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The intestinal microbiome is an essential so-called human “organ”, vital for the induction of
innate immunity, for metabolizing nutrients, and for maintenance of the structural integrity
of the intestinal barrier. HIV infection adversely influences the richness and diversity of the
intestinal microbiome, resulting in structural and functional impairment of the intestinal
barrier and an increased intestinal permeability. Pathogens and metabolites may thus
cross the “leaky” intestinal barrier and enter the systemic circulation, which is a significant
factor accounting for the persistent underlying chronic inflammatory state present in
people living with HIV (PLWH). Additionally, alcohol use and abuse has been found to be
prevalent in PLWH and has been strongly associated with the incidence and progression
of HIV/AIDS. Recently, converging evidence has indicated that the mechanism underlying
this phenomenon is related to intestinal microbiome and barrier function through
numerous pathways. Alcohol acts as a “partner” with HIV in disrupting microbiome
ecology, and thus impairing of the intestinal barrier. Optimizing the microbiome and
restoring the integrity of the intestinal barrier is likely to be an effective adjunctive
therapeutic strategy for PLWH. We herein critically review the interplay among HIV,
alcohol, and the gut barrier, thus setting the scene with regards to development of
effective strategies to counteract the dysregulated gut microbiome and the reduction of
microbial translocation and inflammation in PLWH.

Keywords: HIV, alcohol, gut, microbial translocation, chronic inflammation
INTRODUCTION

Although the widespread use of antiretroviral therapy (ART) has resulted in an increase in the
lifespan of people living with HIV (PLWH), HIV/AIDS currently remains a major global public
health problem (1). According to the Joint United Nations Programme on HIV/AIDS (UNAIDS)
report, 690 000 people succumbed to AIDS-related diseases in 2019 (2). On the other hand, it is
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estimated that alcohol abuse causes 2.5 million deaths worldwide
every year, and the World Health Organization lists alcohol
consumption as an important risk factor for disease and
disability worldwide (3).

Notably, alcohol use and abuse has been found to be highly
prevalent in PLWH (4) and alcohol is strongly associated with
the incidence and progression of HIV, including towards AIDS.
Indeed, alcohol increases the risk of multiple comorbidities, such
as hepatic fibrosis, hepatic cirrhosis, neurocognitive impairment,
and AIDS-related dementia (HAD) (5–11). Moreover, alcohol
abuse increases the risk of HIV infection by promoting risky
behaviors (12). Alcohol abuse has also been associated with
failure of ART to achieve virologic inhibition in PLWH (13–15).

Recent evidence highlights the fact that HIV and alcohol act as
two “partners” in the disruption of the gut microbiota composition
and impairment of the intestinal barrier, which leads to high-levels
of microbial translocation and chronic immune activation in
PLWH (16–18). The entire gastro-intestinal system hosts a large
concentration and diversity of microbes. A population of nearly
100 trillion different microbes inhabits the human gut, comprising
bacteria, archaea, fungi, yeasts, and viruses (19). Intestinal
microbiota not only plays a vital role in maintaining the normal
intestinal tract of individuals, but is also indispensable for the
general health (20–22). Intestinal microbial dysbiosis, a disbalance
of the gut microbiota composition, has been shown to be positively
associated with several chronic conditions, such as obesity,
cardiovascular disease, inflammatory bowel disease, cancer, and
alcoholic liver disease (23, 24). HIV infection is known to be
associated with microbial dysbiosis, intestinal barrier injury, and
intestinal leakage (25). The “leaky gut” is now known to be one of
the main factor causing the persistent underlying chronic
inflammation in PLWH on ART, and is associated with poor
recovery of CD4+ T-cell counts and the development and
progression of non-AIDS-related conditions (26, 27). Moreover,
alcohol use and abuse are known to enhance HIV-induced injury
to the gut (16, 28). The present review will focus on the
mechanisms whereby HIV and alcohol increase disruption to the
gut microbiota and intestinal barrier, causing microbial
translocation, and chronic systemic inflammation in PLWH. We
will also discuss possible therapeutic strategies for the restoration of
the structural and functional integrity of the intestinal barrier.
ALCOHOL USE ACCELERATES THE
PROGRESSION OF HIV INFECTION

Alcohol use is prevalent among PLWH around the world (4, 29–
34). Due to the different population involved in alcohol use
studies, the percentage of alcohol user varies in these studies. A
study from Kampala, Uganda, observed that 33% of HIV-
infected individuals self-reported any alcohol use, and 18.6%
HIV-infected individuals were classified as alcohol abusers in
2012-2013 (33). Another study included 8567 HIV-infected
individuals from the United States during 2013-2015, and
showed that 41% of those were low alcohol users and 27%
were hazardous alcohol users (34). The longitudinal cohort
Frontiers in Immunology | www.frontiersin.org 2
study by Kelso-Chichetto et al., found that among PLWH who
were drinking alcohol, female were significantly less frequently
found than male, and the percentage of heavy drinkers decreased
in HIV-infected women during 10 years of follow-up; in contrast,
the percentage of heavy drinkers in HIV-infected men who have
sex with men (MSM) increased during follow-up (31). However,
no consensus is currently accepted for the burden of alcohol use
and abuse in PLWH (35, 36). Marshall et al. performed a
longitudinal analysis among HIV-infected MSM, and found
that the percentage of hazardous drinkers decreased from
29.0% to 24.2% during the eight-year follow-up (35).
Moreover, a study in Porto Alegre, southern Brazil reported
that heavy alcohol consumption among PLWH was even lower
than the general population (5.6 vs. 10.3%) (36). The authors of
the preceding study propose that the lower prevalence of risky
alcohol consumption in PLWH may be secondary to their
concern related to the perceived harmful consequences of
alcohol use in negatively impacting HIV control (36).
Importantly, PLWH experienced increased mortality and
physiologic injury at lower levels of alcohol use compared with
the general population (37).

