared spectrum was analyzed using OMNIC processing software
(Version 8.2, Thermo Nicolet, Madison, WI, USA) to characterize the structures of the
different asphalt samples and their functional groups before and after aging.
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3. Results and Discussion
3.1. Basic Physical Performance Indicators

Following the preparation methods that were mentioned previously, 2%, 4%, 6%, and
8% amounts of silica fume were mixed into the asphalt samples, and the asphalt was aged.
According to the specification of JTG F40-2004 for SBS modified asphalt, the penetration at
25 ◦C should be more than 60 mm, the ductility at 5 ◦C should not be less than 30 cm and
the softening point is not less than 55 ◦C. After short-term aging (RTFOT), the penetration
ratio at 25 ◦C was not less than 60 and the ductility at 5 ◦C was not less than 20 cm.

The results of the three-major-indices tests are shown in Tables 3 and 4.

Table 3. Three major indices of the silica fume/ styrene-butadiene-styrene composite-modified asphalt with different silica
fume contents before aging.

Silica Fume Content Penetration (100 g, 5 s,
25 ◦C)/ 0.1/mm

Softening Point (Ring and
Ball Method)/◦C Ductility (5 cm/min, 5 ◦C)/cm

0% 81.1 60.4 35.8
2% 79.6 61.3 32.9
4% 76.9 63.5 32.3
6% 71.2 66.1 30.8
8% 68.8 65.9 29.3

Table 4. Three major indices of the silica fume/ styrene-butadiene-styrene composite-modified asphalt with different silica
fume contents after aging.

Silica Fume Content Penetration (100 g, 5 s,
25 ◦C)/0.1/mm

Softening Point (Ring and
Ball Method)/◦C Ductility (5 cm/min, 5 ◦C)/cm

0% 49.1 68.7 24.1
2% 48.4 67.4 20.6
4% 48.0 69 18.9
6% 46.1 71.2 17.4
8% 44.8 71.1 15.6

As shown in Tables 3 and 4 and Figure 1, The test data of penetration and softening
point of the asphalt with each silica fume content met the standard.

When the silica fume content was increased, the penetration of the asphalt decreased,
while the penetration retention rate gradually increased. The penetration retention rate
changed most significantly when the silica fume content was increased from 4% to 6%,
but when the content exceeded 6%, the penetration retention rate became constant. Due
to its characteristic of a large specific surface area, the silica fume can absorb light compo-
nents from the asphalt and thus improve the consistency [28,31]. However, as mentioned
by [27,32], its improvement capability was not obvious when the silica fume content
exceeded a certain level.

The softening point of the composite-modified asphalt increased with the increase
of silica fume content. The addition of silica fume caused the asphalt to swell and the
cementitious composition gradually increased, so the softening point increased macro-
scopically [33]. We also found that the softening point after aging was higher than that
before aging, and the increment decreased gradually with the increase of silicon powder
content. This conclusion can also be confirmed by [34], where their findings suggest that
the micro pore structure of silica fume is equivalent to that of microcapillaries. This has
a capillary action that can enhance the interfacial forces between the silica fume and the
asphalt. This inhibits the redox reaction between the asphalt and oxygen to a certain extent
and thereby plays an anti-aging role. However, it is basically consistent with the conclusion
of penetration that is discussed above, that when the content of silicon fume is too high, it
will have an adverse impact on the modification effect.
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Figure 1. Plots of the temperature and the (a) residual penetration ratio, (b) residual ductility ratio, 
and (c) softening point increment. 
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Figure 1. Plots of the temperature and the (a) residual penetration ratio, (b) residual ductility ratio, and (c) softening
point increment.

The ductility and residual ductility ratio both exhibited a gradual decrease after the
addition of the silica fume. This indicates that the ability of the asphalt to withstand plastic
deformation decreases with the addition of silica fume. Zheng’s [28] study shows that this
may be due to the unstable cross-linking structure that is formed by the silica fume and
SBS modified asphalt at lower temperatures. With the increase of silica fume content, this
unstable structure becomes more unstable and results in an increase in the non-uniformity
of the asphalt material, leading to poor rheological properties.

3.2. High-Temperature Rheological Properties

According to the test method in 2.2.3 above, the composite-modified asphalt before
and after aging, with 2%, 4%, 6%, and 8% silica fume contents, were selected for the
DSR tests. The anti-rutting factor G*/sinδ was proposed in SHRP to evaluate the high
temperature rutting resistance of asphalt. The larger the value, the better the rutting
resistance and the stronger the permanent deformation resistance of asphalt in a high
temperature environment. SHRP also specifies that the temperature at G*/sinδ = 1 is the
failure temperature of asphalt before aging.

