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Abstract: The aim of this review is to provide comprehensive information about non-thermal tech-
nologies applied in fruit and vegetables (F&V) by-products to enhance their phytochemicals and to
obtain pectin. Moreover, the potential use of such compounds for food supplementation will also
be of particular interest as a relevant and sustainable strategy to increase functional properties. The
thermal instability of bioactive compounds, which induces a reduction of the content, has led to
research and development during recent decades of non-thermal innovative technologies to preserve
such nutraceuticals. Therefore, ultrasounds, light stresses, enzyme assisted treatment, fermentation,
electro-technologies and high pressure, among others, have been developed and improved. Scien-
tific evidence of F&V by-products application in food, pharmacologic and cosmetic products, and
packaging materials were also found. Among food applications, it could be mentioned as enriched
minimally processed fruits, beverages and purees fortification, healthier and “clean label” bakery
and confectionary products, intelligent food packaging, and edible coatings. Future investigations
should be focused on the optimization of ‘green’ non-thermal and sustainable-technologies on the
F&V by-products’ key compounds for the full-utilization of raw material in the food industry.

Keywords: zero waste; bioactive compounds; green technologies; nutraceuticals; circular economy

1. Introduction

The Food and Agriculture Organization (FAO) of the United Nations indicates that
around a third of all food production is globally lost or wasted at some point in the food
chain [1,2]. Losses vary a lot depending on the chain considered and in the case of fruit
and vegetables (F&V) can reach up to 50%. Within the F&V processing operations about
25% to 30% of waste is produced [3]. The most important causes of losses on farms include
inappropriate timing for harvesting, overproduction, underutilized products, climatic
conditions, harvesting and handling practices, and inadequate postharvest technology [4].
At the World Food Summit held in 2017 organized by FAO, the challenges needed to
achieve food stability and food availability were identified and a roadmap was proposed
to reduce 50% of food waste by 2050. The principles of eco-innovation are the industrial
ecology and the circular economy (“zero waste” and the use of wastes as raw materials) [5].
Among the challenges that arise different actions stand out, such as the revaluation of
waste in the various stages of the production process and logistics, and/or the use of waste
products (by-products) as starting raw material for the production of products with greater
added value [6] and then called co-products.

The handling and processing of these raw materials generates a large number of
commodity by-products being undervalued and underused, and although there are some
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minor uses such as the production of biomass and animal feed, these strategies do not
guarantee an efficient use of this material that could offer interesting possibilities for the
agri-food industry and the reduction of this environmental problem [2,7]. Horticultural
by-products mainly are peels, pomace and seeds, which could be a potential good source
of bioactive compounds with high added-value such as pectins, proteins, polysaccharides,
flavor compounds, dietary fibers, and phytochemicals compounds [8]. To continue be-
ing relevant, it is necessary to further strengthen and dynamize the sector through the
development of appropriate postharvest strategies to increase shelf life, and a model for
the enhancement of horticultural by-products through the incorporation of emerging and
sustainable ‘Green Technologies’ to its revalorization [9]. The strategies to revalue horticul-
tural by-products can lead to a change in the productive model of the sector and evolve
towards a more diversified and sustainable circular economy, giving more added value and
competitiveness. These strategies can be focused on obtaining potential ingredients for the
food industry, cosmetics, and/or the pharmaceutical industry. The use of plant by-products
supports the low-carbon economy by using renewable resources, offering environmental
and economic benefits and improving efficiency in the food industry [7,10].

Nowadays, the tendency in the food market is driven by different reasons such as
health and sustainability. This phenomenon is expressed in the consumer’s interest in
healthy natural foods based on plant products. Food producers are increasingly striving
to meet these trends by offering “Clean label” foods or ingredients. Currently, there is
no legislation related to the aforementioned concept, but the growing demand for this
type of food reflects the desire of consumers for food to be more “natural”, wholesome,
premium, and use environmentally friendly technologies [11,12]. The extracts obtained
from F&V by-products can fulfill a series of technological functions such as being colorants,
antioxidants, flavors or antimicrobial agents, or act directly as ingredients to enrich or
improve the functional properties of some food becoming a supplemented or fortified
commodity [8,13–16].

In order to obtain value-added compounds with functional (nutraceuticals) and techno-
functional (pigments) properties, technologies have been developed for each side-product
generated from agro-food industries [17]. Conventional and traditional thermal methods
are still in use, although high energy consumption, the degradation of thermolabile nu-
tritional compounds, and sensory quality changes occur, which require the adoption of
sustainable preservation techniques without altering the sensory and nutritional quality
of foods [18]. The stability of nutraceuticals is affected by different factors (temperature,
pH, light stress, presence or absence of oxygen, and enzymatic activity). Focusing on
temperature factor, there is increased interest in improving and optimizing non-thermal
technologies to avoid degradation of key compounds, jointed with sustainable methods [19].
Among non-thermal technologies, the most common are ultrasound-assisted extraction,
high-pressure processing, light stresses, fermentation technology, electro-technologies, and
enzyme-assisted extraction. More detailed information is described in Section 3.

Therefore, this review is focused on generating comprehensive information about
non-thermal technologies applied in F&V by-products to enhance phytochemical com-
pounds such as polyphenols, pigments and nitrogen/organosulfur derivates, and to obtain
pectin. Moreover, the potential use of such compounds will also be of a particular interest
to this review.

2. Fruit and Vegetables By-Products as a Source of Valuable Compounds

Scientific research and development have been greatly increased in the last decades in
the field of extraction and the application of bioactive compounds re-valorized from F&V
processing by-products [20]. A large number of molecules with added-value (simple sugars,
carbohydrates, polysaccharides, pectin, fibers, phenolic acids, carotenoids, tocopherols,
flavonoids, vitamins and aromatic compounds) from F&V by-products can be used in the
food, cosmetic, or pharma industry (co-products) [19,21,22]. This review will be focused on
phytochemical compounds such as polyphenols, pigments, sulfur compounds, and pectins.



Foods 2022, 11, 59 3 of 23

Nowadays, manufactures are focused on reducing the environmental impact of industrial
by-products (zero waste and circular economy) and recovering bioactive compounds from
agricultural by-products.