The prevalence of alcohol use and abuse in PLWH is likely to
induce tissue injury and reduce survival. Non-hazardous alcohol
consumption once per week or more was reported to decrease
survival in PLWH by 1 year, and by 6.4 years for those with daily
hazardous consumption (38). In addition, alcohol consumption
independently increases the risk for several comorbidities in
PLWH, including the risk of dementia (8), cardiovascular disease
(39, 40), hepatic cirrhosis (41), and pneumonia (42). A study by
Freiberg et al., showed that compared with infrequent and
moderate drinking, hazardous drinking and alcohol abuse were
associated with a higher prevalence of cardiovascular diseases
(39). Moreover, liver injury is known to be a major cause of
morbidity and mortality among PLWH (43, 44). Alcohol is a
potent trigger of HIV-mediated liver damage, which accelerates
hepatic disease progression and eventually results in advanced
fibrosis and cirrhosis (7, 45). A probable mechanism for liver
inflammation and fibrosis was proposed by Chen et al. (46):
alcohol increases intestinal permeability and gut-derived
pathogens cross the intestinal barrier to enter into the liver,
then hepatic stellate cells, Kupffer cells, and hepatocytes are
activated to secrete pro-inflammatory cytokines and chemokines,
causing persistent inflammation and injury to the liver (46).
Alcohol may also promote HIV-mediated liver injury through
increased oxidative stress and mitochondrial disorders, leading to
increased virus replication and hepatocyte apoptosis (41, 44, 47–
51). Reports have shown that alcohol use can activate microglial
cells and astrocytes, promoting neuronal cell death by enhancing
oxidative stress and gut microbiome changes, eventually leading
to impaired cognition and behavioral deficits, and possibly death
(8, 52–55).

Alcohol modulates immune cells and increases systemic
inflammation, which has been considered to be one of the
main mechanisms for adverse outcomes induced by alcohol
use and abuse. In simian immunodeficiency virus (SIV)-
infected rhesus macaques, alcohol use has been shown to
December 2021 | Volume 12 | Article 741658
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accelerate the decline of peripheral CD4+ T-cells (56). However,
the results of related observational studies in PLWH in Uganda
have been conflicting, indicating conversely, that unhealthy
alcohol use may not accelerate CD4+ T-cell decline in PLWH
(57). Alcohol use is also reported to alter CD8+ T-cell phenotypes
in PLWH, and alcohol is positively associated with activated-
senescent and terminal effector memory CD45RA+CD8+ T-cells,
but not CD4+ T-cells (17). In addition, alcohol use additively or
synergistically increases systemic inflammatory factors in
PLWH. A study of HIV-infected individuals in Russia showed
that alcohol use and abuse independently increased levels of the
following biomarkers: soluble CD14 (sCD14), interleukin (IL)-6,
and D-dimer (58). Monnig et al. reported that HIV-infected
individuals had higher levels of lipopolysaccharide (LPS), LPS-
binding protein (LBP), sCD14, and soluble CD163 (sCD163)
than uninfected individuals with similar alcohol use (59). Of
note, these biomarkers have been associated with increased
mortality risk in PLWH (60–62).

Moreover, alcohol use and abuse in PLWH has become an
important factor in reducing adherence to ART, leading to poor
ART efficacy (63–66), and increasing the possibility of
antiretroviral drug resistance (67, 68). An epidemiological
study of HIV-infected women on ART by Howard et al.,
illustrated the relationship between antiretroviral adherence
and viral load. Virological failure occurred in 17% of women
with adherence rates of greater than or equal to 88%, in 28%
of those with 45-87% adherence, in 43% of those with 13-44%
adherence, and in 71% of those with less than or equal to
12% adherence (69). Alcohol use was a significant predictor
of lower adherence (70, 71), and in an investigation by
Braithwaite and colleagues, they observed that regardless
of HIV status and temporal and dose-response relationships
between alcohol consumption and missed HIV medications,
consumption of alcohol was associated with decreased
adherence to medications on that day and on the following
two days. In particular, among non-binge drinkers (i.e., drinkers
who consumed less than five standard drinks per day), 3.5%
missed medication doses on drinking days, 3.1% missed
medication on post-drinking days, and 2.1% missed
medication on non-drinking days (p<0.001 for trend). Among
binge drinkers (i.e., drinkers who consumed five or more drinks
per day), 11.0% missed doses on drinking days, 7.0% missed
medication on post-drinking days, and 4.1% missed medication
on non-drinking days (p<0.001 for trend) (72).

Furthermore, alcohol may aggravate the toxicity of ART
drugs, which is likely to decrease ART adherence (65).
Hepatoxicity is one of most common side effects for ART
drugs. In the liver, the main metabolic pathway for the
metabolism of alcohol as well as antiretroviral drugs (such as
zidovudine, stavudine, and nevirapine) is the cytochrome P450
pathway; thus alcohol use may aggravate the adverse effects of
antiretroviral drugs via competitive inhibition of the cytochrome
P450 pathway (7, 73). In addition, alcohol may increase the
adverse effects of ART drugs on testicular function (74).
Moreover, beliefs that mixing alcohol and ART drugs is toxic,
and that drug treatments should be interrupted when drinking
Frontiers in Immunology | www.frontiersin.org 3
are common among PLWH, thus also leading to treatment
nonadherence (4).