The test results are shown in Figure 2.
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Figure 2. (a) Relationship between G*/sin δ and the temperature before aging and (b) after aging; (c) relationship between
the phase angle (δ) and temperature before aging and (d) after aging.

From Figure 2a,b, it can be seen that the rutting resistance factor of the modified
asphalt gradually decreased with an increase in temperature, and its rate of decrease
gradually decreased with increasing temperature. At the same temperature, G*/sin δ

increased with the addition of silica fume. Upon comparison, it was found that the rutting
resistance factor of the aged asphalt was significantly higher than that of the asphalt before
aging. The increase in this factor is greater for the composite-modified asphalt than that for
the SBS-modified asphalt.

This is consistent with the opinion of [33,35], which show that silica fume can sig-
nificantly improve the permanent deformation resistance of asphalt. The main reason is
that silica fume belongs to a group of inorganic materials with low thermal conductiv-
ity. This makes silica fume have good thermal stability when used as modifier to make
composite-modified asphalt. It can reduce the thermal conductivity of composite-modified
asphalt and improve its high-temperature stability. When the asphalt is aged, the heavy
components (asphaltene and gum) in the asphalt increase and the light components (sat-
urated and aromatic components) decrease. The addition of silica fume can enhance
the intermolecular force and reduce the flow strength of the composite-modified asphalt.
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Therefore, silica fume can play a role in improving the anti-aging properties of asphalt in
high temperature environments.

As can be seen from Figure 2c, all of the phase angles of the modified asphalt exhibited
a tendency to increase with the increase in temperature. This indicates that the viscous
components of asphalt increase while the elastic components decrease as the temperature
is increased. This is consistent with the fact that asphalt exists mainly in an elastic state
at a relatively low temperature and gradually changes into a mainly viscous state as
the temperature increases. By comparing the phase angles over the entire experimental
temperature range, it was observed that the curve of the phase angle versus the temperature
of the asphalt without silica fume was higher than those of the other examined samples.
This indicates that the elastic recovery of asphalt can be improved by adding silica fume,
and the improvement effects become stronger as the silica fume content is increased.

As shown in Figure 2d, the phase angle of the asphalt after aging was reduced
compared with that before aging. This comparison also shows that the range of increase
in the phase angle for the composite-modified asphalt after aging was much larger than
that of the SBS-modified asphalt. This is because aging transforms the light components
in the asphalt into heavy components. Silica fume can absorb the light components and
inhibit their volatilization, thereby improving the aging resistance of the asphalt. However,
when the amount of silica fume exceeded a certain limit, the agglomeration effect of the
nanoparticles increased, and the increase in the modification effects was less evident.

3.3. Formulation of the Regression Equation

To further observe the influence of silica fume on the high-temperature performance
of asphalt, a linear correlation of the temperature increment and rutting resistance factor
of the variables was performed. The correlation coefficient between the rutting resistance
factor and the temperature increment was very high. The relationship may be described as:

G∗/ sin δ = AeBt (1)

where t is the increasing temperature range, and A and B are the regression coefficients.
By taking the logarithm of both sides simultaneously, the relationship becomes:

ln(G∗/ sin δ) = ln A + Bt (2)

where ln A is the linear intercept, which indicates the initial degree of influence of the silica
fume content on G*/sin δ, and B is the slope of the linear function, which represents the rate
of decrease of G*/sin δ with the increase in temperature (i.e., the extent of the influence of
the silica fume content on G*/sin δ) [36]. The results of the constructed regression equation
are shown in Tables 5 and 6.

Table 5. Regression and correlation coefficients of silica fume/ styrene-butadiene-styrene composite-
modified asphalt before aging.

Silica Fume Content ln A |B| R2

0% 4.7621 0.0662 0.9977
2% 4.7956 0.0659 0.9973
4% 4.8731 0.0655 0.9989
6% 5.1063 0.0648 0.9993
8% 5.0182 0.0649 0.9957
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Table 6. Regression and correlation coefficients of silica fume/ styrene-butadiene-styrene composite-
modified asphalt after aging.

Silica Fume Content ln A |B| R2

0% 5.0463 0.0678 0.9934
2% 5.0827 0.0670 0.9958
4% 5.1676 0.0665 0.9979
6% 5.3544 0.0656 0.9995
8% 5.3541 0.0657 0.9982

In Tables 5 and 6, it is shown that the correlation coefficient (R2) of the asphalt before
and after aging was greater than 0.99, indicating that G*/sin δ exhibited a good linear
relationship with the temperature in natural logarithmic coordinates [36]. ln A increased
with the addition of silica fume, indicating that the rutting resistance factor increased
accordingly. Additionally, the initial influence of the modifiers on G*/sin δ also increased,
and the improvement of the high-temperature performance of asphalt became more evident.
After aging, the asphalt exhibited an improved high-temperature performance owing to
the transformation of light components to heavy components, and therefore, the value of
ln A was greater than that of the composite-modified asphalt before aging. As the silica
fume content was increased, the range of increase of ln A also gradually increased.

