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Abstract
Chronic obstructive pulmonary disease (COPD) is a common disease with high morbidity and mortality, where early detec-
tion benefits the population. However, the early diagnosis rate of COPD is low due to the absence or slight early symptoms. 
In this paper, a novel method based on graph convolution network (GCN) for early detection of COPD is proposed, which 
uses small and weakly labeled chest computed tomography image data from the publicly available Danish Lung Cancer 
Screening Trial database. The key idea is to construct a graph using regions of interest randomly selected from the segmented 
lung parenchyma and then input it into the GCN model for COPD detection. In this way, the model can not only extract the 
feature information of each region of interest but also the topological structure information between regions of interest, that 
is, graph structure information. The proposed GCN model achieves an acceptable performance with an accuracy of 0.77 and 
an area under a curve of 0.81, which is higher than the previous studies on the same dataset. GCN model also outperforms 
several state-of-the-art methods trained at the same time. As far as we know, it is also the first time using the GCN model 
on this dataset for COPD detection.
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1 Introduction

Chronic obstructive pulmonary disease (COPD) is a lung 
disease with high global incidence, high mortality, and high 
medical costs. The World Health Organization (WHO) pre-
dicted that COPD would be the third leading cause of death 
in the world by 2030 [1]. Nevertheless, patients with early 
COPD can be easily neglected as they have no symptoms or 
only mild symptoms [2, 3]. Most of the patients have often 

developed into the moderate-to-severe stage when diag-
nosed, seriously affecting the quality of life, and the cost of 
treatment also rises sharply [4]. Therefore, early detection of 
COPD is associated with a lower risk of exacerbations, fewer 
comorbidities, and lower costs. There is growing awareness 
of the need to identify COPD in patients at an early stage.

Spirometry is the cornerstone of COPD diagnosis. How-
ever, it is considered to be considerably underdiagnosed and 
limited by insensitivity to the early stages of COPD [5]. 
COPD is a highly heterogeneous disease, as shown in Fig. 1, 
which has different imaging phenotypes and histopathologi-
cal features, such as emphysema, bronchial wall thickening, 
gas trapping, interstitial lung abnormality, bronchiectasis, 
and so on [6]. Computed tomography (CT) has been used 
to capture the presence, pattern, and extent of phenotypic 
abnormalities associated with COPD, and has become one 
of the most widely used imaging modalities for character-
izing heterogeneities of COPD [7, 8]. With the widespread 
application of CT, there is an opportunity to use these scans 
to identify those with COPD, with subsequent confirmation 
using spirometry.

Previous COPD classification based on CT imaging 
was conventionally approached using traditional machine 
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learning techniques. For example, Feragen et al. applied 
a support vector machine (SVM) to the airway tree infor-
mation of 1996 subjects, including 893 with COPD. Their 
highest accuracy in the COPD classification task was 64.9% 
[9]. Bodduluri et al. evaluated the ability of the k nearest 
neighbor learning algorithm to detect COPD patients. The 
best area under the curve (AUC) was 0.89 on texture feature 
sets [10]. Cheplygina et al. adopted multiple instance learn-
ing (MIL) methods which were a kind of weakly supervised 
classification where only patient-level labels were known 
for COPD classification and obtained an AUC of 0.742 [11]. 
Subsequently, their team utilized instance-transfer leaning 
to classify COPD from different centers, scanners, or sub-
ject distributions and had an AUC of 0.790, 0.917, 0.956, 
and 0.953 for the 4 datasets of DLCST, COPDGene1, COP-
DGene2, and Frederikshavn [12].

A major weakness of such feature engineering is that they 
require prior knowledge of the features, which makes them 
strongly application dependent. With the development of 
artificial intelligence, modern deep learning methods enable 
direct interpretation of image data, going directly from the 
raw image data to the clinical outcome without relying on 
the specification of radiographic features of interest, and 
have achieved excellent results in COPD detection. A convo-
lutional neural network (CNN) is one of the most successful 
deep learning architectures in the field of computer vision. 
For example, González et al. trained deep CNN models with 
an accuracy (ACC) of 0.773 for the detection of COPD in 

the COPDGene testing cohort [13]. Hatt et al. had developed 
one CNN model with an accuracy of 0.777 for the COP-
DGene cohort and 0.762 for the National Lung Screening 
Trial (NLST) cohort [14]. In addition to CNN, recent work 
by Tang and colleagues further showed that residual neu-
ral networks can effectively diagnose COPD (AUC = 0.88) 
using data from the PanCAN cohort with stable replication 
results in ECLIPSE based on a subset of slices [15].