Aside from poor adherence to ART caused by alcohol,
increased viral replication induced by alcohol is a further
potential reason for ART failure. In HIV-infected peripheral
blood lymphocytes (PBLs) pretreated with alcohol, HIV-1 DNA
increased 10-fold, and it has been observed that alcohol
enhanced the expression of the chemokine receptor 4 (CXCR4)
HIV-entry co-receptor (75). Two studies of chronic alcohol
consumption in rhesus macaques observed similar results, with
the plasma viral load in the alcohol group being much higher
than that in the control group (76, 77).
HIV INFECTION IS ASSOCIATED WITH
GUT MICROBIOME DYSBIOSIS AND
RELATED INFLAMMATION

The gut contains a large proportion of lymphoid tissue and
lymphocytes of the human body (78, 79), and is one of the
earliest targets of, and a reservoir for, HIV infection (80). HIV
directly attacks the gut mucosal epithelium, leading to
intercellular tight junction disruption and death of enterocytes,
increasing gut permeability (26, 81, 82). Primary gut mucosal
CD4+ T-cells have higher chemokine receptor 5 (CCR5) co-
receptor expression than peripheral blood CD4+ T-cells (83–85).
Thus, gut CD4+ T-cells are priority targets for HIV, support
higher levels of viral replication (85, 86), and are massively
depleted during early HIV infection (87). One study reported
that CD4+ T-cell depletion occurs during all stages of HIV
disease, and this occurs predominantly in the gastrointestinal
tract (GI) (87). Overall, HIV infection leads to intestinal
epithelial damage and a reduction in numbers of immune cells.

Recently, a number of studies have indicated that HIV
infection is associated with intestinal microbial dysbiosis
(Figure 1). HIV infection significantly affects gut microbial
richness and diversity (26, 81, 88–90), especially in immune
discordant patients (91). Lozupone et al. reported that HIV
infection may reduce abundance of the symbiotic bacterium
Bacteroides fragilis by depleting gut CD4+ T-cells (92). Vujkovic-
Cvijin et al. reported that compared with HIV-negative
individuals, the gut microbial communities of HIV+ viremic
untreated individuals is mainly altered by an increased
abundance of Proteobacteria and Bacteroidaceae; however,
effective ART fails to completely reverse these changes (93). In
addition, several studies have shown that enrichment in
the bacterial genus Prevotella and a depletion of Bacteroides
occurs in untreated PLWH (92, 94, 95). Compared with HIV+

viremic progressors, the genera Succinivibrio, Sutterella,
Rhizobium, Delftia, Anaerofilum, and Oscillospira were more
abundant in elite controllers, whereas the genera Blautia and
Anaerostipes were depleted (96). Rocafort et al., reported
that HIV infection reduces the abundance of Akkermansia,
Anaerovibrio, Bifidobacterium, and Clostridium (97). Besides
microbial compositions, HIV infection also causes changes to
December 2021 | Volume 12 | Article 741658
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microbialand cellular metabolites. HIV infection and microbial
translocation have been linked to increased catabolism of
tryptophan into kynurenine. Indoleamine 2,3-dioxygenase 1
(IDO-1) is the main inducible and rate-limiting enzyme for the
catabolism of tryptophan through the kynurenine pathway (93,
98), and is up-regulated by interferons (IFNs) and by agonists of
Toll-like receptors (TLRs) (99). In PLWH, IDO-1 activity is
increased, and this is thought to be related to plasma levels of LPS
and (1, 3)-b-D-Glucan (BDG), Treg cell frequency, microbial
translocation, immune activation, and HIV reservoir size (93,
100–103). Moreover, the study by Vujkovic-Cvijin et al. showed
that HIV infection-related intestinal microbiota participate in
tryptophan metabolism, compared with the intestinal microbiota
of HIV-negative individuals. HIV-positive viremic, untreated
individuals had an enrichment of more genetic homologs to
tryptophan catabolism enzymes of the kynurenine pathway in
their intestinal microbiota, and that, perhaps, contributes to
immunoactive tryptophan catabolism during HIV disease (93).
Frontiers in Immunology | www.frontiersin.org 4
Trimethylamine-N-oxide (TMAO) is an intestinal microbiota-
dependent metabolite of phosphatidylcholine (104), and a strong
relationship between TMAO and increased risk for
atherosclerosis and cardiovascular disease has been reported
(105, 106). Shan et al. reported that plasma TMAO levels
positively correlate with serum biomarkers of monocyte
activation and inflammation, and is associated with
progression of carotid atherosclerosis in PLWH (107).
Butyrate, one of the most abundant short-chain fatty acids
(SCFA) in the intestinal tract, provides the primary energy
source for epithelial colonic cells, promotes epithelial barrier
integrity, prevents microbial translocation, and further reduces
inflammation (108–110). Compared with HIV-negative
individuals, a number of the bacterial genera associated with
producing butyrate (e.g., Roseburia, Coprococcus, Faecalibacterium
prausnitzii, and Eubacterium rectale) are less frequent in HIV-
positive individuals (110–112). Moreover, a low abundance of
butyrate-producing bacteria in the colon is reported to be
FIGURE 1 | Potential effects of alcohol exposure and HIV infection on intestinal mucosal integrity.
December 2021 | Volume 12 | Article 741658
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associated with microbial translocation and immune activation in
PLWH (110). Furthermore, evidence has shown that gut damage
and dysbiosis induce higher levels of microbial translocation. One
study by Raffatellu et al., observed that after eight hours, SIV-
infected macaques had significantly higher levels of Salmonella
typhimurium in the mesenteric lymph nodes than SIV-negative
macaques, subsequent to injection of S. typhimurium into the gut
lumen (113). Estes et al. using quantitative image analysis, revealed
that damaged intestinal epithelium was associated with microbial
translocation in SIV-infected macaques (81).