2.1. Phytochemical Compounds

Phytochemicals are defined as compounds obtained from plants, naturally biosynthe-
sized in their secondary metabolism without any essential nutritional values. However,
they present lots of health promoting properties according to their biological activity [23].
They are used for several purposes such as drugs, agrochemicals (biopesticides), and food
additives (aroma, colorant agents). Phytochemicals were divided into different groups such
as terpenoids (carotenoids and chlorophylls), polyphenols, alkaloids, nitrogen compounds,
and organosulfur compounds (Figure 1). Three main subsections were made focusing on
the greatest relevance groups for this review work: polyphenols (Section 2.1.1), pigments
(Section 2.1.2) and organosulfur compounds (Section 2.1.3).

Figure 1. Classification of the main phytochemical compounds in fruit and vegetables (F&V) by-products.

2.1.1. Polyphenols

The most common key compounds from F&V by-products are polyphenols (Figure 1:
phenolic acids and their polymeric derivatives, such as lignans, stilbenes, tannins, and
flavonoids) in skins, pulp, seeds, or pomace [24]. Phenolic acids are common in F&V
by-products such as apple pomace (chlorogenic acid, and cryptochlorogenic acid) [25],
artichoke (bracts, leaves and stems) (chlorogenic acid) [26], mango kernel and leaves
(gallic acid, and ellagic acid) [27], pomegranate peel (caffeic acid, chlorogenic acid, el-
lagic acid, and gallic acid) [28], potato peel (chlorogenic acid, ferulic, gallic, protocat-
echuic and caffeic acid) [29], tomato peel (3-caffeoylquinic acid, 5-caffeoylquinic acid,
3,4-di-O-caffeoylquinic acid, and 3,4,5-tri-caffeoylquinic acid) [30] and blueberry pomace
(cinnamic acid derivatives) [22,31–33]. Among flavonoids, flavones, flavanones, antho-
cyanidins, and flavonols can be found in grape pomace (catechins, anthocyanins, stilbenes,
and flavonol glycosides), onion skin (quercetin 3,40-O-diglucoside and quercetin 4-o-
monoglucoside and isorhamnetin-3-glucoside) [34], tomato peel (lycopene, naringenin
chalcone and naringenin) [30], apple pomace (hydroxycinnamates, phloretin glycosides,
quercetin glycosides, catechins, procyanidins, and epicatechin) [25], figs peel (cyanidin-3-
rutinoside, cyanidin-3,5-diglucoside, cyanidin-3-O-diglucoside, epitecatechin, catechin and
quercetin-rutinoside) [32], blueberry pomace (anthocyanins and flavonol-glycosides) [33],
and citrus peel (eriocitrin, hesperidin, and naringin) [22,31,32,35]. Some of them are pig-
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ments such as anthocyanins, and are explained in Section 2.1.2. jointed with other pigments
(betalains, carotenoids, and chlorophylls).

2.1.2. Bioactive Pigments

Plant pigments are colored substances produced by plants and are important in
controlling photosynthesis, growth, and development [36]. The market for natural colorants
is experiencing a boom related to the “clean label” trend. It is worth mentioning that some
of the main drivers for the increased demand of natural colorants are the health-promoting
benefits of natural food colorants [37]. Researchers and the food industry are exploring
stable natural colorants and new natural extracts from F&V by-products [37]. These by-
products tissues are rich in betalains, anthocyanins, carotenoids, or/and chlorophylls.
Figure 2 shows the classification of bioactive pigments and some examples of commodity
by-products rich in these pigments.
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Water-Soluble Compounds: Anthocyanins and Betalains

Flavonoids are a group of secondary metabolites which belong to the class of phenyl-
propanoid and present a wide color range, from pale-yellow to blue. Among them, antho-
cyanins are responsible for the orange-to-blue colors; different parts of the plant present
these compounds such as leaves, fruits, and seeds, among others. Wineries and juice
manufacturer by-products are enriched sources for anthocyanin pigments that can be used
as natural colorants for various food applications [38]. The use of anthocyanins as pigments
(E-163) is accepted by the European Community [40].

Betalains are yellow-to-red nitrogen-containing compounds, derived from tyrosine.
The use of betalains as pigments (E-162) is also accepted by the European Community
and they are used in the production of jellies, jams, strawberry yogurt, among other
products [41]. Betalains come from the underutilized biomass of red beetroot processing
and from beetroot leaves [38,42].

Fat-Soluble Compounds: Carotenoids and Chlorophylls

Carotenoids are isoprenoids, and essential compounds of the photosystems in plants. They
are responsible for the yellow-red coloration. Up to now, commercially available carotenoids
synthesized chemically are being used as coloring compounds [43]. However, currently, these
pigments can be obtained from F&V by-products. Carotenoids are often located in the same
plant organs as anthocyanins, increasing color variety when they combine [43].
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On the other hand, although chlorophylls can be used for coloring food products, there
are limited available scientific reports on the use of F&V by-products for the extraction of
chlorophylls and their further application as a colorant in food formulations [38].

2.1.3. Sulfur Compounds

Sulfur is an essential compound for the biosynthesis of phytoalexins, sulfur-containing
glycosides (glucosinolates), and alliins, among others. Alliaceous (onion, garlic) and crucif-
erous vegetables (broccoli, cauliflower, radish, cabbage) are the main sources of sulfur com-
pounds (contributed up to 42% of total sulphur intake) [44]. These metabolic compounds
play a vital role in the physiology and protection of plants against several environmental
stresses [45]. The alliaceous and brassica by-products (for example Bimi leaves [13] and
broccoli by-products [46]) contain mainly glucosinolates as sulfur compounds. Glucosino-
lates can be found as not biologically active unhydrolysed compounds. However, these
by-products present the myrosinase enzyme which produces several biologically active
isothiocyanates and indoles, with health potential properties such as chemopreventive
activity against cancer. Among them, sulforaphane is the most researched isothiocyanate
from the degradation of glucoraphanin [47]. Bioactive sulfur compounds are degraded dur-
ing processing, mainly by conventional thermal techniques. Even some of these compounds
could not be formed by inactivation of the myrosinase enzyme.