However, traditional machine learning methods usually 
failed to capture complex features, while modern deep learn-
ing methods, either from scratch or fine tuning, generally 
required a large amount of labeled training data and exten-
sive computational and memory resources. In addition, on 
account of the constraints caused by the processing capa-
bilities of existing graphical processing units, the full CT 
images from an individual were not used for the above deep 
learning models. These studies usually extract a subset of 
CT slices to build up a single montage for an individual and 
directly input this montage to a 2D-CNN [13, 14]. Because 
the disease heterogeneity of COPD also shows at the diverse 
spatial distributions of abnormalities. For instance, the 
majority of COPD subjects have the upper lobe dominant 
emphysema (80.6%) [16]. The above single montage image 
can not make full use of the spatial information of CT image 
and unavoidably lose information. Ahmed et al. proposed 
that 3D CNN can extract larger spatial context to preserve 
more discriminative information which subsequently could 
improve COPD classification [17]. Ho et al. compared the 

Fig. 1  COPD is a highly hetero-
geneous disease, with lesions 
distributed in a diffuse and 
irregular way. Two axial thin-
section CT scans of a patient 
with COPD disease. a bronchial 
wall thickening; b centrilobu-
lar emphysema; c paraseptal 
emphysema; d interstitial lung 
abnormality; e bronchiectasis; 
f normal lung parenchyma. 
Asterisks and arrows represent 
emphysema and bronchiectasis, 
respectively
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performances of a 3D-CNN model with CT-based paramet-
ric response mapping to an alternative 2D-CNN model, and 
found that the proposed 3D approach significantly outper-
formed the 2D approach [18]. Furthermore, these studies 
above focused on the accuracy of the model but did not pay 
attention to the early identification of COPD.

To make full use of the spatial information of CT images 
and further achieve the purpose of early detection of COPD, 
we used the publicly available Danish Lung Cancer Screen-
ing Trial (DLCST) dataset, which contained nearly 90% of 
patients with early mild to moderate COPD, and which is 
small (n = 600) and weakly labeled (assign COPD or non-
COPD to the entire image, and no information on where or 
how serious the lesions are available). In the dataset, each 
image is represented by 50 cubic 3D regions of interest 
(ROIs), sampled at random locations within the segmented 
lung parenchyma. Each ROI is described by histograms of 
responses of 8 filters (smoothed image, gradient magnitude, 
Laplacian of Gaussian, three eigenvalues of the Hessian, 
Gaussian curvature, and eigen magnitude) at 4 scales (0.6, 
1.2, 2.4, and 4.8 mm), which aim to capture the texture of 
the image.

Because the distribution of these 3D-ROIs is disordered 
and irregular, and the dataset is imbalanced, which contains 
nearly 90% of mild-moderate COPD patients, we use the 
GCN-based method with focal loss to classify COPD in this 
study. Different from several well-known frameworks such 
as DNN, CNN, and RNN (LSTM and GRU), which are used 
to process data in Euclidean space, such as pictures, voice, 
and text, graph neural networks can be applied to more abun-
dant topological data, such as social network, recommen-
dation system, transportation network, etc. Recently, graph 
convolutional network (GCN) has attracted more attention, 
which intends to generalize CNN on non-Euclidean graph 
data, and integrates phenotypic information into a graph to 
establish interactions between individuals and populations, 
which can achieve an excellent effect by graph theory. In the 
field of medical image analysis, GCNs have demonstrated 
to be superior in learning network representations tailored 
for identifying specific brain disorders such as early mild 
cognitive impairment (EMCI) [19], Parkinson’s disease [20], 
Alzheimer’s disease (AD) [21] and autism spectrum disor-
der (ASD) [22]. In addition, GCNs have made significant 
breakthroughs in the diagnosis of COVID-19 pneumonia 
[23, 24], cervical cancer [25], breast cancer [26], and grad-
ing of colorectal cancer histology images [27]. All these 
studies validate the effectiveness of GCN for disease clas-
sification. However, while the use of graph-based represen-
tations is becoming more common in the medical domain, 
little work has been done to use GCN to study its application 
for COPD detection.

In our work, we formulated COPD detection as a graph 
classification problem and attempted to advance deep 

learning for graph-structured data with GCN. Specially, we 
first connected the ROIs from the same patient to construct 
the graph for modeling. Then we adopted the Chebyshev 
polynomials filter and input our graph into a GCN model for 
COPD detection. After that, ablation studies were conducted 
to evaluate the performance of the proposed model. Finally, 
we compared GCN with four successful classical CNN mod-
els (DenseNet121, VGG16, ResNet50, and InceptionV3) and 
a light gradient boosting machine (LightGBM) on the same 
dataset. The main contributions of this study can be sum-
marized as follows:

1. We build a graph using all ROIs which are randomly 
selected and disorderly distributed, and then input it into the 
GCN model, hoping to better detect COPD with spatially 
heterogeneous by using the topological structure information 
between these ROIs.