Gut microbial translocation resulting from dysbiosis and gut
damage plays a prominent role in maintaining a persistent
underlying chronic inflammatory state in PLWH, and
compliant, long-term ART does not entirely reverse damage to
the intestinal tract barrier (81, 90, 114–117). Thus the gut fails to
successfully repair in PLWH receiving ART (90, 114, 115).
Measurement of specific plasma biomarkers is a convenient way
to assess the level of gut damage and microbial translocation, as
endoscopy remains difficult (118–121). LPS is a component of the
cell wall of Gram-negative bacteria, and is well-known to stimulate
innate and adaptive immunity in vivo (90), Marchetti et al., analyzed
1488 biomarker measures from 379 HIV-infected individuals, and
observed that LPS was an effective biomarker associated with
accelerated disease progression independently of age, HIV RNA
loads, and CD4+ T-cell counts (122). Moreover, compared with
immunological responders, higher LPS levels were detected in
immunological non-responders (INRs), and the higher LPS levels
in INRs were associated with impairment of CD4+ T-cell
reconstitution by sustaining T-cell hyperactivation (123). BDG is
a component of the cell wall of fungi, and identification of plasma
BDG is currently used for the clinical diagnosis of invasive fungal
infections (124). Morris et al. reported that high serum levels of
BDG are associated with a decrease of CD4+ T-cell counts, a higher
viral load, and activation of CD8+ T-cells in PLWH (125, 126).
Intestinal fatty acid binding protein (I-FABP), expressed in
enterocytes, is released upon cell death, and enters into the
systemic circulation (127). HIV infection increases plasma levels
of I-FABP in PLWH (128, 129), but sustained effective ART has not
been shown to completely reverse these levels in plasma (130).
Regenerating islet-derived protein 3-a (REG3a) is an antimicrobial
peptide secreted by Paneth cells into the gut lumen, and translocates
into the blood when the integrity of the intestinal epithelium is
compromised (131). REG3a levels are higher in PLWH, and are
associated with lower CD4+ T-cell counts and CD4/CD8 ratios,
which positively correlate withHIV disease progression (131). Thus,
increased microbial translocation in HIV-infected individuals is
likely to contribute to persisting inflammation and disease
progression in PLWH.
ALCOHOL USE CAUSES DISRUPTION OF
THE INTESTINAL BARRIER

The function of the intestinal barrier is to regulate the absorption
of water and key nutrients from the gut lumen into the
Frontiers in Immunology | www.frontiersin.org 5
bloodstream, and to prevent pro-inflammatory microbial
products from entering into the portal and systemic circulation
(132). Intestinal barrier disruption, also referred to as “intestinal
leakiness”, results in increasing intestinal permeability, thus
permitting the passage of pathogens and microbial products
into the bloodstream (133–135). As shown in Figure 1, many
studies have indicated that alcohol use disrupts the intestinal
barrier and increases intestinal permeability (136–138). Leclercq
et al., measured intestinal permeability using an oral stable, non-
degradable radioactive chromium-51 probe in the body, called
51Cr-EDTA, and by examining the resulting radioactivity in
urine. Their results showed that compared with non-alcohol-
user subjects, intestinal permeability was largely increased in
alcohol-dependent subjects (139). Tang et al. observed
comparable results, showing that chronic alcohol consumption
increased intestinal permeability in mice (138).

Several mechanisms have been reported to be associated with
the alcohol-induced intestinal disruption. Alcohol and its
metabolites damage enterocytes and villi tips directly, and
weaken cell membranes by the generation of reactive oxygen
species (ROS) released during alcohol metabolism, thus allowing
material such as LPS, alcohol, and microbial products to pass
directly through the epithelial cells (133, 140, 141). Also, alcohol
disrupts intestinal epithelial cellular integrity by inducing
enterocytic apoptosis (142) and an intestinal stem cell decrease
in frequency (143). Additionally, alcohol reduces expression of
intestinal tight junction and adherent junction proteins in
enterocytes, which causes disruption of intercellular junctions
(142, 144, 145). Ren et al. reported that the down-regulated
expression of tight junction proteins in alcohol treated Caco-2
cells activated the tumor necrosis factor alpha (TNF-a) and
nuclear factor kappa-B (NF-kB) signaling pathways (146).
Moreover, alcohol can cause overexpression of microRNA
(miRNA), such as miR-155, miR-122, and miR-212 in the
intestine, which may also affect the gut barrier by regulating
genes associated with intestinal mucosal cell integrity (147–149).

Studies have also observed that alcohol directly modulates
intestinal innate and adaptive immune responses, resulting in
modulation on clearance of pathogens and gut-derived
inflammation. Alcohol inhibits the intestine’s immune response
for clearing S. typhimurium in the gut (150). An early study by
Lopez et al. showed the effect of chronic alcohol exposure on
intestinal Peyer’s patches (PPs), sites where naive immune cells
differentiate into a variety of mature immune cell subsets (151).
Compared with a non-exposed mouse model, a significant
decrease in the total number of cells was observed in the PPs of
mice exposed to alcohol for 5 weeks, and a highly significant
decrease was observed in mice exposed to alcohol for 19 weeks
(151). Similarly, a study in mice showed that chronic alcohol
consumption decreased the proportion of T-cells, induced
alterations in dendritic cells and macrophages in the intestine,
and decreased the levels of IgA in small intestinal fecal contents
(152). Furthermore, alcohol also induces the downregulation of
the host antimicrobial peptides regenerating islet-derived protein
3-ß (REG3ß) and regenerating islet-derived protein 3-g (REG3g),
which resulted in bacterial overgrowth (153). The preceding
December 2021 | Volume 12 | Article 741658
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studies are important in demonstrating that alcohol use adversely
affects mucosal immune mechanisms.