2.2. Pectins

Pectin is a structural hetero-polysaccharide contained in the cell walls and abundant
in the non-woody parts of plants, including by-products such as peel or pomace. Pectin
presents beneficial properties for humans such as moderating the glycemic index and
slowing gastric transit. The interaction of pectin and polyphenolic compounds contributes
to systemic anti-inflammation [48]. Pectin is widely used in the food industry as a gelling
agent, emulsifier, and carrier polymer for the encapsulation of food ingredients (it is an
effective delivery vehicle for exogenous nutraceuticals), helping protect and promote the
controlled release of biomolecules [48]. Pectin quality can be characterized by galacturonic
acid content, degree of esterification and degree of methylation, affecting gelling prop-
erties [49]. Recent research summarized the characterization of the pectin composition
of several F&V waste, especially form plant processing industry. One of the conclusions
was that the pectin structures and recovery vary depending on the source and the applied
extraction pectin as it can be observed in the Section 7 (focus on non-thermal technolo-
gies). Moreover, the information about changes in pectic polysaccharide composition after
processing is essential for the industry, including the amount of uronic acid due to the
requirement of the minimum of 65%. In addition, although more studies are needed, the
rest of pectin below this limit could be useful in other applications [50].

3. Potential and Innovative Non-Thermal Techniques for Revalorization of Fruit &
Vegetables By-Products

Due to the thermal instability of compounds (which means a reduction of their con-
centration level), non-thermal innovative technologies have been increasing during last
decades [19], such as ultrasound-assisted extraction, high-pressure processing, light stresses,
fermentation technology, electro-technologies, and enzyme-assisted extraction, among oth-
ers [51,52]. Most of them are focused on the recovery of the above-mentioned compounds
related to revalorization of F&V by-products [9,24]. Recovering of bioactive phytochemi-
cals from F&V waste by non-thermal processes could improve the efficient production of
potential bioactive ingredients [53].

3.1. Electro-Technologies: Pulses Electric Fields

Pulses Electric Fields (PEF) consist of subjecting the selected material to the inter-
mittent application (<300 Hz) of electric fields at moderate-high intensity (0.1–20 kV/cm)
and short duration (µs to ms) [54]. The main characteristic is the application of electric
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field pulsing on plant matrices that induces electro permeabilization (formation of located
pores in cell membranes of cells), and the effect mainly depends on medium composition
(conductivity) [55]. PEF technology has been defined as technology which requires fewer
resources to produce nutritional with optimal sensory characteristics and longer shelf lives
of products such as hummus, smoothies and juices [56]. Related to recovery bioactive
compounds from F&V by-products, it enhances the specific recovery of bioactive intracel-
lular compounds without increasing temperature or/and damaging the structure of the
matrix. The obtained result depends on treatment intensity, physicochemical properties
of the matrix and the tissues and cells composition. If the combination of the variables is
optimized, reversible electroporation could occur (the membrane can return to its original
state once the electric field application has finished) [54,57,58]. It is important to highlight
that recent study indicated that pulsed electric field (PEF) treatment needs an optimization
for more selective, quicker, and sustainable bio-active compounds extraction in the food
industry [58]. Therefore, recent information about the optimal conditions of PEF were
included in Tables 1–3.

3.2. Enzyme-Assisted Extraction

A novel green and non-thermal technology, enzyme-assisted technology, for bioactive
compounds extraction such as phenolics and pectin has been developed during last decades
for cosmetic, pharmaceutical and food applications. It is essential to highlight that enzyme-
assisted extraction allows the use of F&V by-products providing a novel chance to give
added-value to F&V waste [59]. The fundamental mechanism of the pectin, polyphenols,
and pigments enzyme-assisted extraction from F&V by-products is based on the cell-wall
degrading enzymes. These enzymes weaken, degrade partially or/and break down the cell
wall polysaccharides, enhancing the possibility of the extraction of those compounds [60].

3.3. Fermentation

Fermentative processes can be classified according to different criteria. One of the
most common is the group of batch fermentations which is based on the addition of
the substrate and the key microorganism in the system at time zero. The produced key
compounds cannot be obtained until the process is complete [61]. On the other hand,
continuous and fed-batch fermentations microorganisms present another mechanism. The
system can be reutilized for several batches, increasing its efficiency. In general, the
industrial fermentations take place in liquid media, but sometimes solid-state fermentations
microorganisms are applied. Related to fermentations and revalorizations of F&V by-
products (fermentation-based valorization strategies), it has been recently developed the
fermentation of date palm waste to produce lactic acid [62,63] and bioconversion of cocoa
by-products using different microorganisms to obtain key enzymes, among other bioactive
compounds [63,64].

3.4. High Hydrostatic Pressure

High Hydrostatic Pressure (HPP) is one of the non-thermal pasteurization processing
technologies which is widely applied in the food industry [51,52]. It is a processing
technique that uses a range of pressure from 100 to 900 MPa to increase shelf-life of the
products due to the inactivation and elimination of microorganisms. The pressure can be
applied through direct pressure and indirect pressure. HPP induces high pressure which
causes severe damage to plant cells and leads to the diffusion of solvents and enhances the
mass transfer and release of the extracts [65]. The uniformity of the pressure application is
maintained during the process and it does not depend on the product size and geometry.
It has been reported that this technique avoids no-desirable effects on texture characteristics.
Moreover, this technique does not reach high temperatures, then protect characteristic flavor
notes, color pigments nutrients, and antioxidant bioactive compounds which are degraded
at high temperatures [66].
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3.5. Light Stress

Plant by-products have been proposed as bio-factories of bioactive compounds through
different induced postharvest abiotic stress mechanisms. Among them, one of the most
promising techniques appears to be UV radiation, the spectrum is divided into three re-
gions: UV-A (wavelength 320 to 400 nm), UV-B (wavelength 280 to 320 nm) and UV- C
(wavelength 220–280 nm). The use of UV technology during post-harvest is an emerg-
ing technology to enhance the biosynthesis of bioactive compounds in the F&V industry,
respectful with the environment, without generating waste [67,68]. The application of
UV-B, alone or in combination with UV-C, has not been widely studied as a revalorization
tool for maintaining and/or increasing the main key compounds in F&V by-products [69].
Although light-emitting diodes (LEDs) are increasingly adopted for the production of sev-
eral vegetable modalities and for quality preservation during storage [70], influencing the
metabolic pathways (biosynthesis of several bioactive compounds) [71–73]. No published
information is already available concerning the effect of this light stress in F&V by-products.
Recently, it has been concluded that a combination of different light stress techniques (UV-B
+ LEDs) could be a good strategy to enhance the bioactive compounds in commodities,
being a potential tool for by-products revalorization [71].