Moreover, as the silica fume content was increased, the value of |B| gradually de-
creased, indicating that the addition of silica fume can reduce the temperature sensitivity
of asphalt and improve its high-temperature stability. The increasing range of |B| also
gradually decreased after aging, which indicates that aging has a greater impact on the
SBS-modified asphalt than on the silica fume/SBS composite-modified asphalt.

3.4. Low-Temperature Rheological Properties

This section compares the low-temperature rheological properties of 4% SBS-modified
asphalt and composite-modified asphalt with 2%, 4%, 6%, and 8% silica fume contents
before and after aging through the BBR test. In the low-temperature BBR test, S can be used
to characterize the deformation resistance of asphalt at low temperatures. The larger the
value of S, the smaller the deformation resistance of the asphalt. m reflects the relaxation
ability of asphalt; the higher the value of m, the stronger the low-temperature rheological
resistance of the asphalt. The specified value of SHRP is: S < 300 Mpa, m > 0.3. The results
of the test are shown in Figure 3.

As shown in Figure 3, both S and m before and after aging do not comply with SHRP
regulations when the temperature is lower than −24 ◦C.

An increase in the amount of silica fume initially led to an increase in the creep stiffness
modulus of the composite-modified asphalt at different temperatures, which subsequently
decreased. Additionally, under the same conditions, the creep rate initially decreased and
then increased. This shows that adding silica fume makes asphalt easier to crack and
reduces its low temperature performance [37]. When the silica fume content was 6%, the S
value of the composite-modified asphalt was small, and the m value was higher than that
of the SBS-modified asphalt. The reason may be that 6% silica fume is a suitable dosage,
which can be evenly distributed in asphalt and blended with SBS to form a stable network
structure [38].

After undergoing short-term aging, the creep stiffness modulus and the creep rate of
the composite-modified asphalt exhibited little variation as the temperature was varied.
This shows that although the low temperature performance of the composite-modified
asphalt decreases with the incorporation of silica fume, it has no obvious effect on its
anti-aging properties. This is because the silica fume and modified asphalt were in a
physically miscible state, and no chemical reactions occurred to produce new substances
after aging. Although the incorporation of silica fume had a negative effect on the S and m
values of SBS-modified asphalt, it still slightly improved the aging resistance of asphalt in
a low-temperature environment with a silica fume content of 6%.
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creased and then increased. This shows that adding silica fume makes asphalt easier to 
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Figure 3. (a) Creep stiffness modulus (S) of the asphalt before and after aging; (b) creep rate (m) of
the asphalt before and after aging.

3.5. Infrared Spectroscopic Analysis

By analyzing the infrared spectrograms of the composite-modified asphalt samples
with different silica fume contents by FTIR spectroscopy, the changes in the functional
groups before and after aging of the composite-modified asphalt were observed from a
microscale perspective. The infrared spectrograms of the asphalt before and after aging are
shown in Figure 4.
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Figure 4. Fourier transform infrared spectra of (a) silica fume; (b) 4%SBS modified asphalt; (c) 4%SBS + 2%silica fume
composite-modified asphalt; (d) 4% SBS + 4% silica fume composite-modified asphalt; (e) 4% SBS+6% silica fume composite-
modified asphalt; and (f) 4% SBS+8% silica fume composite-modified asphalt.
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3.5.1. Qualitative Analysis

By comparing the spectra that are shown in Figure 4, it is seen that the composite-
modified asphalt exhibited the same vibrational absorption peaks as the SBS asphalt, whose
peaks almost appeared in the same position. However, the FTIR spectrum of the composite-
modified asphalt showed an Si-O stretching vibration absorption peak at 1090 cm−1, which
was close to the Si-O stretching vibration absorption peak at 1098 cm−1 in the silica fume
spectrum. This can be attributed to the incorporation of silica fume into the asphalt. In
addition, no new absorption peaks appeared in the infrared spectrum of the composite-
modified asphalt samples. The characteristic peaks of these samples did not exhibit large
displacements, and the absorption peak intensities did not differ significantly. Therefore, it
is inferred that no complicated chemical reactions occurred upon the addition of silica fume
to the asphalt, no new functional groups were generated, and this addition was simply a
physical blending process. This is consistent with other research results [28].

However, by analyzing the infrared spectrum of the asphalt with each silica fume
content before and after aging, it was found that the intensities of the absorption peaks of
the asphalt mixed with silica fume were reduced near the characteristic peak positions of
the asphalt after aging at 1708 cm−1 and 1024 cm−1 in the aged samples [39]. Therefore,
the addition of silica fume suppressed the effects of aging of the asphalt to a certain extent.

