
Frontiers in Cellular and Infection Microbiolo

Edited by:
Edison Luiz Durigon,

University of São Paulo, Brazil

Reviewed by:
Kuo-Feng Weng,

Stanford University, United States
Dawei Cui,

Zhejiang University School of
Medicine, China

*Correspondence:
Yinan Du

duyinannan@126.com
Jialin Meng

mengjialin@ahmu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Virus and Host,
a section of the journal
Frontiers in Cellular and
Infection Microbiology

Received: 10 February 2022
Accepted: 30 March 2022
Published: 25 April 2022

Citation:
Yang F, Zhang N, Chen Y, Yin J, Xu M,

Cheng X, Ma R, Meng J and Du Y
(2022) Role of Non-Coding RNA in

Neurological Complications
Associated With Enterovirus 71.

Front. Cell. Infect. Microbiol. 12:873304.
doi: 10.3389/fcimb.2022.873304

REVIEW
published: 25 April 2022

doi: 10.3389/fcimb.2022.873304
Role of Non-Coding RNA in
Neurological Complications
Associated With Enterovirus 71
Feixiang Yang1,2,3,4†, Ning Zhang1,5†, Yuxin Chen1,6†, Jiancai Yin5, Muchen Xu1,6,
Xiang Cheng5, Ruyi Ma1, Jialin Meng2,3,4* and Yinan Du1*

1 School of Basic Medical Sciences, Anhui Medical University, Hefei, China, 2 Department of Urology, The First Affiliated
Hospital of Anhui Medical University, Hefei, China, 3 Institute of Urology, Anhui Medical University, Hefei, China,
4 Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China, 5 First School of Clinical
Medicine, Anhui Medical University, Hefei, China, 6 School of Public Health, Anhui Medical University, Hefei, China

Enterovirus 71 (EV71) is the main pathogenic virus that causes hand, foot, and mouth
disease (HFMD). Studies have reported that EV71-induced infections including aseptic
meningitis, acute flaccid paralysis, and even neurogenic pulmonary edema, can progress
to severe neurological complications in infants, young children, and the
immunosuppressed population. However, the mechanisms through which EV71
causes neurological diseases have not been fully explored. Non-coding RNAs
(ncRNAs), are RNAs that do not code for proteins, play a key role in biological
processes and disease development associated with EV71. In this review, we
summarized recent advances concerning the impacts of ncRNAs on neurological
diseases caused by interaction between EV71 and host, revealing the potential role of
ncRNAs in pathogenes is , d iagnos is and t rea tment o f EV71- induced
neurological complications.

Keywords: virus-host interaction, enterovirus 71, hand, foot, and mouse disease, microRNA, long non-coding RNA,
non-coding RNA
1 INTRODUCTION

Enteroviruses (EVs) are a genus of the Picornaviridae family characterized by small, single-
stranded, positive-sense RNA (Solomon et al., 2010; Baggen et al., 2018). There are 13 species in
this family, of which 7 species, including four species of enteroviruses (enteroviruses A, B, C, and D)
and three species of rhinoviruses (rhinoviruses A, B, and C) are pathogenic to humans (Nikonov
et al., 2017). Enterovirus 71 (EV71) is a member of species group A and has an icosahedral structure
that is characteristic of all EVs. The viral capsid comprises 60 repeating units referred to as
protomers. Each protomer consists of four structural viral proteins (surface proteins (VP1-VP3) and
the internal protein (VP4)) (Solomon et al., 2010; Plevka et al., 2012; Baggen et al., 2018). The P1
coding region of the virus genome codes for structural proteins, whereas other seven non-structural
proteins (proteins 2A-2C and 3A-3D) are encoded by the P2 and P3 regions (Solomon et al., 2010).
Structure proteins of EV71 play important roles in viral pathogenicity, virulence and host resistance,
as well as serve as regulatory targets for biological factors (Zheng et al., 2011; Wang B. et al., 2013).
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EV71 is the main etiological agent that causes brief, generally
mild, self-limiting HFMD, which is characterized by red spots or
herpes on the hands, feet, and mouth and which resolves in 3-7
days without treatment (Solomon et al., 2010; Cox and Levent,
2018). Since EV71 was first isolated from the human central
nervous system in 1974 (Schmidt et al., 1974). The EV71-
associated neurological diseases, such as aseptic meningitis,
acute flaccid paralysis, neurogenic cardiopulmonary failure and
fatal encephalitis, have been widely reported in China, America,
Brazil, Vietnam and other countries (Xing et al., 2014; Huang
et al., 2015; Liu et al., 2015; Hasbun et al., 2017; B'Krong et al.,
2018; Ramalho et al., 2019). A large epidemiological study
conducted from 2008 to 2012 in China reported 7,200,092
probable cases among which 80% laboratory-confirmed severe
cases (patients with neurological or cardiopulmonary
complications) and 93% fatal cases were attributed to EV71
infection (Xing et al., 2014). Currently, there are no specific
therapeutic options for EV71-induced neurological diseases, and
the mechanisms of severe nervous system diseases have not been
fully elucidated (Ooi et al., 2010; Solomon et al., 2010; Chen et al.,
2020). Expanding evidence reveals that ncRNAs play essential
roles in normal physiological and pathological processes
(Beermann et al., 2016). Researchers found that ncRNAs were
closely related to development of HFMD and pathogenicity of
EV71, which may provide basis for pathogenesis, diagnosis and
treatment of EV71-associated diseases.
2 OVERVIEW OF NON-CODING RNAS

ncRNAs are RNAs without the potential for encoding biological
proteins. Based on the number of nucleotides (nt), they are
divided into two subclasses, small or short non-coding RNAs
(less than 200 nt) and long non-coding RNAs (lncRNAs) (more
than 200 nt) (Kapranov et al., 2007; Esteller, 2011; Beermann
et al., 2016; Engreitz et al., 2016). Small non-coding RNAs are
further classified into three main categories: microRNAs
(miRNAs), short interfering RNAs (siRNAs), and piwi-
interacting RNAs (piRNAs). Small non-coding RNAs act as
disincentives to gene expression and regulation by combining
with members of the Argonaute protein (Ago protein)
superfamily (Carthew and Sontheimer, 2009). miRNAs, which
mediate post-transcriptional gene suppression by binding
mRNAs or viral genomes, are one of the most important and
widely studied classes of ncRNAs (He and Hannon, 2004). In the
nucleus, lncRNAs modulate expressions of neighboring genes
through chromatin remodeling, and transcriptional and post-
transcriptional regulation, thereby regulating biological
processes (Mercer et al., 2009; Engreitz et al., 2016).