3.6. Supercritical Fluid Extraction

Supercritical fluid extraction (SFE) is a recent extraction technique, and it is based
on the use of the critical point of the solvent during the extraction. The combination of
gas mass transfer and liquid solvation properties allows a high transfer mass (diffusion
coefficients) than working below critical point. The majority of SFE studies have focused
on the use of CO2 due to its characteristics (non-toxic and cheap and can be easily removed
after extraction) [74].

3.7. Ultrasound-Assisted Extraction (UAE)

Ultrasonication is an emerging non-thermal and green technology in the food sector,
although it has been previously established in other sectors such as pharmacological. The
fundamentals are based on the mechanical impact of the ultrasound waves, allowing
deeper penetration of the solvent into the matrix (“sponge effect”) [55]. Ultrasonication
can be used with different doses (frequencies and time), which are classified as: (i) low-
frequency (20 kHz–100 kHz); (ii) medium-frequency (100 kHz–1 MHz); and high-frequency
ultrasonication (1 MHz–100 MHz) [75,76]. In food processing, the most common frequency
range for the extraction of bioactive compounds and intensified synthesis is 20 kHz–
100 kHz [51,52,77].

4. Scientific Literature Review about Non-Thermal Technologies Used for
Revalorization of Fruits & Vegetable By-Products

The review is organized as a research paper. A scoping review was used to synthesize
the evidence and assess the scope of the 71 studies on the topic. PRISMA Extension
(PRISMA-ScR) approach was used for Scoping Reviews [78]. A comprehensive literature
search using Scopus and ScienceDirect was performed in October 2021. Text words and
controlled vocabulary for several concepts (Non-thermal, technologies, by-products, fruit,
vegetable) within the titles, abstracts, and keywords were used. Only studies published
in journals included in Journal Citation Reports (JCR) have been included. Only original
research papers (Re) and reviews (Rw) including experimental design and data treatment
were selected (Figure 3). This review is structured as follows: (i) the effect of non-thermal
treatments on F&V by-products polyphenols; (ii) the effect of non-thermal treatments
on F&V by-products pigments; and (iii) the effect of non-thermal treatments on F&V
by-products pectin and sulfur compounds.
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5. Effect of Non-Thermal Technologies on Fruit and Vegetable By-Products
Polyphenols

Table 1 shows the non-thermal technologies applied in F&V by-products focusing on
the main findings related to polyphenols. The table is divided in three parts: flavonols,
polyphenols and flavonoids. The non-thermal technologies found were: solid-state fer-
mentation, supercritical fluid extraction, ultrasounds, high pressure, hydrostatic pressure,
electro-technologies, enzyme-assisted extraction, and light stress. Most of the investigations
found (70%) were on fruit by-products or the wine and distillate industry, with only two
studies related to vegetables (onion and broccoli) [79–81].

The recovery of bioactive compounds are mainly affected by varying the solvent
concentration (ratio solvent:by-product), applied dose (wavelength, intensity, pressure,
frequency), temperature and time (Table 1, Table 2 and Table 3) [82].
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Table 1. Effect of non-thermal technologies on F&V b-products polyphenols (flavonols, total polyphenols, flavonoids).

Non-Thermal Technology By-Product Findings Reference

Solid-state Fermentation
(A. niger and R. oligosporus) Plum pomace

Increase of quercentin-3-glucoside (23 to 34 mg/100 g dry matter
by A. niger; 22 to 24 mg/100 g dry matter by R. oligosporus), and

quercentin-3-rutinoside (21 to 25 mg/100 g dry matter by A. niger)
when 2 × 107 spores/g of solid was inoculated and fermentation

took place during 14 days at 30 ◦C

[83]

Solid-state Fermentation
(A. niger and R. oligosporus) Plum brandy distilleries waste

Increase of quercentin-3-glucoside (92 to 120 mg/100 g dry matter
by A. niger; 92 to 110 mg/100 g dry matter by R. oligosporus),

quercentin-3-rutinoside (42 to 64 mg/100 g dry matter by A. niger;
42 to 74 mg/100 g dry matter by R. oligosporus) and

quercentin-3-galactoside (26 to 36 mg/100 g dry matter by R.
oligosporus) when 2 × 107 spores/g of solid was inoculated and

fermentation took place during 14 days at 30 ◦C

[83]Fl
av

on
ol

s

Ultrasound assisted solid liquid
extraction Skins of red and yellow onions Recovery of quercetin aglycona (118%) after extracted eight times

with 20 mL Ethanol (85% v/v) for 15 min at 25 ◦C [34,81]

High hydrostatic pressure Orange and lemon peels
More intense HPP conditions (500 MPa, 10 min), polyphenols

decrease (lemon: 291.08 to 211.95 mg GAE/100 g fresh peel
extracts; orange: 400 to 215.31 mg GAE/100 g fresh peel extracts).

[84,85]

High hydrostatic pressure Pineapple by-products Accumulation of bromelain (increase of 350%) and TPC (increase
of 36%) at 225 MPa, 8.5 min [86,87]

Electro-technologies Mango peel Recovery of polyphenols (+400%) at E = 13.3 kV/cm (160 kJ/kg);
V = 40 kV (160 kJ/kg) [54,88]

Electro-technologies Olive kernel Recovery of polyphenols E = 13.3 kV/cm (0–141 kJ/kg), V = 40 kV
(0–141 kJ/kg) [54,89]

Electro-technologies Orange peel

Up to 159% in polyphenol extraction recovery after PEF
pre-treatment at an electric field densities 1 kV/cm and 7 kV/cm

(60 µs, 20 pulses, f = 1 Hz).
Recovery of naringin and hesperidin increased ≈2- and 3-fold,

respectively.