Alcohol consumption also causes bacterial overgrowth and
dysbiosis in animals and humans (154–157), and alcohol-related
microbial products have been reported to contribute to increased
intestinal permeability and peripheral immune activation (158).
Alcohol-treated mice had both aerobic and anaerobic bacteria
more frequently present in the proximal small intestine,
compared with control mice fed with an isocaloric liquid diet.
Also, frequency of Bacteroidetes and Verrucomicrobia bacteria
were up-regulated in alcohol receiving mice. REG3ß and REG3g
genes were down-regulated in alcohol-fed mice (157). In
humans, small intestine bacterial overgrowth is closely
associated with the severity of alcoholic cirrhosis (159), and is
a risk factor for hepatic encephalopathy (160). Chen et al. reported
that the abundance of Prevotellaceae, Enterobacteriaceae,
Veillonellaceae, and Streptococcaceae was significantly increased
in alcoholic cirrhotic patients, compared with control subjects (161).
Engen et al. summarized the changes in gut microbial communities
in alcoholics and cirrhotic patients, where microbial communities
Gammaproteobacteria and Bacilli firmicutes were enriched. In
contrast, firmicutes of the class Clostridia were depleted in
alcoholics but were not significantly altered in the cirrhotic group
(162). Moreover, alcohol consumption has been shown to be
associated changes in levels of microbial metabolites, including
SCFA, long-chain fatty acids (LCFA), bile acids and tryptophan
(163–166). Several investigations have indicated that alcohol
decreased SCFA and LCFA levels in a murine model of chronic
alcohol consumption, and supplementation of SCFA and LCFA
reduces alcohol-induced liver injury (163, 164, 167). Hendrikx et al.,
reported that alcohol interfered with tryptophan catabolism, and
decreased indole-3-acetic acid, resulting in a decreased expression of
IL-22 in the intestine and reduced the expression of antimicrobial
peptide REG3g (165). Xie et al. reported that chronic alcohol
consumption led to increased expression of genes involved in
bile acid biosynthesis and efflux transport in the liver, and
observed that taurine-conjugated bile acids were significantly
decreased, and unconjugated and glycine-conjugated bile acids
increased in the GI of alcohol-treated rats (166). Interestingly,
antibiotics have been found to abrogate intestinal bacterial
overgrowth and alleviate subsequent liver damage in rodents
(168). Several studies have found that probiotics promote growth
of beneficial bacteria, alleviate alcoholic liver injury in rats (169),
and improve alcohol-associated liver dysfunction in cirrhotic
patients (170, 171).
THE COMBINED EFFECTS OF HIV AND
ALCOHOL ON THE INTESTINAL BARRIER

Current evidence indicates that HIV and alcohol could have a
deleterious synergistic effect in the gut. In a murine model, HIV
transgenic rats are more susceptible to alcohol-induced gut
leakiness, hepatic steatosis and inflammation than the
corresponding wild-type rats (172, 173). Samuelson et al.
observed that alcohol-associated intestinal dysbiosis mediated the
Frontiers in Immunology | www.frontiersin.org 6
susceptibility to pneumococcal pneumonia in a humanized mouse
HIV model (174). In concordance with the animal model, Webel
et al. found that alcohol consumption was associated with a range
of markers of gut permeability, microbial translocation, immune
activation, and inflammation in ART-treated PLWH (16). Maffei
et al. reported that alcohol use is associated with a dysfunctional
CD8+ T-Cell phenotype, intestinal leakiness, and dysbiosis among
PLWH (17). As far as can currently be ascertained, the potential
interactive mechanisms between HIV and alcohol in the GI tract
has not yet been well elucidated. However, in view of the known
individual effects of HIV and alcohol, we speculate that they (HIV
and alcohol) may together exhibit additive or synergistic
interactions causing disruption to microbial ecology and
impairment of the intestinal barrier through several pathways.

The changes relating to dysbiosis in gut microbiota
composition observed in past studies with respect to the effects
of alcohol and HIV have not always been found to be consistent,
as different studies have involved different populations and these
studies were conducted in varying disease contexts. Most studies
have shown that both alcohol and HIV can indeed induce the
dysbiosis involved with decreased frequency of “beneficial”
microorganisms and enrichment of “harmful” pathogens.
Specifically, the beneficial bacteria Bifidobacteria, Lactobacillus,
and Akkermansia muciniphila were decreased, while Candida
albicans was increased in PLWH and in individuals using alcohol
(97, 123, 175–178).

Moreover, dysregulation of the gut microbiota metabolism
induced by alcohol and HIV may also play a vital role in the
disruption of microbial ecology and impairment of the intestinal
barrier. In PLWH, there is a lower abundance of butyrate-
producing bacteria and butyric acid levels in feces (179). It was
also been observed that butyric acid was significantly reduced in
colonic and rectal contents in a rat model of chronic alcohol
consumption (163). Moreover, in PLWH, the dysbiosis was
associated with increased catabolism of tryptophan into
kynurenine and resulting in intestinal barrier destruction (93,
180). It has also been reported that alcohol perturbed tryptophan
catabolism, decreased indole-3-acetic acid, resulting in a
decreased expression of IL-22 in the intestine and a reduction
of the expression of the antimicrobial peptide REG3g (165).