The synthesis of miRNAs is dependent on two pivotal
enzymes, Drosha and Dicer, which belong to the ribonuclease-
III (RNase III) family (Hutvágner et al., 2001; Lee et al., 2003).
Primary miRNA (pri-miRNA) is transcribed from endogenous
miRNA genes by RNA polymerase II (Pol II) to generate pre-
miRNA after processing by Drosha inside the nucleus (Lee et al.,
2003). Exportin-5 is involved in extranuclear transportation of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
pre-miRNA, which is subsequently cleaved by Dicer into an
imperfect dsRNA duplex (miRNA: miRNA duplex) (Hutvágner
et al., 2001; Carthew and Sontheimer, 2009). One miRNA strand:
miRNA duplex is assembled into an RNA-induced silencing
complex (RISC), namely miRISC. miRISC mediates post-
transcriptional gene inhibition by translational repression or
mRNA cleavage (He and Hannon, 2004; Rana, 2007; Carthew
and Sontheimer, 2009). In various aspects, such as the same type
of transcriptase, Pol II, lncRNAs are similar to mRNAs.
However, compared to mRNAs, lncRNAs exhibit a lower
transcription number and are evolutionarily conserved (Quinn
and Chang, 2016). lncRNAs modulate genes expressions by
interacting with chromatin and proteins through secondary
structures such as hairpin and stem ring structures (Quinn and
Chang, 2016; Statello et al., 2021), and this function plays an
important role in the body against external infection.

ncRNAs have ability to cope with environmental changes and
defend against external threats through the corresponding
machinery. Dysregulated ncRNAs may damage various
physiological processes and promote pathological conditions.
For instance, dysregulated miR-143/145 cluster, which is
extensively recognized as a tumor suppressor, promotes tumor
g row th by induc in g ang i o g ene s i s i n th e t umor
microenvironment (Dimitrova et al., 2016). The focus of this
review is ncRNAs, particularly miRNAs and lncRNAs, with an
emphasis on the effect of miRNAs on development of EV71-
induced CNS complications and the potential of lncRNAs and
miRNAs as biomarkers for c l in ica l diagnosis and
therapeutic targets.
3 ROLE OF MIRNAS IN EV71-INDUCED
CNS INFECTION

3.1 miRNAs and Neurotropism of EV71
Several studies on polioviruses (PVs), the one important species
of enterovirus, have widely explored enterovirus tropism.
Although viral tropism is determined by cellular receptors
(Holland, 1961), internal ribosomal entry sites (IRESs)
(Gromeier et al., 1996), and interference responses (especially
a/b IFN) (Ida-Hosonuma et al., 2005), the cellular receptors play
the most important role in cell and tissue tropism of PV.
Previous studies have shown that non-susceptible mouse cells
became susceptible after introducing human PVR gene into the
mouse genome, and ultimately presented with CNS diseases
similar to those in infected humans (Ren et al., 1990; Koike
et al., 1991).

Relative to PVR, EV71 receptors are more complicated.
Scavenger receptor class B, member 2 (SCARB2, also known as
LGP85), which belongs to the CD36 family, is a type III
transmembrane protein involved in membrane transport.
SCARB2 is a major receptor for EV71 and plays a crucial role
in attachment, internalization, and viral conformational changes
for uncoating, which determines the cell and tissue tropism of
EV71 (Yamayoshi et al., 2009; Dang et al., 2014). SCARB2 is
highly expressed in several cells and tissues, including CNS
April 2022 | Volume 12 | Article 873304
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neurons, pneumocytes, hepatocytes, splenocytes, renal tubular
epithelia, and intestinal epithelia (Fujii et al., 2013). Fujii et al.
(2013) and Yang et al. (2019) demonstrated that expression of
only SCARB2was sufficient to allow transgenic mice to develop
EV71-associated CNS diseases that resemble those in infected
humans. Moreover, SCARB2 expression profiles in mice were
comparable to those in humans, which may explain
neurotropism and cell tropism of EV71. Although SCARB2 is
of great significance in EV71 infection and tropism, it is not the
only receptor that is implicated in EV71 infection. During EV71
infection process, other molecules can support attachment but
not uncoating. These molecules are known as “attachment
receptors” and they include P-selectin glycoprotein ligand-1
(PSGL-1) (Nishimura et al., 2009), annexin A2 (Anx2) (Yang
et al., 2011), vimentin (Du et al., 2014), sialylated glycan (Yang
et al., 2009), heparan sulfate glycosaminoglycan (Tan et al.,
2013), nucleolin (Su et al., 2015), fibronectin (He et al., 2018)
and prohibitin (Too et al., 2018). Attachment receptors lack the
uncoating function, thus SCARB2 has a stronger correlation with
EV71 infection processes compared to attachment receptors and
is the decisive receptor that mediates EV71 cell and tissue
tropism (He et al., 2014; Kobayashi and Koike, 2020).

miRNAs regulate EV71 tropism mainly by modulating the
expression of SCARB2. Directly, miR-127-5p targets the
SCARB2 mRNA 3’ untranslated region (UTR) and suppresses
expression of SCARB2 in Gaucher fibroblasts (Siebert et al.,
2014). Through further experiments, Feng et al. confirmed that
miR-127-5p expression was upregulated after EV71 infection
and that upregulation of miR-127-5p downregulated SCARB2
levels on cell surfaces through specific target binding, which
principally affected the susceptibility of uninfected cells to EV71
infection and cell tropism of EV71 (Feng C. et al., 2017). Jin et al.
found that downregulation of hsa-miR-3605-5p might advance
tSCARB2 expression in human embryonic kidney 293T cells
infected with coxsackievirus A16 (CVA16), thereby increasing
susceptibility to EV71/CVA16 (Jin et al., 2017). Moreover, miR-
202-3p (Li et al., 2020), miR-19a-5p (Siebert et al., 2014), and
miR-1262 (Siebert et al., 2014) attenuated expression of SCARB2
mRNAs and proteins in non-EV71-indected cells, providing a
basis for further research on EV71 infection and proliferation.

3.2 Effects of miRNAs on CNS
Invasion of EV71
As a classic species of neurotropic enteroviruses transmitted by
the fecal-oral route, EV71 proliferates in the digestive tract and
invades the brain and other tissues and organs, resulting in
encephalitis and other diseases (Ooi et al., 2010). After initial
infection in the gastrointestinal tract neurotropic enteroviruses
cross the blood-brain barrier (BBB) into the CNS through
multiple routes. Intensive studies on CNS invasion routes of
PVs have reported presence of three fundamental pathways
through which enteroviruses gain access to the CNS (Huang
and Shih, 2015; Chen et al., 2020). First, upon reaching the BBB
by hematogenous transport, enteroviruses directly infect brain
microvascular endothelial cells (BMECs) that constitute and
maintain the integrity as well as permeability of the BBB. For
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
instance, activation of the protein tyrosine phosphatase SHP-2
by PVR (Coyne et al., 2007) and attachment of PVs by mouse
transferrin receptor 1 (Mizutani et al., 2016) facilitate PV CNS
invasion by damaging BMECs. Second, enteroviruses hijack
retrograde axonal transport [transport of vesicles or substances
from the terminals along microtubules to the nerve cell body
(Millecamps and Julien, 2013)] and spread into spinal
motoneurons in the CNS through neuromuscular junctions.
For instance, PV gains entry into the CNS through receptor-
dependent and receptor-independent endocytosis at
neuromuscular junctions (Ohka et al., 2004; Ohka et al., 2012).
Third, peripheral circulating immune cells can serve as transport
vehicles that carry intracellular enteroviruses and pass the CNS
through the so-called “Trojan Horse” pathway. Previous studies
present that Coxsackieviruses (CVs) migrate to the CNS and
traverse the BBB by CV-infected myeloid cells (Tabor-Godwin
et al., 2010). Neurotoxic PV can also infect monocytes and
exhibits a stronger proliferation ability in these cells (Freistadt
and Eberle, 1996). Consequently, a hypothesis has been proposed
that monocytes carry PV across CNS (Squires, 1997), although
more studies should verify this hypothesis.