[84]

Electro-technologies Orange peel Recovery of polyphenols (from 20%, to 159%) for orange peel PEF
treated at E = 1–7 kV/cm (0.06–3.77 kJ/kg) + Pressing 5 bars [54,90]

Electro-technologies Papaya peel and seeds Recovery of polyphenols (>50%) at E = 13.3 kV/cm (160 kJ/kg); V
= 40 kV (160 kJ/kg) [54,91]

Electro-technologies Raspseeds stems and leaves Recovery polyphenols (36–42%) at E = 0.2–5 kV/cm (0–700 kJ/kg) [54,92]
Electro-technologies Raspseeds seeds Recovery polyphenols (around 50%) at V = 40 kV (0–400 kJ/kg) [54,93]
Electro-technologies Winery wastes and by-products (peel) Recovery of polyphenols (42%) E = 5–10 kV/cm (1.8–6.7 kJ/kg) [54,94]

Electro-technologies Winery wastes and by-products
(pomace)

Recovery of polyphenols (>40%) at E = 13.3 kV/cm (0–564 kJ/kg)
V = 40 kV (0–218 kJ/kg) [54,95]

Electro-technologies Winery wastes and by-products (seed) Recovery of polyphenols (>40%) at E = 8–20 kV/cm (0–53 kJ/kg)
V = 40 kV (0–53 kJ/kg) [54,96]

Electro-technologies Fermented grapes pomace
Increase of recovery by 1.2 kV/cm 18 kJ/kg 20 ◦C (the ratio of

total anthocyanins to total flavan-3-ols was increased from 7.1 in
non-treated to 9.0 in PEF-treated samples)

[97,98]
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Table 1. Cont.

Non-Thermal Technology By-Product Findings Reference

Electro-technologies Winery wastes and by-products (grapes) Increase 13% at 0.5 kV/cm, 50 pulses, 0.1 kJ/kg
Increase 28% at 2.4 kV/cm, 50 pulses 2.3 kJ/kg [99,100]

Electro-technologies Winery wastes and by-products (grapes) Increase 34% at 0.7 kV/cm, 200 ms, 31 Wh/kg [99,100]

Electro-technologies Winery wastes and by-products (vine
shoots)

Up to 2-fold increase in TPC (Kaempferol, epicatechin,
resveratrol) at 13.3 kV/cm, 0–1500 pulses, 50–762 kJ/kg/3 h

compared to untreated
[99,101]

Electro-tecnologies Citrus peel (orange and pomelo) Increase of polyphenols recovery, 16 mg/g dry matter for skins
(for albedo + flavedo) (E = 10 kV/cm and 50% ethanol solution) [102]

Enzymed-assisted extraction Grape residues
Novoferm® (1:10, 12 h and 40 ◦C) had the strongest effect on

phenolic release (90%) from grape waste (100 mg of dry material
was suspended in 1.4 mL of 0.2 M acetates buffer (pH 3.5)).

[60]

Light stress
(UV-B and UV-C; single and combined) Bimi broccoli leaves and stalks

UV increased initial TPC of leaves/stalks up to 31–97/30–75%, 10
kJ/m2 UV-B (UV-B10) + C induced the highest TPC increase

(110%) in leaves while UV-B10 and UV-B10 + C led to the highest
TPC of stalks after 48 h

[80]

Optimized supercritical Fluid Extraction Broccoli by-products Decrease of polyphenols (<20%) at 400 bars, 40 ◦C, 5% of ethanol
compared with conventional treatment [79]

Solid-state Fermentation
(A. niger and R. oligosporus) Plum brandy distilleries waste

Increase of 3-Caffeoylquinic acid (33 to 53 mg/100 g dry matter by
A. niger; 33 to 46 mg/100 g dry matter by R. oligosporus) when 2 ×
107 spores/g of solid was inoculated and fermentation took place

during 14 days at 30 ◦C

[83]

Solid-state Fermentation
(A. niger and R. oligosporus) Plum pomace

Increase of 5-Caffeoylquinic acid (22 to 24 mg/100 g dry matter by
A. niger; 22 to 24 mg/100 g dry matter by R. oligosporus) when 2 ×
107 spores/g of solid was inoculated and fermentation took place

during 14 days at 30 ◦C

[83]

Subcritical/critical Fluid Extraction White grape seeds

Improved recovery of gallic acid, catechin, and epicatechin (>70%)
at 1 mL/min CO2 flow rate, 20 min extraction, 35 ◦C, organic

modifier density (0.85–0.95 g/mL), modifier (ethanol-methanol:
10–40).

[99,103]

Ultrasounds Grape marc Increase of 11–35% at 24 kHz, 20–75 W/mL [99,104]

Ultrasounds Orange peel
(50:50 EtOH:Water)

Recovery of caffeic (207%), p-coumaric (180%), ferulic (192%),
sinapic acid (66%), and p-hydroxybenzoic (94%) at 25 KHz, 150 W,

15 min
[84]

Ultrasounds Orange peel
(20:80; 80:20, EtOH:Water)

Recovery of naringin (38%), hesperidin (42%), TPC (31%) at 25
kHz, 50–150 W, 60 min [84]

P
ol

yp
he

no
ls

Ultrasounds Winery wastes and by-products (grapes) Increase of 7% (sum of anthocyanins and tannins) at 24 kHz, 5–15
min, 121–363 kJ/kg [99,104]

Fl
av

on
oi

ds

Pulsed electric fields Orange peel Increase at 5 kV/cm and 20 pulses [97]
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6. Effect of Non-Thermal Technologies on Fruit & Vegetable By-Products Pigments

Non-thermal technologies applied in F&V by-products focusing on the main findings
related to bioactive pigments are shown in Table 2. The table is divided in four parts:
anthocyanins, betalains, carotenoids and chlorophylls. The non-thermal technologies
found were: electro-technologies, high pressure, supercritical fluid extraction, ultra [105]
sounds, high pressure, and combined techniques (e.g., ultrasounds + enzyme-assisted
extraction). It is striking that almost 50% of the research findings are related to vegetables,
mainly tomato by-products and others such as eggplant and broccoli. Related to fruits
by-products, as expected, the main findings were focused on berries, olive extraction and
wineries. It has been recently concluded that berry by-products from processing steps are
a cheap and available source for isolating anthocyanins-rich extracts using non-thermal
processing technologies as can be observed in Table 2. These technologies have been
demonstrated to have unique characteristics such as being effective, rapid, low-cost, and
eco-friendly [106,107]. It is essential to highlight that the accuracy of the technique depends
on not only the conditions or the matrix of the F&V by-products. For example, the highest
recovery of anthocyanin in plum peels was observed after US while in grapes, PEF was the
most effective technology [108].