2. Since the imbalanced dataset contains nearly 90% of 
mild-moderate COPD patients, which are easy to misclas-
sify, we propose an optimization step for the GCN model 
using focal loss to improve the classification accuracy.

2  Materials and methods

2.1  Dataset

In this study, we employed the publicly available dataset, 
which contained derived features (320-dimensional feature 
vectors) from CT images of 300 COPD patients and 300 
controls scanned at the Danish Lung Cancer Screening Trial 
(DLCST [National Clinical Trials identifier NCT00496977; 
ClinicalTrials.gov]) [28]. The patients with COPD were 
diagnosed by spirometry-based pulmonary function test 
(a post-bronchodilator  FEV1/FVC < 70%) according to 
the Global Initiative for Chronic Obstructive Lung Dis-
ease (GOLD) criteria [29]. The DLCST dataset included 
197/93/10/0 COPD subjects with mild (GOLD 1)/moderate 
(GOLD 2)/severe (GOLD 3)/very severe (GOLD 4) COPD. 
Each CT image is assigned a global label according to the 
PFTs of the scanned subject that are acquired at the same 
time as the CT image, and ROIs are labeled with the global 
label of the CT image. Therefore, the images in this database 
are weakly labeled, i.e., per image, a diagnosis (COPD or 
no COPD) is given, but it is not known which parts of the 
lungs are affected.

In the small and weakly-labeled dataset, each chest image 
of these 600 participants was represented by 50 feature vec-
tors, where each feature vector described a volumetric ROIs 
of size 41 * 41 * 41 voxels, extracted at random locations 
inside the lung mask. Then 30,000 ROIs were obtained in 
total. Next, the 3D-ROIs were represented by Gaussian scale 
space (GSS) features, or histograms of intensity values, 
which capture the image texture. After using eight filters, 
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four scales, and histograms of ten bins, 8 × 4 × 10 = 320 fea-
tures were generated. For details of the dataset, please refer 
to literature [12] and http:// bigr. nl/ resea rch/ proje cts/ copd.

The DLCST was originally approved by the ethics com-
mittee of Copenhagen County, and all participants provided 
written informed consent. The present study did not require 
additional institutional review board approval.

2.2  Graph convolutional networks

Compared with the CNN-based methods, which operate con-
volution on local Euclidean structure, GCN generalizes the 
operation of convolution to non-Euclidean data (e.g., graph), 
and it can be categorized into spectral methods and spatial 
methods [30–32]. In this study, we use the spectral approach, 
which is based on the spectrum of graph Laplacian, and pro-
vides a well-defined localization operator on graphs to define 
graph convolutions. Specifically, it performs spectral graph 
convolution on the features of neighbor nodes, and learns 
the feature representation of each node combining the graph 
structure during the learning process. Here, we give a brief 
introduction of graph convolutional networks.

A graph G is a pair (V, E) with V = {v1 , …, vn} the set of 
vertices, and E ⊆ V × V the set of edges. Each graph can be 
represented by an adjacency matrix A of size n × n describ-
ing the graph’s connectivity. For GCN models, the goal is 
to learn a function of signals/features on a graph G = (V, E) 
which takes as input [33]. Every neural network layer can 
be written as a nonlinear function

with H(0) = X and H(L) = Z (or z for graph-level outputs). 
X is the feature matrix (N × D matrix), L is the number of 
layers, and Z is a node-level output. The specific models 
then differ only in how f (⋅,⋅) is chosen and parameterized.

where W(l) is a weight matrix for the l-th neural network 
layer and σ (⋅) is a nonlinear activation function (i.e., ReLU 
in our experiments).

We usually use a normalized adjacency matrix in order to 
change the scale of the feature vectors. The adjacency matrix 
is processed to achieve a better effect and computational effi-
ciency [31]. One normalized adjacency method is as follows:

with Â = A + I , where I is the identity matrix and D̂ is the 
diagonal node degree matrix of Â.

GCN can be considered a Laplacian smoothing opera-
tor for node features over graph structures [34]. The 
architecture of GCN consists of a series of convolutional 
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)
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layers, each followed by the activation functions to 
increase nonlinearity. The first hidden layer is set to 
input original node features. All layers share the same 
adjacency matrix. To localize the filter and reduce the 
number of parameters, we employ the Chebyshev poly-
nomials to approximate the convolutional kernels, which 
can efficiently decrease the computation complexity of 
eigendecomposition.