EV71 crosses the BBB and invades the CNS in similar ways as
PV, in which miRNAs are involved in regulation of several
pathways (Figure 1). With regards to the first route, Zhu et al.
(Zhu et al., 2019) and Wang et al. (Wang W. et al., 2020)
observed that EV71 infected BMECs with the capsid protein,
VP1, which reduced claudin-5, the junction protein of
endothelial cells, leading to increased BBB permeability and
upregulation of the EV71 receptor vimentin to facilitate
attachment. miR-2911 and miR-23b mediate neural invasion of
EV71 by directly targeting the VP1-coding sequence that
regulates VP1 translation (Wen et al., 2013; Li X. et al., 2018).
For the second route, Chen et al. (Chen et al., 2007) reported that
EV71 infected and entered the CNS through retrograde axonal
transport at spinal motor nerves. Lim et al. (Lim et al., 2021)
further showed that surface-expressed peripherin in motor
neurons provides anchor points for EV71 and contributes to
viral transmission, whereas intracellular peripherin modulates
EV71 genome replication, resulting in CNS infection. In
amyotrophic lateral sclerosis (ALS) patients, miR-105 and
miR-9 mainly dominate peripherin expression in motor
neurons by targeting the 3’UTR of peripheral mRNA (Hawley
et al., 2019); however, their effects on EV71 have not been
explored. In EV71-infected mouse neurons, miR-3473a plays a
role in axon guidance and Wnt signaling pathways, which
control axon growth and guidance (Van Battum et al., 2015)
and mediate neuronal positioning as well as axon development
(Salinas and Zou, 2008), respectively. Downregulation of miR-
3473a activates these two pathways and promotes retrograde
axonal transport of EV71 (Yang et al., 2017). For the third route,
EV71 was demonstrated to infect human CD14+ cells (Wang J.
et al., 2013), leukocytes (Nishimura et al., 2009), dendritic cells
(Lin et al., 2009), and other peripheral immune cells, increasing
the ability of EV71 to invade the CNS through the Trojan horse
pathway. miR-3473a was considered to modulate leukocyte
trans-endothelial migration and induce EV71-associated BBB
April 2022 | Volume 12 | Article 873304
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disruption (Yang et al., 2017), however, studies should verify
this hypothesis.
4 NCRNAS AND NERVOUS SYSTEM
INJURY OF EV71

Although multiple complications have been reported, brainstem
encephalitis with associated neurological pulmonary edema is a
characteristic presentation of EV71 CNS infection (Wong et al.,
2000; Nolan et al., 2003; Ooi et al., 2010). Affected children
develop rapidly progressing cardiopulmonary failure that causes
death, which is attributed to respiratory failure and severe
pulmonary edema without intensive care. Autopsy and MRI
reports indicate that EV71 lesions are mainly located in the
ventral, medial, and lateral medulla oblongata (Zimmerman,
1999; Kao et al., 2004). In addition, EV71 has been detected in
other nerve tissues, such as the spinal cord, which may explain
generation of acute flaccid paralysis.

The pathogenesis of EV71-induced neurological
complications is caused by host-virus interaction including
direct damage by the virus and indirect injury mediated by
immune and inflammatory responses (Figure 2). Apoptosis is a
pivotal process for removing damaged cells and virus-infected
cells to resist EV71 infection. Viruses are cytotropic
microorganisms that completely rely on the host to survive,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
and they regulate host cells survival and complete their life cycle
by mediating cell apoptosis to facilitate viral translation,
replication, assembly, and release. The balance between viral
replication and host apoptosis is t key for viral infection and
determines direct damage of the virus to the host. On the other
hand, the host counters against EV71 infection through innate
immune and acquired immune cells, while EV71 escapes
immune defense through several pathways, such as
intracellular parasitism and immune cell destruction.
Inflammatory cells infiltrate brain tissues mediated by virus
particles stimulation and immune response, which further
releases several inflammatory factors, such as IL-1, IL-6, IL-12,
as well as TNF-a; and aggravates nervous system injury.

4.1 Direct Damage of EV71 to the
Nervous System
4.1.1 Effect of ncRNAs on EV71 Replication
ncRNAs play a crucial regulatory role in various interactions
between viruses and their hosts (Esteller, 2011; Beermann et al.,
2016). EV71 hijacks host ncRNAs targeting proliferation-related
genes of the host or even the virus itself to constitute a
microenvironment that promotes EV71 replication.
Mechanisms of directly targeting EV71 genome sequence by
ncRNAs or modulating key host processes and signaling
pathways to inhibit or promote viral replication are presented
in this section (Table 1).
FIGURE 1 | Role of ncRNAs in EV71 invasion through blood-brain barrier. (A) Direct invasion. miR-23b and miR-2911 downregulate junction protein claudin-5 and
upregulate EV71 receptor vimentin, resulting in damage to blood-brain barrier and the attachment of EV71 through modulating VP1 expression. (B) Retrograde
axonal transport. miR-105 and miR-9 can target peripherin, which facilitates EV71 attachment and replication, to modulate viral retrograde axonal transport.
(C) “Trojan Horse” pathway. EV71 can hijack immune cells to intrude CNS, miR-3473a may mediate leukocyte trans-endothelial migration and induce BBB disruption
associated with EV71. “*”: non-EV71-infected disease model.
April 2022 | Volume 12 | Article 873304
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The host suppresses EV71 replication through RNA
interference of the combination of miRNAs and the viral
genome, whereas EV71 downregulates the corresponding
miRNAs to circumvent its suppression. miR-296-5p targets
EV71 VP1 and VP3 coding sequences (2115 to 2135 nt and
2896 to 2920 nt) and is upregulated in the infected cells. miR-
296-5p is a key factor in resisting EV71 infection by preventing
synthesis of EV71 VP1/VP3 (Zheng et al., 2013). Several
miRNAs, including miR-2911 (Li X. et al., 2018), miR-23b
(Wen et al., 2013), and members of the miR-17-92 family (Fu
et al., 2019) can also modulate VP1 gene expression of EV71.
EV71 downregulates expression of miR-23b, miR-17-5p, and
miR-19a/b to strengthen virus invasion and host injury, whereas
miR-2911 expression is upregulated by initiation of the antiviral
damage system. Yang et al. explored the relationship between
miR-373 and miR-542-5p and EV71 replication, and revealed
that miR-373 and miR-542-5p directly target the 5’UTR of the
viral genome to inhibit EV71 replication (Yang and Tien, 2014).
Short hairpin RNAs (shRNAs) have been found to act as
therapeutic targets by antagonizing EV71 replication, whereas
29-mer shRNA effectively inhibits EV71 replication by targeting
EV71 3D(pol) (Tan et al., 2007). Additionally, ncRNAs target the
viral genome to modulate replication of EV71, as well as target
receptor-related genes. Further, the EV71 receptor, SCARB2
induces viral infection of cells to directly mediate viral
replication and cell tropism (Yamayoshi et al., 2009). miR-127-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
5p attenuates expression of SCARB2 mRNA and protein (Feng
et al.), thus restraining viral internalization and ultimately
abrogating virus immune escape. Furthermore, Liu et al. and
Sim et al. transfected rhabdomyosarcoma (RD) cells with siRNAs
targeting 2Apro (Liu et al., 2016), 3’UTR, 2C, 3C, and 3D (Sim
et al., 2005) region of EV71 genome separately, significantly
decreasing cytopathic effects of EV71 through RNA interference.
These findings indicate that ncRNAs are potential therapeutic
targets for preventing viral infection and alleviating body injury.