Table 2. Effect of non-thermal technologies on F&V by-products pigments (anthocyanins, betalains,
carotenoids and chlorophylls).

Non-Thermal
Technology By-Product Findings Reference

Electro-technologies Winery wastes and
by-products (pomace)

Recovery of
polyphenols (>20%) at
E = 13.3 kV/cm (0–564

kJ/kg) V = 40 kV
(0–218 kJ/kg)

[95,99]

High pressure Wine by-products

Recovery of 41% at 600
MPa, 60 min/solvent
(50–50% ethanol in

water)

[99,109]

High pressure Wine by-products

Recovery of 22–83% at
200–600 MPa, 30–90

min, solvent (20–80%;
100–0% ethanol in

water)

[99,110]

Pulsed electric fields Blueberry pomace
(press cake)

Increase of Delphinidin,
Cyanidin, Petunidin,

Peonidin, and Malvidin.
51%, 71% and 95% at 1
kV/cm, 3 kV/cm, and
5 kV/cm, respectively

[107]

Pulsed electric fields Blueberry by-product

Anthocyanin extraction
increased (>30%) with

PEF process
intensification (1–35

kV/cm; 1–10–41 kJ/kg;
10 Hz, 2–100 pulses, 2

µs

[105,106,111,112]

Pulsed electric fields Grape by-product
(pomace and peel)

Improved anthocyanin
extraction (up to 18.9%)

at 1.2, 1.8, and 3.0
kV/cm, 18 kJ/kg,

200–2000 pulses, 100 µs

[106,108]

Anthocyanins

Pulsed electric fields Plum by-product

No increase
anthocyanins at

37.8–289.8 W, 0.7–25.2
pulses, 10 Hz, 6 µs

[106,108]
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Table 2. Cont.

Non-Thermal
Technology By-Product Findings Reference

Pulsed electric fields Peach by-product

Improved anthocyanin
extraction (up to

11.8-fold) at 0.8 kV/cm,
0.2 kJ/kg; 0.1 Hz 4 µs

[106,113]

Pulsed electric fields Raspberry by-product
Increase 27.5% at 1

kV/cm, 6 kJ/kg, 20 Hz
and 20 µs

[106,114]

Pulsed electric fields Sour cherry by-product

Improved anthocyanin
extraction (up to 54%);
1 kV/cm, 10 kJ/kg, 10

Hz, 20 µs

[106,115]

Pulsed electric fields Sweet cherry
by-product

Improved anthocyanin
extraction (up to 38.4%)
at 0.5 kV/cm, 10 kJ/kg,

5 Hz, 20 µs

[106,116]

Pulsed electric fields Winery wastes and
by-products (grapes)

Increase of
anthocyanins: 3-fold at
3 kV/cm 50 pulses; 1.6
and 2-fold ↑ 5 kV/cm 1

ms

[99,117]

Pulsed electric fields Winery wastes and
by-products (grapes)

Increase of 51–62% at
0.8–5 kV/cm, 1–100 ms,

42–53 kJ/kg
[99,117]

Pulsed electric fields Winery wastes and
by-products (grapes)

Increased anthocyanin
content (1.6–1.9 fold
more) at 5 kV/cm, 1

ms, 48 kJ/kg

[99,118]

Pulsed electric fields Winery wastes and
by-products (pomace)

Increase of
Anthocyanins (2-fold
more) at 13.3 kV/cm,

0–564 kJ/kg

[99,101]

Pulsed electric fields
+ ultrasounds Blueberry by-products

Increase of anthoycanin
extraction (3 fold more)
(PEF: 60% ethanol 1:6

and 20 kV/cm;
Ultrasounds: 1:6, 40 ◦C,

60 min at 125 W)

[119]

Subcritical/critical
Fluid Extraction Grape skin

Recovery of 85% at
100–130 bar, pH of 2–4,
25–30% ethanol, 25–50
mL/min CO2 flow, and

3–10% extract flow
ratio

[99,120]

Ultrasounds Eggplant by-product

US-assisted extraction
(15–45 min) was

preferable to
conventional

solid-liquid extraction
due to the lower

temperature (25 ◦C)
used and higher

delphinidin
3-O-rutinoside content

(1.5 fold more).

[82]

Anthocyanins

Ultrasounds Jabuticaba by-products
The highest

concentration at 1.1
W/cm2, 3 min, 10 KHz

[106,121,122]
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Table 2. Cont.

Non-Thermal
Technology By-Product Findings Reference

Ultrasounds Pomegranate peel

116 W sonication power with 80% duty
cycle for 6 min for extraction of 22.51

mg cyanidin-3-glucosides/100 g
pomegranate peel.

[106,123]

Pulsed electric
fields

Opuntia stricta
peels

Total colorants to ≈80 mg/100 g FW (20
kV, frequency of 0.5 Hz, number of

pulses of 50)
[124]

Pulsed electric
fields

Red pricky pear
peels

Increase of 2.4 fold colorants (betanin
and isobetanin) at 8–23 kV/cm 50–300

pulses + aqueous extraction
[125]

B
et

al
ai

ns

Ultrasound Opuntia stricta
peels

Total colorants to ≈80 mg/100 g FW
(400 W power at 24 kHz frequency for

5–15 min)
[124]

Carotenoids

Electro-
technologies Olive kernel

Recovery of polyphenols (2-fold more) E
= 13.3 kV/cm (0–141 kJ/kg), V = 40 kV

(0–141 kJ/kg)
[54,89]

Microemulsion
(Ultrasounds +

enzyme)
Tomato pomace

Recovery of lycopene (>20%). The
optimal conditions (tomato pomace:

double distilled water 1:6): combined
ultrasound (20–37 W, amplitude 90%

and sonication temperature of 10 ◦C for
15 min) and enzyme pretreatments (0.2
mL/kg, 30 min, pH 4, 35 ◦C), saponin as

a natural surfactant, and glycerol as a
co-surfactant.