2.3  Classification based on GCN model

2.3.1  Graph construction

The distribution of 50 3D-ROIs per subject extracted at 
random locations from the segmented lung parenchyma 
is disordered, so we approach the classification of COPD 
from lung images as a graph problem. Before perform-
ing COPD identification using the GCN model, we should 
first construct a graph using all subjects. In this study, we 
define each ROI as a node or vertex, and the correlation 
between every 50 ROIs from the same subject as edges.

Among these 600 subjects (30,000 ROIs), 400 (20,000 
ROIs) are randomly selected for training, 100 (5000 
ROIs) for validation, and 100 (5000 ROIs) for testing. As 
shown in Fig. 2, we connect these ROIs from the same 
subject to construct the graph for modeling and make a 
further analysis using GCN. Specifically, we take 30,000 
ROIs as vertexes, and if vertexes vi and vj are from the 
same subject, they are connected by an edge. We do not 
establish the connections between nodes in different sub-
jects. In this way, every 50 ROIs are connected to each 
other, and then 1225 edges are generated. This leads to 
1225 × 600 = 735,000 edges in total. Then the construction 
of the graph with a total of 30,000 vertexes and 735,000 
edges is completed, and each vertex is characterized by a 
vector with 320 dimensions.

The graph can be represented by the adjacency matrix 
A, where ai,j = 1 if there is an edge from vertex vi to 
vertex vj, and ai,j = 0 otherwise. This means we establish 
the connections between ROIs of the same subject. If 
the subject has COPD, the 50 ROIs belonging to this 
patient are all labeled as 1, otherwise as 0. As the dataset 
is weakly labeled, randomly sampled ROIs from COPD 
patients will therefore likely contain both diseased and 
healthy tissue where the healthy tissue ROIs still receives 
the label 1 that is COPD. As shown in Fig. 2, the green 
ROIs represent healthy tissue, while the red ROIs rep-
resent diseased tissue. Thus, the green ROI represent-
ing healthy tissue in the COPD image will be marked 
as 1. This is more common in mild COPD because their 
images have a higher proportion of green ROIs, that 
is, healthy tissue, which increases the probability of 
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misclassification. For this reason, we call it a hard sam-
ple, thereby posing a challenge in accurate classification.

2.3.2  Classification using GCN model

The GCN model is trained, validated, and tested using 
the whole graph which was constructed with 30,000 ROIs 
from 600 cases. The input of the GCN model is the feature 
matrix X_in (30,000 * 320) of these ROIs and the Chebyshev 
polynomial approximation of adjacency matrix A (30,000 * 
30,000), that is, the graph described in Fig. 2. Figure 3 shows 
the flowchart of the proposed approach. As can be seen from 
Fig. 3, A is the adjacency matrix of ROIs (30,000 * 30,000), 
which is symmetric. L = D – A is the Laplacian matrix of 
A (where D is the degree matrix). Lsym = D

(

−
1

2

)

LD

(

−
1

2

)

 is 
symmetric normalized Laplacian. L∧ =

2

�max
Lsym − I is the 

rescaled matrix of L∧sym (where �max is the largest eigenvalue 
of Lsym , that is, the spectral radius. C is truncation (the order 
is 3) in order to obtain the approximation of L . X_in is the 
feature matrix of ROIs (30,000 * 320).

The GCN model consists of four graph convolutional 
layers with a ReLU function as the activation function 
and the focal loss function as the final output layer. The 
output of the GCN model is the probability y that ROI is 
labeled as 1. If all 50 ROI labels of a patient are predicted 
to be 1 (y is greater than 0.5), we judge that the patient 
is a COPD patient, otherwise who is not. In Fig. 3, grap-
conv is the graph convolution that is employed directly 

on graph-structured data to extract highly meaning-
ful patterns and features in the space domain and was 
described in detail in [31]. The parameters of the pro-
posed GCN structure are as follows: the learning rate is 
0.001, the dropout rate is 0.5, the optimizer is Adam, and 
the kernel regularizer is l2.

Considering that the DLCST dataset contains nearly 
90% of mild-moderate COPD, which are difficult to be 
correctly classified, the focal loss is applied to the clas-
sification loss to further improve the accuracy of clas-
sification [35]. A common method for addressing class 
imbalance is to introduce a weighting factor � ∈ [0, 1] 
for class 1 and 1 −� for class − 1. While balances the 
importance of positive/negative examples, it does not dif-
ferentiate between easy/hard examples. The loss function 
should be reshaped to down-weight easy examples and 
thus focus training on hard negatives. So a modulating 
factor to the cross-entropy loss was added, with tunable 
focusing parameter � ≥ 0. In our experiment, since COPD 
and no-COPD samples are balanced � = 1. While � = 2 
because the dataset contains many mild-moderate COPD 
that is difficult to classify, the model needs to assign 
greater weight to hard samples.