ncRNAs are involved in key processes and signaling pathways
to modulate viral biosynthesis. The nuclear protein Ran affects
several significant cellular processes, including the regulation and
control of cell cycle progression by mediating mitosis, and
nucleocytoplasmic transport associated with Ran GTPase
(Dasso, 2001; Clarke and Zhang, 2008). EV71-induced miR-
197 (Tang et al., 2016) and miR-134 (Orr-Burks et al., 2017)
target Ran gene, which assists nuclear transportation of viral
proteins 3D/3C and replication-associated proteins, ultimately
dampening EV71 replication. The life cycle of viruses is
dependent on the host translation machinery, whereby cap-
dependent protein translation is beneficial to the host whereas
cap-independent translation is beneficial to the virus. Notably, it
is evident that degradation of eukaryotic initiation factor 4E
(eIF4E) determines the progress of the switch between the two
translation processes (Richter and Sonenberg, 2005; Sukarieh
et al., 2010). Elsewhere, Ho et al. found that the eIF4E gene is
FIGURE 2 | Role of ncRNAs in central nervous system injury of EV71. EV71 injures CNS through direct damage by the virus and indirect injury mediated by immune
and inflammatory responses. On the one hand, ncRNAs mediate direct injury of EV71 by modulating viral replication and host apoptosis. (A) miR-296-5p, miR-197
and miR-21 separately target viral genome, key host proteins and NF-kB pathway to involve in regulation of viral replication. (B) miR-16-5p and miR-494-3p
respectively modulate cyclin expression and PI3K/Akt pathway to involve in regulation of host apoptosis. On the other hand, ncRNAs indirectly damage CNS through
immunological concomitant inflammatory response and cytokines induction. (C) miR-30a promotes CNS damage by regulating immune and inflammatory responses,
and (D) miR-124 upregulates the key pro-inflammatory cytokine, IL-6, aggravating damage induced by EV71. Red words indicate “upregulation”; green words
indicate “downregulation”.
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TABLE 1 | ncRNAs involved in EV71 replication.

ncRNAs Expression Target Description Process Disease model Reference

miR-296-
5p

up EV71
VP1 and
VP3

miR-296-5p decreases EV71 replication by
interacting with viral VP1vand VP3 genes

EV71
replication

in vitro: EV71 infected RD and SK-N-SH cells (Zheng
et al.,
2013)

miR-373,
miR-542-
5p

unknown 5’UTR of
EV71
genome

miR-373 and miR-542-5p inhibit EV71
replication by targeting 5’-UTR of viral
genome

EV71
replication

in vitro: EV71 infected RD cells (Yang and
Tien, 2014)

miR-2911 up EV71
VP1

miR-2911 reduces EV71 replication by directly
targeting the VP1-coding sequence

EV71
replication

in vitro: EV71(Fuyang-0805 and Lianyungang2015)
infected Vero cells

(Li X. et al.,
2018)

miR-23b down EV71
VP1

downregulated miR-23b advances EV71
replication by targeting the VP1 gene 3’UTR

EV71
replication

in vitro: EV71 (Fuyang No. EU703812) infected RD cells (Wen et al.,
2013)

miR-17-
5p, miR-
19a/b

down EV71
VP1

downregulated miR-17-5p and miR-19a/b
enhance EV71 replication by targeting EV71
gene VP1

EV71
replication

in vitro: EV71 (strain FY0805) infected Vero cells (Fu et al.,
2019)

miR-18a,
miR-452

up EV71
VP3

miR-18a and miR-452 decrease EV71
replication by expression inhibition of VP3

EV71
replication

in vitro: EV71 (Hubei-09 strain GU434678.1) infected RD
cells

(Yang
et al.,
2021)

29-mer
shRNA

: EV71 3D
(pol)

29-mer shRNA most effectively inhibits EV71
replication by targeting EV71 3D(pol)

EV71
replication

in vitro: EV71 infected RD cells (Tan et al.,
2007)

miR-127-
5p

up SCARB2 miR-127-5p downregulates the expression of
SCARB2 by target SCARB2-coding gene 3’
UTR

EV71
replication

in vitro: EV71 (Fuyang0805 strain) infected HeLa and
HepG2 cells

(Feng C.
et al.,
2017)

miR-197 down Ran downregulated miR-197 facilitates EV71
replication by suppressing Ran to assist
transportation of viral 3D/3C and replication
protein

EV71
replication

in vitro: EV71 (2231 TW strain) infected HEK 293T and
RD cells

(Tang
et al.,
2016)

miR-134 unknown Ran miR-134 represses EV71 replication by
decreasing Ran expressions

EV71
replication

in vitro: EV71 infected Hep2 and RD cells (Orr-Burks
et al.,
2017)

miR-141 up eIF4E miR-141 promotes EV71 replication by
targeting eIF4E for shutoff of host protein
synthesis

EV71
replication

in vitro: EV71 infected RD cells (Ho et al.,
2011)

miR-876-
5p

up CREB5 miR-876-5p accelerates EV71 replication by
targeting host CREB5

EV71
replication

in vitro: EV71 (2231 Taiwan strain) infected RD and SK-
N-SH cells

(Xu et al.,
2020)

miR-155 up PICALM miR-155 inhibits EV71 replication by targeting
PICALM

EV71
replication

in vitro: EV71 infected RD and SK-N-SH cells (Wu et al.,
2019)

miR-30a down Beclin-1 downregulated miR-30a advances EV71
replication by targeting 3’ UTR of Beclin-1
transcripts to inhibit autophagy

EV71
replication

in vitro: EV71 infected Hep2 and Vero cells (Fu et al.,
2015)

miR-30a up MyD88 miR-30a facilitates EV71 replication by
targeting MyD88 and subsequently inhibits
IFN-1 production

EV71
replication

in vitro: EV71 infected OE cells (Wang Y.
et al.,
2020)

miR-548 down IFN-l1 downregulated miR-548 decrease EV71
replication by enhancing IFN-l1 expression

EV71
replication

in vitro: EV71 (C4 subtype) infected RD cells (Li et al.,
2013)

miR-155-
5p

up FOXO3,
IRF7

miR-155-5p facilitates EV71 replication by
negatively regulating FOXO3/IRF7 axis to
inhibit IFN-1 response

EV71
replication

in vitro: EV71 (BrCr strain) infected RD cells; in vivo:
EV71 (BrCr strain) infected C57BL/6 mice

(Yang
et al.,
2020)

lncRNA-
AK097647

up unknown lncRNA AK097647 facilitates EV71 replication
by decreasing IFN-l1

EV71
replication

in vitro: EV71 (BrCr strain) infected RD cells (Chu et al.,
2021)

lncRNA AK097647 induces the
phosphorylation of NF-kB

miR-526a down CYLD downregulated miR-526a promotes EV71
replication by targeting CYLD to promote the
RIG-I-dependent NF-kB pathway

EV71
replication

in vitro: EV71 (GDV-103 strain) infected RD cells (Xu et al.,
2014)

miR-9-5p down NF-kB downregulated miR-9-5p promotes EV71
replication by targeting NF-kB and improving
its expression

EV71
replication

in vitro: EV71 (Shenzhen strain AF30299.1) infected
HEK 293T, Vero, RD, HT‐29, HeLa, and THP‐1 cells; in
vivo: EV71 (Shenzhen strain AF30299.1) infected ICR
mice

(Li and
Zheng,
2018)

miR-146a up TRAF6,
IRAK1

miR-146a accelerates EV71 replication by
targeting TRAF6 and IRAK1

EV71
replication

in vivo: EV71 infected RD cells (Ho et al.,
2014; Fu
et al.,
2017)

TRAF6 activates the NF-kB pathway

miR-545 up TRAF6 miR-545 advances EV71 replication by
attenuating TRAF6 expression

EV71
replication

in vitro: EV71 infected HEK 293T and RD cells (Sun et al.,
2019)
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combined and cleaved by upregulated miR-141 resulting in
shutoff of the host protein synthesis and generation of viral
proteins (Ho et al., 2011).