[55,126]

Pulsed Electric
Fields Tomato waste

Recovery of 12–18% of lycopene in
acetone and ethyl lactate extracts at 5

kJ/Kg and 5 kV/cm (20 ◦C).
[55,105,127]

Supercritical Fluid
Extraction

Broccoli
by-products

Decrease of beta-carotene (>10%)
compared with conventional treatment

at 400 bars, 5% of ethanol
[79]

Supercritical fluid
extraction

F&V waste:
-sweet potato,

tomato, apricot,
pumpkin and
peach peels

-green, yellow and
red peppers

Total carotenoid recovery values were
greater than 90% w/w, with β-carotene
being the most successfully extracted

compound (TCRs 88–100% w/w), at 350
bar, 15 g/min CO2, 15.5% (v/v) ethanol
as co-solvent, 30 min of extraction time)

[128,129]

Ultrasound Orange processing
waste

Optimization of β-carotene extraction
with enzyme assisted technology at

20 kHz, 500 W and 25 ◦C
[129,130]

Ultrasound Red pricky pear
peels

Increase of 2.6 fold colorants (betanin
and isobetanin) at 400 W 5–15 min +

aqueous extraction
[125]

Ultrasound Tomato pomace
Lycopene increase (>10%) at 25–40 ◦C,

0–10 min, 0–100 kPa; 58–94 µm; Hexane
%: 25–75

[55,131,132]

C
a-

ro
te

-n
oi

ds

Ultrasounds Tomato peel
5-fold lower all-trans lycopene content
by ultrasounds (30 min 0 ◦C) compared

to thermal extraction (75 ◦C, 1–2 h).
[14]

Electro-
technologies Olive kernel

Recovery of polyphenols (>30%) E =
13.3 kV/cm (0–141 kJ/kg), V = 40 kV

(0–141 kJ/kg)
[54]

C
hl

or
op

hy
ll

s

Supercritical Fluid
Extraction

Broccoli
by-products

Increase of chlorophylls (>10%) at 400
bars, and 5% of ethanol [79]
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7. Effect of Non-Thermal Technologies on Fruit and Vegetable By-Products Pectins and
Sulfur Compounds

The main findings about the effect of non-thermal technologies on pectins and sulfur
compounds from F&V by-products are detailed in Table 3. The table is divided in two
parts: pectin and sulfur compounds. The non-thermal technologies found were: enzyme-
assisted extraction, high pressure, electro-technologies, ultrasounds, combined technologies
(e.g., ultrasounds + enzyme-assisted extraction) and light stress.

Table 3. Effect of non-thermal technologies on F&V by-products pectin and sulfur components
content.

Non-Thermal
Technology By-Product Findings Reference

Enzymes Apple Pomace Recovery of 14% by Celluclast
18 h [133,134]

Enzymes Kiwi pomace Recovery of 4% by celluclast 25
◦C 0.5 h [133,135]

Enzymes Passion fruit pomace Recovery of 2.6–9.2% by
Cellyclast 0.5–2 h [133,136]

Enzymes Lime peel Recovery of 26% by Validase
TRL 4 h [133,137]

High pressure Cactus pear peel Increase of 22% soluble pectin
at 600 MPa 10 min [138,139]

High pressure Cactus pear peel Increase of 9% insoluble pectin
at 600 MPa 10 min [138,139]

High pressure Mango peel Increase of 15% soluble pectin
at 600 MPa 10 min [138,139]

High pressure Orange peel Increase of 59% soluble pectin
at 600 MPa 10 min [138,139]

High pressure Passion fruit peel

Recovery of pectin was
increased from 7.4 to 14.3%
due to HPP pre-treatment.
D-GalA of pectin was 65%
higher than conventional

treatment

[65,140]

High pressure Tomato peel

300 MPa pressure performed
at 10, 20, 30, and 45 min.

14–15% of pectin recovery at 30
and 45 min

[65,141]

Moderate electric field Passion fruit peel

Increase of galacturonic acid
(GA) (recovery and content) at
40 min; 100 V; pH 1 (GA); pH 3

(Recovery)

[65,140]

Ultrasounds Grapefruit peel Recovery of 18.2% by 30 ◦C
10–60 min, 0.2–0.53 W/mL [131,142]

P
ec

ti
n

Ultrasounds-enzyme
assisted extraction

without or with
hemicellulase or

cellulase

Discarded carrots

The pectin was rich in α- and
β-carotenes, lutein and

α-tocopherol.
US-hemicellulase led to the

highest pectin recovery (27.1%)
at 12.27 W/cm2: 20 kHz, 80%

amplitude, 20 min

[143]

Electro-technologies Raspseeds seeds
Recovery of isothyocyanates
(>15%) at V = 40 kV (0–400

kJ/kg)
[54,93]

Su
lf

ur
co

m
po

un
ds

Light stress
(UV-B and UV-C; single

and combined)

Bimi broccoli leaves
and stalks

UV-B (10 kJ/m2) + C increased
34% of glucobrassicin levels of

leaves
[80]
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8. Trends and Challenges for Fruit & Vegetable By-Products Application in Food Systems

The incorporation of F&V by-products, their compounds, and/or their extracts/powders
can be a relevant strategy for the re-formulation of “Clean Label” ingredients and fortification
products. When the non-thermal technologies mentioned above are optimized and applied
to F&V by-products, phytochemical bioactive compounds are maintained and/or increased,
and then incorporated to food systems. In the following sections, scientific evidence and
opportunities for F&V by-product application in food systems are explained: minimally
processed fruits, beverages and purees, bakery and confectionary products, food packaging,
and cosmetics.