Other factors, including apoptosis and oxidative stress of
intestinal epithelial cells, and intestinal tight junction and
adherent junction protein dysfunction may contribute to their
synergistic effects. Indeed, both alcohol and HIV could promote
apoptosis of intestinal epithelial cells (142, 181), increase oxidative
stress of cells (133, 182) and decrease the expression of intestinal
tight junction and adherent junction proteins (26, 142, 143).
Overall, these factors are likely to work together to promote gut
permeability, enhance microbial translocation, and increase gut
and systemic inflammatory responses, further contributing to an
increased risk of non-AIDS comorbidities in PLWH. However, the
questions as to precisely in what manner alcohol and HIV interact
with each other on the disruption of the gut homeostasis, and
precisely which factors play the most critical roles in negatively
impacting on the intestinal barrier when alcohol and HIV are
simultaneously present in the gut, remain to be answered. Future
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further investigations are warranted to discover coherent answers
to these important questions.
THERAPEUTIC STRATEGIES TO IMPROVE
THE INTESTINAL BARRIER

In view of the significant structural and functional changes
caused by HIV infection combined with alcohol use to the
intestinal epithelial barrier, attempts at optimization of the
microbiota and restoration of intestinal barrier function may
be an effective adjunctive treatment option in PLWH. Numerous
microbiota-based therapies have been studied in the condition of
HIV infection and alcohol consumption (Table 1). Aside from
these strategies, multiple clinical trials using various interventions
are ongoing in individuals with conditions (Table 2).

Probiotics and prebiotics have been considered to be an effective
adjunctive treatment strategy in PLWH. A study by d’Ettorre et al.,
showed that when oral probiotics (with an abundance of
Streptococcus salivarius and Bifidobacteria) were administered
together with ART to PLWH, subjects showed a decrease
in CD4+ T-cell activation, and lower levels of sCD14,
lipopolysaccharide binding protein (LBP), and C-reactive protein
(CRP) compared with the control group (194). Serrano-Villar et al.
reported that use of oral prebiotics (including short-chain galacto-
oligosaccharides, long-chain fructo-oligosaccharides, and
glutamine) in PLWH may reduce levels of IL-6, CRP, D-dimer,
andT-cell activation, and increase thymic output. In addition, it has
been observed in PLWHthat prebiotics increased the abundance of
Faecalibacterium andLachnospira, which strongly correlatedwith a
significant increase in butyrate production and a decrease of
inflammatory biomarkers sCD14 and CRP (195).

Akkermansia muciniphila, an anaerobic symbiotic bacterium,
was reported to increase the thickness of mucus, improve
enterocyte monolayer integrity, and counteract inflammation
(196–199). It has been reported that the abundance of A.
muciniphila is significantly decreased in inflammatory bowel
disease (IBD), and supplementation of A. muciniphila in the gut
improved colitis by decreasing colon-infiltrating macrophages
and cytotoxic T-lymphocytes (CTLs) (200). Moreover, HIV
infection and alcohol consumption induced A. muciniphila
depletion in the intestine (97, 201). Thus, increasing the
abundance of A. muciniphila in the intestine seems to be an
effective therapeutic strategy to restore the integrity of the
intestinal barrier. An alternative strategy to increase the
abundance of A. muciniphila in the gut is by consumption of
concord grapes, cranberries, and the camu camu fruit (202). The
commonly-used therapeutic drugs metformin and vancomycin
have also been reported to increase the abundance of A.
muciniphila in the intestinal tract (202, 203).

Fecal microbiota transplantation (FMT) refers to
transplantation of fecal microbes from a healthy donor to the
GI of a recipient, and is currently being utilized to enhance gut
microbial diversity. A large body of evidence has shown that
FMT is a highly effective treatment modality against Clostridium
difficile infection, and the levels of pro-inflammatory cytokines
Frontiers in Immunology | www.frontiersin.org 7
(TNF-a, IL-1b, IL-6, IL-8 and IL-12) significantly decreased after
FMT (204–207). In addition, FMT was reported to restore graft-
vs.-host disease (GVHD)-induced intestinal dysbiosis, as
reported by Spindelboeck et al., in three severe acute GVHD
patients. The restoration of a significantly more diverse
microbiome was observed after one to six FMTs delivered via
colonoscopy (206). In PLWH and animal models, FMT may be a
viable method to restore the intestinal barrier. One study by
Hensley-McBain et al., demonstrated that increased peripheral
CD4+ T helper (Th)-17 and -22 frequencies and decreased gut
CD4+ T-cell activation occurs after transplantation of healthy
(SIV-negative) rhesus macaque fecal matter to SIV-infected
rhesus macaques (185). A pilot study by Vujkovic-Cvijin et al.,
showed one-time FMT was well-tolerated in ART-treated PLWH
and could lead to partial microbial engraftment including an
increase of Faecalibacterium (208), which has exhibited anti-
inflammatory effects in cellular and animal models (209). In
addition, Serrano-Villar et al. reported that repeated oral FMT
capsules caused long-lasting effects in the recipients’ microbiome,
specifically in several members of the Lachnospiraceae family. A
significant amelioration of the gut damage biomarker I-FABP was
also observed in the FMT group (188).