In addition, it has been found that ncRNAs are associated
with dysregulated signaling pathways (Figure 3). The nuclear
factor-kappa B (NF-kB) pathway regulates several genes related
to cell proliferation, differentiation, innate immune response,
and inflammatory cytokine production (Perkins, 2012). NF-kB
pathway plays an essential role in EV71 pathogenicity, which is
represented by the viral 2C protein, which suppresses NF-kB
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
pathway activation to promote viral replication (Tung et al.,
2010; Du H. et al., 2015). Myeloid differentiation factor 88
(MyD88) and IL-1 receptor-associated kinase-1 (IRAK1)
modulate initiation of the Toll-like receptor-dependent NF-kB
pathway (Hayden et al., 2006). According to Feng N. et al.
(2017), it is demonstrated that miR-21 promotes EV71
replication by suppressing the NF-kB pathway mediated by
MyD88 and IRAK1. Moreover, other studies including Ho
et al. (2014) and Fu et al. (2017) confirmed that miR-146a
downregulates expression of TNF receptor-associated factor 6
TABLE 1 | Continued

ncRNAs Expression Target Description Process Disease model Reference

miR-628-
5p

Up TRAF3 miR-628-5p promotes EV71 replication by
inhibiting TRAF3 expression

EV71
replication

in vitro: EV71 infected RD cells (Li et al.,
2021)

miR-21 up MyD88,
IRAK1

miR-21 promotes EV71 replication by
targeting MyD88 and IRAK1

EV71
replication

in vitro: EV71 infected HCoEpiC and Human NCM460
cells

(Feng N.
et al.,
2017)MyD88 and IRAK1 activate the NF-kB

pathway
miR-124 up IL-6R,

STAT3
miR-124 promotes EV71 replication by
restraining the expression of IL-6R and STAT3

EV71
replication

in vitro: EV71 infected RD and HeLa cells (Chang
et al.,
2017)

miR-302 down KPNA2 downregulated miR-302 promotes EV71
replication by targeting KPNA2 to regulate the
JNK pathway

EV71
replication

in vitro: EV71 (Xiangyang strain JN230523.1) infected
HEK293T and RD cells

(Peng
et al.,
2018)

let-7c-5p up MAP4K4 MAP4K4 is a key inhibitory factor of the JNK
pathway

EV71
replication

in vitro: EV71 infected RD cells (Zhou
et al.,
2017)let-7c-5p remotes EV71 replication by

inhibiting MAP4K4 expression
miR-103,
miR-107

down SOCS3 downregulated miR-103 and miR-107
increase EV71 replication and suppress
production of IFN-1 by regulating SOCS3/
STAT3 pathway

EV71
replication

in vitro: EV71 (BrCr strain) infected Vero and RD cells (Huang
et al.,
2021)
April 2022 | Volume 12 | Art
FIGURE 3 | Role of ncRNAs in activation of NF-kB pathway with TLR signaling as an example. Toll-like receptors activate and recruit TIR-containing adaptor
molecules, MyD88 and TRIF, which prime downstream effectors respectively, under the stimulation of signals such as LPS. Both of upstream signal paths finally
transfer signals to IKKs, the protein kinase of IkB, and relieve inhibition of NF-kB. miR-628-5p, miR-21, miR-146a, miR-545 and miR-9-5p play an essential role in
this process.
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(TRAF6), which regulates activation of NF-kB pathway (Xia
et al., 2011), and hence facilitates viral biosynthesis. However,
downregulated miR-526a (Xu et al., 2014) and miR-9-5p (Li and
Zheng, 2018) induced by EV71 infection facilitate EV71
replication by activating the NF-kB pathway. These conflicting
results may be ascribed to multiple functions of NF-kB in
different cases. Under physiological conditions, NF-kB
mediates immune response to resist external invasion, whereas
aberrant regulation of NF-kB is implicated in cancer
development and EV71 pathogenicity (Baud and Karin, 2009;
Tung et al., 2010; Jin et al., 2018). In addition, Chu et al. reported
that lncRNA-AK097647 has been found significantly
upregulated during EV71 infection, which facilitates EV71
replication through blocking interferon-l1 secretion and
inducing the phosphorylation of NF-kB (Chu et al., 2021).

In conclusion, these findings indicate that ncRNAs regulate
viral replication by targeting key virus and host genes. In the
future, we can target these ncRNAs to inhibit EV71 replication
and reduce body injury.

4.1.2 ncRNAs and Host Apoptosis Induced by EV71
Host injury affected by viruses is influenced by apoptosis. Viruses
regulate the host apoptosis to complete their replication cycle,
whereas virus-infected host cells initiate apoptotic pathways to
resist viral infection and reduce virus damage on the body
(Benedict et al., 2002; Orzalli and Kagan, 2017). The
endogenous mitochondrial cytochrome C pathway and
exogenous death receptor Fas/FasL pathway are the key
pathways in controlling cell apoptosis. The cascade of caspase
protease family activation, which is the mutually terminal
process of the two pathways, contributes to decomposition of
potentially harmful cells (Sen, 1992; Riedl and Shi, 2004; Green
and Llambi, 2015). ncRNAs control EV71-related cell apoptosis
by regulating protein expression and signal transduction of the
caspase pathway (Table 2).

Cyclin D1 (CCND1) and cyclin E1 (CCNE1) are the main
regulators of G1 phase progression (Blomen and Boonstra,
2007). Notably, miR-16-5p (Zheng et al., 2017), and miR-let-
7b (Du X. et al., 2015) abrogate EV71 replication through
inhibition of CCND1 synthesis and initiation of caspase-
dependent apoptosis. Furthermore, endogenous miR-let-7b
released from injured neurons can induce neuronal cell death
through Toll-like receptor (TLR) 7 signaling (Lehmann et al.,
2012). Son of sevenless homolog 1 (SOS1) is a critical anti-
apoptotic protein associated with TNFa-induced apoptosis
(Kurada et al., 2009; Hao et al., 2018), Growth arrest and DNA
damage-inducible protein 45b (GADD45b) promotes apoptosis
by upregulating expression of the apoptosis-related factors,
caspase-3 and p53 (Ou et al., 2010; Yu et al., 2013). Elsewhere,
Chang et al. (Chang et al., 2015) reported that induction of miR-
146a and degradation of miR-370 together trigger apoptosis of
the EV71-infected cells by targeting SOS1 and GADD45b,
respectively. Moreover, the long non-coding RNA, lnc-IRAK3-
3 was found to capture miR-891b upregulate GADD45b
expression and eventually promote host apoptosis (Liao et al.,
2019). Moreover, Lu et al. filtered differentially expressed
ncRNAs associated with EV71 infection, including 6 lncRNAs,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
28 miRNAs, and 349 mRNAs. Their further studies reported that
MALAT1/miR-194-5p/DUSP1 axis, a lncRNA-miRNA-mRNA-
associated competing endogenous RNA regulatory network,
involved in host apoptosis induced by EV71 infection (Lu
et al., 2021).