3.5.2. Quantitative Analysis

Thermal oxidative aging breaks the C=C bonds of alkanes and alkyl side chains in
the asphalt. The oxidation reaction proceeds under the influence of heat, and a series of
oxygen-containing compound carbonyl peaks are formed. As the aging time was extended,
the reaction progressed and the carbonyl content increased, which, in turn, led to the
growth of the carbonyl absorption peak. The C=C bonds in asphalt reacted with thiols
to form thio-ethers, which were further oxidized to form sulfoxide groups. Therefore,
the increase in the number of carbon-oxygen double bonds in the carbonyl group and
sulfur-oxygen double bonds in the sulfoxide group was used to determine the degree of
aging of the asphalt [30]. However, the variation in the sulfur content fluctuates during the
short-term aging process, and, therefore, the carbonyl peak area may be used to evaluate
the short-term aging of road asphalt [40].

Therefore, we used the carbonyl index (CI) to characterize the aging behavior of the
asphalt in this study, which may be defined as:

CI =
AC=O

AC−CH3

(3)

Here, AC=O represents the carbonyl absorption peak area, and AC-CH3 represents
the saturated C-H bending vibration absorption peak area.

OMNIC was used to measure the peak area and calculate the CI of the asphalt before
and after aging. The results are listed in Table 7.

It can be seen from Table 7 that the CI values of asphalt increased by varying degrees
after aging, and that the range of increase in the CI of the composite-modified asphalt
was less than that of the SBS-modified asphalt. This finding indicates that adding silica
fume to SBS-modified asphalt can effectively inhibit the generation of carbonyl groups
during thermal oxidative aging and slow the aging process, thereby improving the aging
resistance of asphalt [41,42]. When the silica fume content was 6%, the range of increase
in the CI for the composite-modified asphalt after aging was the lowest (48.35%). This
indicates that when the silica fume content was 6%, the improvement of the short-term
aging of SBS-modified asphalt was the most apparent. This is consistent with the findings
of [28,29,35].
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Table 7. Absorption peak area and carbonyl index of composite-modified asphalt before and after aging.

Silica Fume Content Absorption Peak Area CI

C=O C-CH3

0% Before aging −0.096 4.196 −0.0229
After aging −0.011 3.088 −0.0037 (↑0.0192, 83.84%)

2%
Before aging −0.139 3.561 −0.0391
After aging −0.022 6.277 −0.0035 (↑0.0356, 91.05%)

4%
Before aging −0.134 3.420 −0.0391
After aging −0.036 6.656 −0.0054 (↑0.0337, 86.19%)

6%
Before aging −0.071 3.909 −0.0182
After aging −0.071 7.573 −0.0094 (↑0.0088, 48.35%)

8%
Before aging −0.128 2.866 −0.048
After aging 0.042 6.374 0.0066 (↑0.0514, 114.73%)

4. Conclusions

In this study, different amounts of silica fume were used to prepare silica fume/SBS
composite-modified asphalt samples that were subjected to short-term aging. According to
three-major-indices, DSR, BBR, and FTIR tests, the results of this study are as follows:

1. With the addition of silica fume and the increase of its content, the high temperature
durability of composite-modified asphalt before and after aging can be significantly
improved. It was observed that the incorporation of silica fume facilitated the reten-
tion of the original properties of the modified asphalt and effectively reduced the
aging effects on the structure of the modified asphalt.

2. Silica fume will reduce the low temperature rheological properties of composite-
modified asphalt. Therefore, in terms of its practical engineering application, silica
fume/SBS composite-modified asphalt is recommended to use in an environment
where the minimum temperature does not exceed −24 ◦C. It is necessary to deeply
analyze and find ways to improve the low temperature anti-aging performance of
composite-modified asphalt.

3. Silicon powder is physically miscible in SBS-modified asphalt; it does not affect the
chemical structure of asphalt before and after short-term aging. To inhibit asphalt
aging, the generation of carboxyl groups during the thermal oxidative aging process
must be reduced; this improves the aging resistance of the asphalt. When the amount
of silica fume was 6%, the CI value increased the least among all samples, and this
asphalt sample had the strongest short-term aging resistance.

4. Considering the results of predecessors and this paper, it can be determined that
the rheology and durability of composite-modified asphalt are the best when the
content of silica fume is 6% and the performance of SBS modified asphalt can be
significantly improved. Moreover, at this dosage, the cost of asphalt will only in-
crease by $10~$15 per ton. It can greatly improve the performance and durability
of the composite-modified asphalt at very low expense. In this way, the pavement
performance and service life will be significantly improved.
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