8.1. Minimally Processed Fresh Fruit and Vegetables

Minimally processed fresh F&V are commonly defined as any commodity that has been
subjected to different processing steps to obtain a fully edible product [144]. Nowadays,
the number of emerging technologies using F&V by-products is increasing. For example,
a recent study concluded that the fresh-cut apples fortified with lycopene microspheres
obtained from tomato peel from the food industry controlled the enzymatic browning after
9 d at 5 ◦C, enhancing phenolic compounds up to 56% (for chlorogenic acid) after 9 d at 5
◦C [14]. In addition, broccoli by-product was incorporated for the enrichment of kale pesto
sauce, increasing functional, techno-functional and sensory characteristics [13].

8.2. Fruit- & Vegetable-Based Beverages and Purees

A recompilation of the evidences of fortification of beverages by bioactive compounds
from F&V by-products was recently published [9]. For instance, the incorporation of
the beetroot leaves extract into a veggie smoothie was a potential tool to enrich (50%)
phenolic content on the final product. Not only were functional properties enhanced,
nutritional and techno-functional properties were also increased [6,89]. Another example is
the fortification of coconut water by microparticles of encapsulated grape pomace extract
rich in polyphenols [93]. In addition, there is a growing interest in using F&V by-products
in fermented beverages for the development of novel functional foods when combining
their nutritional and functional characteristics with the enzymatic mechanisms of selected
lactic acid bacteria [145]. Enhancing bioactive compounds and other quality parameters
could carry out adding F&V by-products to vegetable purée such as tomato puree enriched
with grape skin fibers from winemaking by-products [146]. This trend is accompanied by
green and non-thermal technologies such as enzyme-assisted extraction, pulsed electric
field, ultrasounds, and supercritical fluid extractions [145].

8.3. Pasta, Bakery and Confectionary Products

The development of pasta, bakery and confectionary products based on natural in-
gredients/compounds with antioxidant properties and/or with a reduction of sugars and
lipid content is a current trend to obtain new and healthier products. Therefore, the incor-
poration of F&V by-products is researched such as cookies fortified with purple passion
fruit epicarp flour [147], candies fortified with watermelon by-products [148], nutritionally
enhanced maize complementary porridges with mango seed and kernel [149], cereal-based
foods fortified with by-products from the olive oil industry [150], and spaghetti enriched
by persimmon and other vegetal by-products [93,151], among others.

8.4. Food Packaging and Edible Coatings

Active packaging presents several options but all of them focus on the addition of
additives into the packaging system. The main purpose is to increase food quality and
shelf-life. The most common additives are moisture absorbers, gas scavengers, carbon diox-
ide emitters, antioxidant, and antimicrobial compounds [152]. Related to food packaging
obtained from F&V by-products, companies present a special interest due to the interest of
circular economy and zero waste strategies around the world during last years. The unique
characteristics can be described as follows: (i) to increase antioxidant and antimicrobial
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activity, (ii) to improve mechanical properties, and, (iii) to protect food products (to increase
shelf-life) [153]. Nowadays, F&V by-product components have been proposed to improve
the properties of synthetic or bio-based plastic materials [22]. F&V by-products powders
and extracts are a good strategy for obtaining packaging with renewable and biodegrad-
able biopolymers, composite films with food stability and barrier properties, active films
as carriers of antioxidant and antimicrobial compounds and edible and functional food
packaging [22,153].

On the other hand, the colorimetric pH indicator films can be a potential tool for
obtaining smart packaging, showing alterations of the food pH by food deterioration and
environmental changes. Then, consumers receive authentic information regarding the
food’s quality and its edibility (fresh, spoiling, and spoiled product such as milk) [152]. For
example, an interesting way to use anthocyanins is building an active use by-date indicator
for milk. The development of an anthocyanin-agarose film capable of changing its color in
the presence of lactic acid from microbial metabolism has been reported [60].

In addition, a novel technology in which F&V by-products could be revalorized
is the use of edible coating, specially containing potent antioxidants and other bioactive
compounds from F&V by-products. Up to now, the most common edible coating is chitosan-
based edible/biodegradable films because they can extend the shelf life of postharvest
fruits. Recent studies have been indicated that coatings enriched with F&V by-products (for
example with grape, blueberry and parsley pomace extracts) did not lead to a disruption
of the protective function [154]. Natural antioxidants of F&V by-product extracts often
contain a high amount of phenolic substances and have been used as active ingredients in
the manufacture of active films [152].

8.5. Pharmacologic and Cosmetic Uses

The market for natural cosmetics is growing due to the importance of sustainable
development and protecting the environment. Manufacturers present an interest in recov-
ering bioactive compounds from F&V by-products for reducing the environmental impact
of waste and for converting them into particularly valuable sources of extracts for cosmetic
usage [79,155]. In addition, the potential of food and agricultural residues (rich sources
of different classes of compounds with valuable active principles) for the preparation of
pharmaceutical and bioactive compounds is gaining importance, taking the environmental
impact of the overall production process into account [19,156]. For example, the use of broc-
coli by-products wasted during the preharvest stage were classified as potential ingredients
for the cosmetic and pharmaceutical industries, mainly due to the antioxidant effect of its
phytochemicals compounds [79]. These findings have been transferred to the industry, and
several companies have been recently created, such as https://biodiversocosmetic.com/
(accessed on 25 December 2021).

9. Conclusions

Although there is an increase of research focused on the effect of non-thermal treat-
ments on F&V by-products for enhancing phytochemicals and other compounds such as
pectin, more scientific evidence is needed to establish the optimum treatments and condi-
tions (extraction, addition, processing, storing, shelf life) for each F&V by-product. Most of
the studies were focused on fruit by-products, finding a lack of clear evidence related to
vegetable commodities. Even though novel extraction technologies showed a better poten-
tial to retain bioactive compounds, the use of improved sustainable methods needs further
investigation towards industrial viability (energy consumption, time, equipment, value,
cost, etc.). Future investigations should be focused on the effect of ‘green’ technologies in
improving the F&V by-products extraction and incorporation for the full utilization of raw
materials to preserve a circular economy while enhancing bioactive quality. In this sense, it
would be of high interest to optimize nanotechnology for encapsulating extracted bioactive
compounds/ingredients, preserving their degradation and optimizing their use efficacy.

https://biodiversocosmetic.com/
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45. Miękus, N.; Marszałek, K.; Podlacha, M.; Iqbal, A.; Puchalski, C.; Świergiel, A.H. Health Benefits of Plant-Derived Sulfur
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