Phosphatidylinositide 3-kinase (PI3K)/Akt is an important
signaling pathway that mediates cell survival, growth, and
metabolism (Osaki et al., 2004; Soulard and Hall, 2007;
Ediriweera et al., 2019), This pathway attenuates cell apoptosis
by inhibiting phosphorylation of caspase-9 and Bad protein
(members of the B-cell lymphoma-2 family) (She et al., 2005;
Hohenester et al., 2010). Phosphatase and tensin homologue
(PTEN) facilitates dephosphorylation of Akt and hence prevents
the events of downstream signaling that are regulated by Akt,
and thus it is a negative regulator of the PI3K/Akt pathway (Song
et al., 2012). The function of PTEN in inhibiting cell apoptosis
has been shown in multiple cell types, including kidney cancer
cells, mouse mammary epithelia and B lymphocytes (Dupont
et al., 2002; Lin et al., 2007; Cheng et al., 2009). Notably, miR-
494-3p expression is significantly upregulated following EV71
infection, repressing host apoptosis and promoting EV71
replication through degeneration of PTEN. Overexpression of
miR-494-3p mimics antagonizes this process by restoring miR-
494-3p levels of expression and activating the PI3K/Akt pathway
(Zhao et al., 2018). miR-545 separately targets PTEN and TRAF6
and activates PI3K/Akt and NF-kB pathways to modulate EV71
replication and host apoptosis (Sun et al., 2019). Epidermal
growth factor receptor (EGFR) is an activator of the PI3K/Akt
pathway (Guo et al., 2015), and is upregulated by EV71-induced
downregulation of miR-27a and eventually inhibits nerve cell
apoptosis (Zhang et al., 2014).

These findings indicate that hosts and viruses fight for
damage and anti-damage around viral replication and host
apoptosis, which are regulated by ncRNAs. These ncRNAs can
serve as therapeutic targets to inhibit viral life cycle and alleviate
host injury in EV71 treatment.
4.2 Indirect Injury Mediated by Immune
and Inflammatory Responses
Although inflammation is a protective response to minimize
pathogen spread and promote the recovery of damaged tissue, a
dysregulated inflammatory response results in various
inflammatory in jur i e s (Nathan and Ding , 2010) .
Immunological concomitant inflammatory injury is the major
damage mode of EV71 to hosts with severe nervous system
diseases such as neurogenic pulmonary edema (Lin et al., 2003;
Huang et al., 2011; Griffiths et al., 2012; Yu et al., 2019). A
complex immune defense mechanism is triggered when EV71
infects the body, which is accompanied by resistance mediated by
the innate immune response to exogenous pathogens and
activation of acquired immune response mediated by antigen-
presenting cells (Edsall, 1949). Subsequently, the activated
immune-related cells (innate immune cells and specific
immune cells) release cytokines and inflammatory factors,
which may cause immune-mediated inflammatory injury in
pathological conditions. Effects of ncRNAs on immune and
April 2022 | Volume 12 | Article 873304
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inflammatory responses as well as cytokine expression are
discussed in the subsequent section (Table 3).

4.2.1 Role of ncRNAs in Immune and Inflammatory
Responses During EV71 Infection
Innate immune system serves as the first line of defense against
exogenous pathogens and internal apoptosis, aberrant cells, and
other “nonself” components. Chemokines and cytokines are
released and inflammatory response is initiated after rapid
activation of innate immune cells through recognition of
foreign or harmful substances. Recognition of viruses is
primarily initiated by pattern recognition receptors (PRRs),
including Toll-like receptors (TLRs), retinoic acid inducible-
gene I (RIG-I)-like receptors, NOD-like receptors (NLRs), and
C-type lectin receptors (Takeuchi and Akira, 2010; Fitzgerald
and Kagan, 2020). Serving as a key target of viruses against body
immunity, MyD88 is an essential adaptor molecule for TLR
signaling cascades (Takeda and Akira, 2004). Research
conducted by Wang et al., illustrated that overexpression of
miR-30a upon EV71 infection inhibited innate immunity by
repressing type I interferon production, and the direct target of
miR-30a, MyD88, played a key role in this process (Wang Y.
et al., 2020). Analogously, miR-21 targets MyD88 and IRAK1 to
reduce the level of type I interferon through the TLR pathway
(Feng N. et al., 2017). In addition, Xu et al. reported that RIG-I
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
activity is mediated by miR-526a through inhibition of CYLD
expression, which negatively regulates generation of type I
interferon (Xu et al., 2014). Overexpression of miR-9-5p which
is induced by EV71 also inhibits RIG-I-dependent innate
immune response by targeting NF-kB (Li and Zheng, 2018).
These ncRNAs control occurrence of inflammatory response by
mediating innate immunity, while the recognition receptors of
innate immune cells, PRRs, are involved in transcriptional
regulation of inflammatory mediators (Takeuchi and Akira,
2010; Luo et al., 2019). For instance, overexpression of pro-
inflammatory cytokines (TNF-a, IL-6, and IL-1) induced by
EV71 is restored through modulation of RIG-associated miR-9-
5p (Li and Zheng, 2018). In innate immune response,
macrophages play an important role in the initiation,
maintenance and dissipation of inflammation, and Early
Growth Response 1 (EGR1) inhibits expression of pro-
inflammatory genes in macrophages (Trizzino et al., 2021). Hu
et al. evaluated the relationship of circRNA/miRNA/mRNA
associated with EV71 infection, and eventually screened
hsa_circ_0017115/hsa-miR-150-5p/EGR1 axis (Hu et al., 2021),
which might regulate inflammatory response through interaction
between EGR1 and macrophages.