Other strategies to restore intestinal function exist. For
example, there may be a role for IL-22-secreting T-cell
populations in limiting microbial translocation and systemic
inflammation (25). Supplementation of IL-22 may be an
effective treatment, and local IL-22 gene delivery improves
intestinal inflammation by enhanced signal transducer and
activator of transcription 3 (STAT3) activation within colonic
epithelial cells in the murine model of ulcerative colitis (210).
Studies by Hendrikx et al. observed that feeding mice
engineered bacteria that produce IL-22 increased the
expression of small intestinal Reg3g and reduced microbial
translocation (165). Furthermore, vitamin A and vitamin D are
also known to play a role in maintaining intestinal function.
Vitamin A and vitamin D regulate the tight junction protein
expression of intestinal tight junction protein 1 (ZO-1),
Occludin, and Claudin. In addition, the maturation of group
3 innate lymphoid cells (ILC3) that produce IL-22 and Treg
cells that produce IL-10 also requires vitamin A and vitamin
D. Interestingly, alcohol consumption was reported to reduce
vitamin A and vitamin D circulating levels (211, 212).
Supplementation of vitamin A and/or vitamin D may be a
potential therapeutic strategy to restore a structurally and
functionally intact intestinal barrier (213). The combination
of IL-21 and probiotic therapy increases Th17 cell counts and
decreases the marker for microbial translocation in ART-
treated, SIV-infected rhesus macaques (214). Recombinant
human IL-7 increases both circulating and gut-residing naïve
and memory CD4+ T-cells, and decreases plasma levels of
sCD14 and D-dimer in HIV-infected individuals (215, 216).
Finally, Mallarino-Haeger et al. reported that the usage of
dipyridamole, a blood vessel dilator, in ART-treated PLWH
can significantly increase extracellular adenosine levels,
minorly reduce plasma I-FABP levels, and affect regulation
of gut mucosal immunity (217).
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CONCLUSION

In summary, in this review we have endeavored to highlight the
associations between HIV infection, alcohol use and abuse and
Frontiers in Immunology | www.frontiersin.org 8
gastrointestinal injury in PLWH. Alcohol use and abuse leads to
the failure of ART and reduces the survival time of HIV-infected
individuals. The intestine is an immunologically indispensable
organ, which is structurally and functionally impaired by alcohol
TABLE 1 | Microbiome-based therapies in the context of HIV infection and alcohol consumption.

Study Model Intervention Design Change of fecal microbiota
by experimental intervention

Change of cytokines and
immune cells by

experimental intervention

HIV
Gori et al.
2011 (183)

ART-naive HIV-
infected patients
(57 cases)

Arm I: 15 or 30 g short chain
galactooligosaccharides/long chain
fructooligosaccharides/pectin hydrolysate-derived
acidic oligosaccharides
Arm II: 30 g short chain galactooligosaccharides/long
chain fructooligosaccharides/pectin hydrolysate-
derived acidic oligosaccharides
Arm III: placebo

Double-
blinded,
randomized

Increase: bifidobacterial
Decrease: Clostridium
coccoides/Eubacterium rectale
cluster, Clostridium perfringens
and Clostridium difficile
species

Increase: NK cells
Decrease: sCD14, activated
CD4+/CD25+ T cells

Stiksrud et al.,
2015 (184)

HIV-infected
ART-suppressed
individuals
(24 cases)

Arm I: 250 mL/d fermented skimmed milk
supplemented with Lactobacillus rhamnosus GG
(108 cfu/mL), Bifidobacterium animalis subsp. lactis
B-12 (108 cfu/mL), and Lactobacillus acidophilus cfu/
mL)
Arm II: placebo

Double-
blinded,
randomized

Increase: Bifidobacteria and
Lactobacilli
Decrease: Bacteroides

Decrease: D-dimer, C-reactive
protein, IL-6
No significant changes in T-cell
activation

Hensley-
McBain et al.,
2016 (185)

Rhesus
macaque (SIV)-
infected
macaques
(6 cases)

Arm I: FMT(Stool samples from healthy (SIV-negative)
rhesus macaque donors)

Open-label The microbiome composition
quickly reverted by 2 weeks,
similar to the findings pre-
transplantation

No significant difference in
LPS, IL-6, CRP.

Vujkovic-Cvijin
et al., 2017
(186)

HIV-infected
ART-suppressed
individuals
(8 cases)

FMT (low abundance of Proteobacteria and high
abundance of Bacteroidetes)

Open-label,
randomized

Increase: Faecalibacterium and
Rikenellaceae family.
Decreases Erysipelotrichaceae
family

No significant difference in IL-
6, sCD 14, HLA-DR CD8+ T
cells

Sainz et al.,
2020 (187)

HIV-infected
children
(22 cases)

Arm I: long chain fructo-oligosaccharides, galacto-
oligosaccharides, Saccharomyces boulardii, essential
amino acids arginine, glutamine, vitamin D and AM3
Arm II: placebo

Double-
blinded,
randomized

Increase: in Prevotella,
Akkermansia and Escherichia
Decrease: in commensals
Faecalibacterium

N/A

Serrano-Villar
et al., 2021
(188)

ART- HIV-
infected patients
(29 cases)

Arm I: FMT (enrichment for Bacteroides and
Faecalibacterium genus and depletion of Prevotella
genus)
Arm II: placebo

Double-
blinded,
randomized

Increase: Anaerostipes spp.,
Blautia spp., Dorea spp., and
Fusicatenibacter spp.