A total of 30,000 ROIs from 600 cases constitute a graph 
as the input of GCN, so the batch = 1 in model training. In 
order to distinguish the training set, validation set, and test 
set in the training process, the 30,000 samples are given 
different weights. As shown in Fig. 4a, the weight of the 

Fig. 2  The graph generated 
by ROIs. If ROIs are from the 
same patient, they are connected 
to each other with an edge. A is 
the adjacency matrix of ROIs. 
L is the symmetric normalized 
Laplacian matrix of A. C is 
the Chebyshev polynomial of 
L, and F is the feature matrix 
of ROIs. n is the number of 
ROIs (n = 30,000), and m is the 
dimension of the feature vector 
(m = 320)
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training set samples is 1, and the weight of other samples 
is 0. Similarly, in model validation or testing, we set the 
weights of validation set or test set samples as 1 and the 
other two as 0 (Fig. 4 and Fig. 4). Then the prediction result 
on the test set is obtained in the end. In this way, we achieve 
the training, validation, and testing on the same graph by 
giving different weights to the samples.

3  Results

3.1  Classification performance

In our experiments, we apply our GCN model to DLCST 
dataset for binary classification tasks. To quantitatively 
analyze the classification performance of our method, 
we employed four metrics, including the area under the 

Fig. 3  Overview of the structure 
of the GCN. The input of the 
GCN is C + F as shown in 
Fig. 2. n is the order of Cheby-
shev polynomial. In the focal 
loss function, α is 1 and γ is 2. 
The ellipsis indicates that the 
network structure is similar to 
the previous one, only the units 
are different

Fig. 4  The weight of samples in model training, validation, and predicting. The pink area has a weight of 1, while the green area has a weight of 0

2326 Medical & Biological Engineering & Computing (2022) 60:2321–2333
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receiver-operating characteristic curve (AUC), accuracy 
(ACC), precision (PR), and F-score. These metrics are 
computed from the true positive (TP), true negative (TN), 
false negative (FN), and false positive (FP) results.

Figure 5 shows the accuracy and loss of the train-
ing and validation dataset of the GCN model as the 
epochs proceeded. The training and validation loss 
decreased continuously, reaching approximately 0.45 
after 400 iterations. Meanwhile, the training and vali-
dation accuracy increased gradually to over 0.76 after 
400 iterations.

The confusion matrix of GCN on the test dataset 
(Fig. 5) reveals 10 false positives (FP, meaning that 
non-COPD is wrongly predicted as COPD) and 13 
false negatives (FN, meaning that COPD is wrongly 
predicted as non-COPD). Therefore, the AUC, ACC, 
PR, and F-score of the model on the test dataset are 
0.81, 0.77, 0.80, and 0.78, respectively.

3.2  Comparing with the‑state‑of‑the‑art methods

In this subsection, the proposed GCN method is compared 
with the-state-of-the-art methods on the same dataset, 
including the four classical convolutional neural networks 
(VGG16, DenseNet121, InceptionV3, and ResNet50) and 
lightGBM.

CNNs have made impressive success in image feature 
learning and play an important role in medical image clas-
sification. However, it is a challenging task for the small 
dataset to train deep CNN from scratch with proper con-
vergence and without suffering from overfitting [36, 37]. 
Because there are only 600 samples in the public datasets, it 
is not enough to train models containing many deep convolu-
tion layers and involving more network parameters. So we 
use the CNNs with fine-tuning.

Take ResNet50 as an example. The architecture starts 
with an input layer, then there are five convolutions layers, 

Fig. 5  Performance of COPD 
identification model by GCN. 
a Training/validation loss and 
accuracy of GCN model. b 
Confusion matrix of GCN on 
the test dataset

2327Medical & Biological Engineering & Computing (2022) 60:2321–2333
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five ReLU layers, and five batch normalization layers, 
respectively. Two pooling layers are used after the first and 
second ReLU layers, respectively. A fully connected layer, 
softmax layer, and classification layer are also used at the 
end of the model. Fine tuning of this CNN model includes 
two aspects: (1) First, we remove the full connection layer 
at the top of the model and use two or more model blocks to 
retrain all parameters (for the ResNet50 model, the blocks 
are conv1, conv2_x, conv3_x, conv4_x, and conv5_x, as 
shown in Table 1). However, the results are not ideal due to 
overfitting (Fig. 6). (2) Second, in order to reduce overfit-
ting, we use only one model block (for ResNet50, the block 
is conv1) and retrain the parameters, but the results are still 
unsatisfactory due to underfitting (Fig. 6).