Acquired immune cells are activated by stimulation of antigen
signals and play an essential role in resisting infections (Edsall,
1949). Chang et al. (2006) and Yang et al. (2001) found that
TABLE 2 | ncRNAs involved in host apoptosis.

ncRNAs Expression Target Description Process Disease model Reference

miR-16-
5p

up CCND1,
CCNE1

miR-16-5p promotes host apoptosis by targeting
CCNE1 and CCDN1

Apoptosis in vitro: EV71 (GZ-CII strain) infected RD, CCF-
STTG1 and SK-N-SH cells; in vivo: KM and
ICR mice

(Zheng
et al.,
2017)

miR-let-
7b

up CCND1 miR-let-7b promotes host apoptosis by inhibiting
CCND1 expression

Apoptosis in vitro: EV71 infected SH-SY5Y cells (Du X.
et al.,
2015)

miR-
146a

up SOS1 miR-146a promotes EV71-induced host apoptosis by
targeting 3’UTR of SOS1 gene

Apoptosis in vitro: EV71 infected RD cells (Chang
et al.,
2015)SOS1 accelerates cell apoptosis

miR-370 down GADD45b downregulated miR-370 advances EV71-induced
apoptosis by targeting GADD45b

Apoptosis in vitro: EV71 infected RD cells (Chang
et al.,
2015)

lnc-
IRAK3-3

up miR-891b lnc-IRAK3-3 restrain the expression of miR-891b to
promote host apoptosis

Apoptosis in vitro: EV71 infected RD cells (Liao et al.,
2019)

miR-
891b

down GADD45b miR-891b is inhibited by lnc-IRAK3-3 downregulated
miR-891b increases host apoptosis by raising GADD45b
generation

Apoptosis in vitro: EV71 infected RD cells (Liao et al.,
2019)

miR-874 down GZMB downregulated miR-874 facilitates host apoptosis by
reducing GZMB expression

Apoptosis in vitro: EV71 infected Jurkat cells (Zhang M.
et al.,
2020)

miR-27a down EGFR downregulated miR-27a inhibits host apoptosis by
enhancing EGFR expression and initiating PI3K/AKT
pathway

Apoptosis in vitro: EV71 infected RD and SK-N-SH cells (Zhang
et al.,
2014)

The activation of the PI3K/AKT pathway suppresses
host apoptosis

miR-
494-3p

up PTEN miR-494-3p inhibits host apoptosis by targeting PTEN
and initiating PI3K/Akt signaling pathway

Apoptosis in vitro: EV71 infected RD and HEK 293T cells (Zhao
et al.,
2018)PTEN is an inhibitor of the PI3K/AKT pathway

miR-545 up TRAF6,
PTEN

miR-545 inhibits host apoptosis by attenuating PTEN
expression

Apoptosis in vitro: EV71 infected RD and HEK 293T cells (Sun et al.,
2019)

lncRNA-
MALAT1

up miR-194-
5p

lncRNA- MALAT1 induces host apoptosis by MALAT1/
miR-194-5p/DUSP1 ceRNA regulatory axis

Apoptosis in vitro: EV71 (87-2008 Xi’an Shaanxi strain)
infected RD cells

(Lu et al.,
2021)
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cellular rather than humoral immunity is associated with host
acquired immune response against EV71 infection. Dicer serves
as an RNase III enzyme and modulates production of mature
miRNAs (Burger and Gullerova, 2015). Knockout of Dicer
during the early stage of lymphocyte development shows that
miRNAs play a key role in T-cell proliferation as indicated by a
90% reduction in T cells in circulation (Cobb et al., 2005).
Moreover, miRNAs are implicated in production of CD4+
Treg cells and Th2 cells late T cell differentiation (Muljo et al.,
2005). Previous studies conducted by Thai et al. (2007) and
Rodriguez et al. (2007) discovered that miR-155 knockout mice
were unable to mount an effective acquired immune response
and showed a selective tendency towards Th2 phenotype.
Subsequent studies established that miR-155 was conducive to
Treg development by targeting suppressor of cytokine signaling 1
(SOCS1) (Lu et al., 2009). Furthermore, Liu et al. (2008) showed
that miR-181a induces CD4+ and CD8+ double-positive (DP) T
cell development. Th1 cells mainly produce IFN-g, which has
been proven to be a pro-inflammatory factor (Farrar and
Schreiber, 1993). Moreover, Th2 and Treg cells mainly produce
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
IL-10, which serves as an anti-inflammatory factor and prevents
excessive tissue disruptions caused by inflammation (Ouyang
et al., 2011). These results indicate that ncRNAs contribute to
inflammation by releasing inflammatory factors through
regulation of T cell differentiation and initiating T
lymphocytes. However, studies have not explored the effects of
ncRNAs on T-cell development and differentiation in EV71-
induced disease models.

4.2.2 Role of ncRNAs in Expression of
EV71-Induced Cytokines
Abundant cytokines and chemokines are released from activated
immune and apoptotic cells induced by EV71, including IFNs,
IL-6, IL-13, IL-1b, and TNF-a among other inflammatory
mediators (Huang et al., 2011; Ouyang et al., 2011; Griffiths
et al., 2012; Luo et al., 2019; Yu et al., 2019). Pro-inflammatory
cytokines (such as IL-6, IL-12, IL-1b, TNF-a, and IFN-g) play a
significant role in EV71-mediated CNS inflammatory injury (Lin
et al., 2003). The key pro-inflammatory mediator, IL-6, is the
main pathogenic factor for pulmonary edema-associated
TABLE 3 | ncRNAs involved in immune and inflammatory responses.

ncRNAs Expression Target Description Process Disease model Reference

miR-21 up MyD88,
IRAK1

miR-21 reduces the production of IFN-1 by
targeting MyD88 and IRAK1

pro-
inflammatory
factor

in vitro: EV71 infected HCoEpiC and Human NCM460
cells

(Feng N.
et al.,
2017)

miR-30a up MyD88 miR-30a reduces the production of IFN-1
by targeting MyD88 and IRAK2

pro-
inflammatory
factor

in vitro: EV71 infected OE cells (Wang Y.
et al.,
2020)

miR-
526a

down CYLD miR-526a rises the level of IFN-1 through
the RIG-I-dependent pathway

anti-
inflammatory
factor

in vitro: EV71 (GDV-103 strain) infected RD cells (Xu et al.,
2014)

miR-9-
5p

down NFkB miR-9-5p inhibits excessive production of
IL-6, IL-1b, and TNF-a induced by EV71

anti-
inflammatory
factor

in vitro: EV71 (Shenzhen strain AF30299.1) infected HEK
293T, Vero, RD, HT‐29, HeLa, and THP‐1 cells; in vivo:
EV71 (Shenzhen strain AF30299.1) infected ICR mice

(Li and
Zheng,
2018)miR-9-5p increases production of IFN-1 by

targeting NFkB
miR-
146a

up IRAK1,
TRAF6

miR-146a reduces the expression of IFN-b
by targeting IRAK1 and TRAF6

pro-
inflammatory
factor

in vivo: EV71 infected RD cells (Ho et al.,
2014; Fu
et al.,
2017)

miR-
155-5p

up FOXO3,
IRF7

miR-155-5p inhibits IFN-1 response by
negatively regulating the FOXO3/IRF7 axis

pro-
inflammatory
factor

in vitro: EV71 (BrCr strain) infected RD cells; in vivo: EV71
(BrCr strain) infected C57BL/6 mice