Decrease: I-FABP
No significant difference in
circulating CD4+, CD8+ T cells,
and the CD4/CD8 ratio

alcohol
Kirpich et al.,
2008 (189)

Alcoholic male
patients
(66 cases)

Arm I: vitamin B1 and B6
Arm II: vitamin B1 and B6, and supplement with 0.9
× 108 CFU Bifidobacterium bifidum and 0.9 × 109

CFU Lactobacillus plantarum 8PA3

Open label,
randomized

Increase: bifidobacteria and
lactobacilli

Decrease: AST, ALT, LDH and
total bilirubin

Stadlbauer
et al., 2008
(190)

Patients with
alcoholic
cirrhosis
(20 cases)

Arm I: Lactobacillus casei Shirota (6.5 × 109 cfu/mL) Open label N/A Increase: TLR4
Decrease: IL-10

Philips et al.,
2018 (191)

Alcoholic liver
patients
(16 cases)

Arm I: FMT(stool samples from healthy donors) Open-label Increase: Roseburia and
Micrococcus

N/A

Macnaughtan
et al., 2020
(192)

Alcoholic
cirrhosis patients
(92 cases)

Arm I: probiotic Lactobacillus casei Shirota(6.5 × 109

cfu/bottle)
Arm II: placebo

Double-
blinded,
randomized

N/A Significantly reduced plasma
monocyte chemotactic
protein-1,IL-1b, IL-17a and
macrophage inflammatory
protein-1b

Wang et al.,
2021 (193)

Alcoholic liver
mice
(42 cases)

Arm I: 0.9% normal saline
Arm II: white spirit
Arm III: white spirit and the Fermentation broth of the
mixture of pueraria lobata, lonicera japonica, and
crataegus pinnatifida by Lactobacillus rhamnosus
217-1

Open-label Increase: Lachnospiraceae
and Lactobacillus

Increase: superoxide
dismutase, and glutathione
Decrease: AST, LPS, IL-6,
TNF-ɑ
December 2021
N/A, not available; AST, aspartate aminotransferase; ALT, alanine aminotransferase; LDH, lactate dehydrogenase; TLR4, toll like receptor 4; CFU, colony forming units.
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use in PLWH. Among HIV-infected individuals, alcohol use
further increases intestinal permeability, negatively affects the
richness and diversity of the intestinal microbiota, and promotes
microbial translocation, chronic immune activation, and chronic
inflammation. The resultant underlying state of chronic
inflammation increases the risk of development of further
comorbidities and disease progression. Several studies have
shown that changes in diet and enhancements of the diversity
of intestinal microbiota may help reduce intestinal immune
activation and subsequent chronic inflammation. Further
investigation is warranted in order to study and elucidate the
roles of intestinal bacteria and fungi in host immune defense
mechanisms, and to explore new potential therapeutic strategies
for the effective enhancement of host intestinal immune
function, including in the context of alcohol use in PLWH or
other conditions.
Frontiers in Immunology | www.frontiersin.org 9
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TABLE 2 | Ongoing clinical trials on reduction of microbial translocation and restoration of the intestinal barrier.

Clinical trial
number

Condition Design Objectives Intervention Number of
participants

Locations

NCT01466595 HIV-1 infection RCT Rifaximin modulate gut microbial translocation and
systemic immune activation

ARM I: rifaximin
ARM II: placebo

73 US

NCT01839734 HIV-1 infection RCT Lubiprostone modulate gut microbial translocation
and systemic immune activation

ARM I: lubiprostone
ARM II: placebo

20 US

NCT02431325 HIV-1 infection RCT Investigate teduglutide repair gut barrier, decrease
inflammation

ARM I: teduglutide
ARM II: placebo

50 US

NCT02164344 HIV-1 infection RCT Effects of probiotics on microbial translocation and
immune activation

Dietary supplement: probiotics 30 US

NCT04111263 Gastrointestinal Injury,
Acute Mountain
Sickness

RCT Nutritional intervention for gut barrier integrity at
high altitude

ARM I: placebo and high altitude
exposure
ARM II: fiber and polyphenol
supplementation and high altitude
exposure
ARM III: placebo and sea level
exposure

15 US

NCT01877044 Obesity, Overweight RCT Long-term effects of arabinoxylans on intestinal
barrier function

ARM I: arabinoxylans
ARM II: placebo

46 Netherlands

NCT01792388 Crohn’s Disease RCT Vitamin D improve barrier function in IBD ARM I: vitamin D
ARM II: placebo

30 Ireland

NCT02862249 Liver Cirrhosis RCT Assess whether restoring gut microbiota with FMT
in patients with advanced cirrhosis is both feasible
and safe

ARM I: FMT under gastroscopy
ARM II: placebo under
gastroscopy

32 UK

NCT03482284 Healthy subjects RCT the effect of monosaccharides on intestinal barrier
function

Dietary supplement:
monosaccharide

12 Austria

NCT04598295 Irritable Bowel
Syndrome

RCT Assess the gastrointestinal symptomatic impact of
DS-01 on IBS

ARM I: DS-01(include 24-
beneficial strains)
ARM II: placebo

100 US

NCT02875847 Irritable Bowel
Syndrome

RCT Establish the effect of HMOs on the fecal microbiota
in IBS patients

ARM I: HMO1
ARM II: HMO2
ARM III: placebo

60 Sweden

NCT03973996 Endotoxemia RCT Examine the efficacy of green tea on metabolic
endotoxemia

ARM I: green tea
ARM II: placebo

40 US

NCT03791866 Sepsis RCT Investigate the mechanisms of early enteral nutrition
(EEN) maintaining intestinal mucosal barrier in
sepsis

ARM I: 30% target total enteral
nutrition
ARM II: 60% target total enteral
nutrition
ARM III: 100% target total enteral
nutrition

60 China
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