Similar to ResNet50, we remove the full connection 
layer at the top of the other three models and use two or 
more model blocks of VGG16/DenseNet121/InceptionV3. 
The results are also overfitting. Then we use only one block 
(for VGG16, DenseNet121, and InceptionV3, we use block 
conv1, dense block1, and conv1, respectively), but the 
results are still underfitting. This shows that these models 
are not suitable for the DLCST dataset. Table 2 details the 
performance of the fine-tuned deep CNN models on COPD 
classification. As can be seen in Table 2, the GCN approach 
significantly outperforms the four classical pre-trained 
CNNs with fine-tuning, demonstrating the effectiveness of 
the GCN model.

We also compare our model with lightGBM, which is 
a high-performance gradient lifting model based on the 
decision tree algorithm proposed by Microsoft. As shown 
in Table 2, the overall accuracy of this machine learning 
model is 64%, the area under the curve (AUC) is 0.68, the 
PR is 0.66, and the F-score is 0.63, all of which are weaker 
than our GCN model.

ROCs are commonly used for binary classifiers, which is 
a graphical plot of the true positive rate (TPR = sensitivity) 
vs. the false positive rate (FPR = 1 specificity) for a classifier 
as the discrimination threshold is varied. Figure 7 describes 
the ROC curves of different methods based on the extracted 
features, and it shows that our GCN has better AUC value 
on the DLCST database.

3.3  Ablation studies

In this subsection, we conducted several experiments on this 
dataset to validate the effectiveness of each key component 
of our proposed model, including the Chebyshev polynomial 
kernel and focal loss.

3.3.1  Efficacy of the Chebyshev polynomial kernel

Chebyshev polynomial kernel plays an important role in 
our model. In many cases, it can improve the training speed 
and achieve better prediction accuracy [38]. To investigate 
the effectiveness of the Chebyshev polynomial kernel, we 
designed two sets of controlled trials. We firstly set up a 
baseline network without the Chebyshev polynomial kernel 
and focal loss called simple GCN. We then used the Che-
byshev polynomial kernel to the network and denoted it as 
GCN_cheby_softmax_cross_entropy. The results of two sets 
of controlled trials are summarized in Table 3. It reveals that 
GCN_cheby_softmax_cross_entropy performs much better 
than simple GCN.

3.3.2  Efficacy of focal loss

DLCST dataset contains a large number of mild-moderate 
COPD, which are hard to classify. Focal loss can focus on 
hard examples and prevent the vast number of easy examples 
during training [35]. To verify the performance of focal loss, 
we performed another ablation study. As shown in Table 3, 
the performance of GCN_cheby_softmax_cross_entropy 
is improved after replacing focal loss. These experimental 
results indicated that both Chebyshev polynomial kernel and 
the focal loss could improve the GCN’s performance.

3.4  Comparison with related works on DLCST 
dataset

Table 4 shows the diagnosis performance of our method 
and other related methods on the DLCST dataset. All these 
methods used Gaussian scale-space features or histograms 
of intensity values in the ROI after filtering the image. 
Sørensen et al. proposed a fully automatic, data-driven 
approach for texture-based quantitative analysis with 
k nearest neighbor classifier and got an AUC of 0.713 
[39]. Cheplygina et al. adopted various multiple instance 

Table 1  The blocks of ResNet50

Layer name Layer structure

conv1 7 × 7, 64, stride 2
conv2_x 3 × 3, max pool, stride 2

⎡

⎢

⎢

⎣

1 × 1.64

3 × 3.64

1 × 1.256

⎤

⎥

⎥

⎦

× 3

conv3_x
⎡

⎢

⎢

⎣

1 × 1.64

3 × 3.64

1 × 1.256

⎤

⎥

⎥

⎦

× 4

conv4_x
⎡

⎢

⎢

⎣

1 × 1.256

3 × 3.256

1 × 1.1024

⎤

⎥

⎥

⎦

× 6

conv5_x
⎡

⎢

⎢

⎣

1 × 1.512

3 × 3.512

1 × 1.2408

⎤

⎥

⎥

⎦

× 3
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learning (MIL) methods and obtained the best AUC of 
0.742 by support vector machine [11]. Subsequently, their 
team utilized instance-transfer leaning to classify COPD 
from different centers, scanners, or subject distributions 
and had an AUC of 0.790 in the DLCST dataset [12]. It 
is observed that our GCN model achieves the best AUC, 
with it reaching 0.81. Compared to the other algorithms, 
it improves the AUC by 2.5–13.6%. Unfortunately, there 
is no more detailed comparative information about ACC, 
PR, and F-score because they are not discussed in these 
studies.

Fig. 6  The accuracy of the 
ResNet50 model with fine-tun-
ing on training and validation 
dataset. a Overfitting when 
removing the full connection 
layer and using two blocks 
(conv1 and conv2_x). b Under-
fitting when using one block 
(conv1)

Table 2  Performance comparison of the applied methods

Model AUC ACC PR F-score

GCN 0.81 0.77 0.80 0.78
LightGBM 0.68 0.64 0.66 0.63
Fine tuning of ResNet50 0.50 0.53 0.53 0.69
Fine tuning of VGG16 0.50 0.47 0.00 0.00
Fine tuning of DenseNet121 0.50 0.53 0.53 0.69
Fine tuning of InceptionV3 0.50 0.47 0.00 0.00
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4  Discussion

This study developed a GCN architecture that can detect 
COPD on a small and weakly labeled CT imaging dataset. 
The proposed GCN model achieves an acceptable perfor-
mance with an accuracy of 0.77 and area under curve of 
0.81, which is higher than the previously studies on the 
same dataset. Furthermore, our GCN model also outper-
forms several state-of-the-art methods trained at the same 
time in this dataset. To the best of our knowledge, this is 
the first time to use GCN on small and weakly labeled data 
for detection of COPD.

With the development of artificial intelligence, deep 
learning, especially deep CNN, is a new and powerful 

tool for machine vision and pattern recognition. Although 
CNNs have shown impressive performance in the medical 
field for imaging, their conventional formulation is limited 
to data structured in an ordered, grid-like fashion. Hence, 
they are inefficient when dealing with non-Euclidean data 
representations and when modeling global contextual 
information. GCNs have extended the theory of signal pro-
cessing on graphs [40] and enhanced the data representa-
tion and classification capabilities of convolutional neural 
networks, which are highly effective for signals defined on 
regular Euclidean domains to irregular, graph-structured 
data defined on non-Euclidean domains such as topologi-
cal structure [41, 42].

COPD is a complex and highly heterogeneous clinical 
entity. As shown in Fig. 1, its pathological abnormalities 
are multi-dimensional and multi-positional. The disease 
heterogeneity also shows in the diverse spatial distributions 
of abnormalities. Take emphysema as an example, which is 
the most common pathological type of COPD. Paraseptal 
emphysema is located in the periphery of the lung; centri-
lobular emphysema is predominantly in the upper lobes, 
while panlobular emphysema is predominantly in the lower 
lobes. In addition, each image in the public DLCST dataset 
is represented by 50 3D-ROIs, sampled at random locations 
within the segmented lung parenchyma. Therefore, the dis-
tribution of these ROIs is disordered and irregular, which 
makes COPD imaging diagnosis challenging.

Taking the above into consideration, we build a graph 
using a total of 30,000 ROIs from 600 cases and then input it 
into the GCN model with the Chebyshev polynomial kernel. 
Since the imbalanced dataset we used in the study contains 
nearly 90% of mild-moderate COPD patients, which are easy 
to be misclassified, we use the focal loss as an optimiza-
tion step for the GCN model to improve the classification 
accuracy. The ablation study demonstrates that the proposed 
structures and modules contribute to the improvement of 
the performance. As shown in Table 4 and Fig. 7, the pro-
posed GCN model obtains an AUC of 0.81, outperforms 
texture-based analysis with k nearest neighbor classifier [39] 
and various MIL classifiers [11, 12] with an AUC of 0.713, 
0.742 and 0.79, respectively, on the same dataset.

Fig. 7  ROC curves of the different classifiers based on the extracted 
features

Table 3  Ablation experiments for Chebyshev polynomial kernel and 
focal loss

Model AUC ACC PR F-score

Simple GCN model 0.76 0.71 0.74 0.72
GCN_cheby_softmax_

cross_entropy
0.78 0.74 0.77 0.75

GCN_cheby_focal loss 0.81 0.77 0.80 0.78

Table 4  Performance comparison between our method and the related works on DLCST dataset

References Sample size Key points Performance (AUC)

Sørensen, L. et al. [39] 300 COPO vs. 300 non-COPD The κ nearest neighbor classifier 0.713
Cheplygina, V. et al. [11] 100 COPO vs. 100 non-COPD Various MIL classifiers

A total of 2296 feature vectors for each ROI
0.742 (the best obtained by 

support vector machine)
Sørensen, L. et al. [12] 300 COPO vs. 300 non-COPD SimpleMIL logistic classifier

A total of 420 feature vectors for each ROI
0.79 with average assumption
0.748 with noisy-or assumption

Our method 300 COPO vs. 300 non-COPD GCN
A total of 420 feature vectors for each ROI

0.81
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Our work is not directly comparable to other studies 
using state-of-the-art systems because of different model 
parameters, training strategies, and data splits. Therefore, 
we also trained several other methods in the DLCST data-
set at the same time, including the four classical CNNs and 
lightGBM. However, Fig. 6 shows that although the CNNs 
with fine-tuning are used, the results are still not ideal. The 
reason can be due to two aspects. On the one hand, each 
cubic 3D ROI is described by histograms of responses of 8 
filters at 4 scales, which aims to capture the texture of the 
image. Therefore, we use the texture features of the preproc-
essed images rather than the raw images, which is differ-
ent from the previous studies using a single montage image 
[13, 14]. This preprocessing method may miss potentially 
valuable information to a certain extent. For instance, Xu 
et al. used deep CNN to extract the automatically learned 
features, which are expected to be more discriminative 
and diverse than these texture features, and achieved an 
accuracy of 99.29% and an AUC of 0.9826 by transferring 
MIL for COPD identification [43]. We believe that if we 
can use CNN to extract features from raw images directly 
and then use GCN for classification, the performance of the 
model will be further improved. On the other hand, tradi-
tional CNNs analyze local areas based on fixed connectivity 
(determined by the convolutional kernel), leading to limited 
performance and difficulty in interpreting the spatial hetero-
geneity of COPD among diverse lung regions. Topological 
relations among these ROIs can be used to construct the 
graph, which can be analyzed to better integrate the correla-
tion among these ROIs and improve the accuracy of clas-
sification. Meanwhile, we also trained a machine learning 
model based on the LightGBM algorithm and achieved an 
ACC of 0.64, AUC of 0.68, PR of 0.66, and F-Score of 0.63, 
which are all lower than our GCN model as well, confirming 
that our GCN model outperforms other methods.

It is worth mentioning that there are still some limita-
tions. First, the public DLCST dataset does not disclose 
more detailed information such as age, gender, and smok-
ing history of each patient, so we cannot further analyze the 
effect of GCN model on specific patients. Second, refer-
ences [11, 12, 39] only analyzes the AUC value of other 
existing methods on the DLCST dataset, but does not ana-
lyze ACC, PR, and F-Score values. Therefore, there is no 
more detailed comparison between GCN and other related 
works in Table 4. Third, the size of the DLCST dataset is 
small, and it is collected from one single medical center. 
The generalization capabilities of the obtained GCN model 
are unknown.

In the future, large-scale and multi-center trials are 
required to prove the wide applicability of the present pre-
diction algorithms in clinical practice. Moreover, we can use 
FCN or U-net models to accurately extract focus points from 
raw images directly, instead of randomly selecting ROIs 

from lung mask. In addition, we can also use another graphi-
cal neural network, graphical attention network (GAT), for 
COPD detection. It applies an attention mechanism on 
graph neighborhoods to aggregate node information, which 
can assign larger weights to the more important nodes and 
guides us to study which ROIs are more important for COPD 
detection. Furthermore, GAT model does not need to use 
Laplace matrix for complex calculation and only updates 
the node characteristics by representing adjacent nodes, so 
it runs more efficiently on small datasets.

5  Conclusion

Previous studies on COPD detection using the DLCST 
dataset only focused on the feature information of ROIs 
themselves but not on the topological structure information 
around these ROIs. Moreover, COPD is a highly heteroge-
neous disease with various manifestations and diverse spa-
tial distributions of abnormalities. To capture and explore 
such important information, we propose GCN based model 
for COPD classification. The obtained GCN model dem-
onstrates superior performance in discriminating between 
subjects with and without COPD compared to the CNNs 
with fine-tuning, lightGBM and other classifiers used in 
previous researches on the DLCST dataset, which is small 
and weakly labeled. Furthermore, since the dataset con-
tains nearly 90% mild-moderate COPD patients, this GCN 
model with focal loss can better realize the early detection 
of COPD. In addition, ablation experiments show the benefit 
of using the Chebyshev polynomial kernel and focal loss 
during training for model performance. Finally, we believe 
that it can help finding subgroups with high risk of COPD 
from large populations through CT scans ordered doing lung 
cancer screening.
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