(Yang
et al.,
2020)

miR-545 up PTEN,
TRAF6

miR-545 inhibits IFN-1 generation by
attenuating TRAF6 and PTEN expression

pro-
inflammatory
factor

in vitro: EV71 infected HEK 293T and RD cells (Sun et al.,
2019)

miR-
628-5p

up TRAF3 miR-628-5p inhibits IFN-b expression by
targeting TRAF3

pro-
inflammatory
factor

in vitro: EV71 infected RD cells (Li et al.,
2021)

miR-
103,
miR-107

down SOCS3,
STAT3

miR-103 and miR-107 advance the level of
IFN-1 by targeting SOCS3

anti-
inflammatory
factor

in vitro: EV71 (BrCr strain) infected Vero and RD cells (Huang
et al.,
2021)

miR-124 up IL-6R,
STAT3

miR-124 enhances the level of IL-6 by
targeting IL-6R

pro-
inflammatory
factor

in vitro: EV71 infected RD and HeLa cells (Chang
et al.,
2017)

miR-302 down KPNA2 KPNA2 overexpression promotes EV71-
induced production of the IL-6 and TNF-a

anti-
inflammatory
factor

in vitro: EV71 (Xiangyang strain JN230523.1) infected HEK
293T and RD cells

(Peng
et al.,
2018)miR-302 inhibits the expression of KPNA2

mRNA and protein
let-7c-
5p

up MAP4K4 MAP4K4 is a key inhibitory factor of the
JNK pathway let-7c-5p promotes IL-6 and
TNF-a by inhibiting MAP4K4 expression

pro-
inflammatory
factor

in vitro: EV71 infected RD cells (Zhou
et al.,
2017)
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encephalitis (Lin et al., 2002; Luo et al., 2019). Further, the
ncRNAs modulate expression of inflammatory cytokines during
EV71 infection. A separate study conducted by Chang et al.
(Chang et al., 2017) found that miR-124 decreased the level of IL-
6 by directly targeting IL-6R and hence promoted EV71
pathogenesis. Moreover, let-7c-5p, which also acts as a pro-
inflammatory factor, increases production of IL-6 and TNF-a
through the MAP4K4-mediated c-Jun N-terminal kinase (JNK)
pathway (Zhou et al., 2017). Analogously, miR-302 has exhibited
an anti-inflammatory function by inhibiting EV71-induced
generation of IL-6 and TNF-a to alleviate body damage
through the miR-302/karyopherin a2 (KPNA2) axis associated
with the JNK pathway (Peng et al., 2018). An investigation
conducted by Li et al. reported that excessive production of IL-
6, IL-1b, and TNF-a was transferred to physiological levels by
anti-inflammatory factor miR-9-5p through modulation of the
RIG-I-dependent NF-kB pathway (Li and Zheng, 2018). In
addition, several ncRNAs, such as miR-103, miR-107 (Huang
et al., 2021), miR-146a (Ho et al., 2014; Fu et al., 2017), miR-155-
5p (Yang et al., 2020), miR-545 (Sun et al., 2019), and miR-628-
5p (Li et al., 2021) negatively or positively affect inflammatory
response by modulating expression of interferons. Accordingly,
EV71 facilitates inflammatory injury by upregulating pro-
inflammatory factors such as miR-124 and downregulating
inflammatory factors such as miR-302. Many researchers have
reported the role of lncRNAs in secretion of enteroviruses-
mediated inflammatory factors. In Coxsackievirus B3 infection,
Cao et al. found that lncRNA HIF1A-AS1 activated NF-kB
pathway by targeting miR-138, and presented a role of pro-
apoptosis and pro-inflammation (Cao et al., 2020). However,
EV71-associated lnRNAs in immune and inflammatory
responses have not been clarified, more attention should be
paid to lncRNAs because of their important potential.
5 POTENTIAL CLINICAL APPLICATION OF
NCRNAS IN HFMD

5.1 ncRNAs and HFMD Diagnosis
Additional laboratory tests are generally deemed unnecessary for
mild cases of HFMD because it is a self-limiting disease (Cox and
Levent, 2018). However, classification of pathogenic enterovirus
and definitive therapy is crucial in the presence of severe or fatal
neurological complications associated with HFMD. For instance,
the early clinical symptoms of EV71 and CVA16 (the two main
pathogens of HFMD) are similar, but few patients with EV71
infection may progress into serious CNS complications;
nevertheless, most patients with CVA16 infection show good
prognosis (Liu et al., 2015). The golden criterion for diagnosis of
enterovirus infection is isolation of viruses from clinical samples,
which is time-consuming and laborious (Ooi et al., 2010).
Quantitative real-time PCR (qRT–PCR) is a fast method which
is developed to circumvent the limitations of conventional
diagnostic methods. However, the method is associated with a
high number of false-positive and false-negative results owing to
the high rate of gene mutation in enterovirus (Perera et al., 2004;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
Chen et al., 2006). Furthermore, the ncRNAs have highly stable
physical and chemical properties during circulation; and thus they
can rapidly and conveniently provide an alternative diagnosis
strategy for HFMD (Grasedieck et al., 2012; Zhang et al., 2019).

Accumulating studies indicate that ncRNAs can serves as
potential candidate biomarkers for the diagnosis of HFMD. A
miRNA-based predictionmodel of HFMDwas established byMin
et al. (Min et al., 2018), results of the study showed that circulating
salivary hsa-miR-221 was continuously and significantly
downregulated in all HFMD cohorts. The detection of
circulating salivary hsa-miR-221 could be used as a convenient
diagnostic method for HFMD. Li Y. et al. (2018) analyzed lncRNA
and mRNA expression profiles associated with EV71 infection,
and 23 lncRNAs and 372 mRNAs with remarkable differential
expression were found between infected and uninfected RD cells.
Subsequent studies discovered that these lncRNAwere involved in
EV71 infection-induced pathogenesis. Additionally, ncRNA can
be used to differentiate HFMD caused by EV71 and CVA16,
providing a basis for clinical treatment. Cui et al. (2011) reported
that miR-545, miR-324-3p, and miR-143 can be used to effectively
distinguish EV71 and CVA16 infections in patients with HFMD.
Moreover, an investigation conducted by Liu et al. (2020)
indicated that patients with EV71-induced HFMD presented
significantly higher levels of serum miR-494 as compared with
the level in healthy people or those with CVA16-induced HFMD,
showing its potential diagnostic value. In addition, ncRNAs play
an important role in prediction of disease severity. Meng et al.
analyzed the dynamic differential expression profile of lncRNAs
and filtered out 10 lncRNAs that were differentially expressed in
patients with HFMD presenting with different severities (Meng
et al., 2017). Similarly, the comparison of miRNA expression
profiles between patients with mild and severe HFMD shows
that miR-671-5p, miR-16-5p, and miR-150-3p are potential
diagnostic markers for differentiating severity of HFMD (Jia
et al., 2014). Furthermore, the level of miR-876-5p is 9.5-fold
higher in severe cases than level in cases with mild EV71
symptoms, and the clinical symptoms were alleviated after
knockdown of miR-876-5p (Wang et al., 2016). In addition,
there are ncRNAs serving as biomarkers for HFMD caused by
other non-EV71 and non-CVA16 enteroviruses. Coxsackievirus
B5 (CVB5) is a major pathogen of HFMD, which has an
increasing incidence in recent years. Teng et al. analyzed the
lncRNA profile of CVB5 infected RD and SH−SY5Y cells through
RNA sequencing, and revealed the potential of lncRNA-IL12A as a
biomarker (Teng et al., 2022). These studies indicate that ncRNAs
have significant potential for application in clinical diagnosis
of HFMD.

5.2 ncRNAs and Treatment
of EV71-Induced HFMD
Several studies have explored the potential of ncRNAs as
therapeutic targets for treatment of the disease. Studies on
miRNAs have achieved positive results and miRNAs are applied
in clinical practice (Lee et al., 2020). Novel antiviral drugs have been
developed by mainly modulating the function of miRNAs to
enhance their roles through mimics and downregulate their roles
April 2022 | Volume 12 | Article 873304
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through inhibition using antisense oligonucleotides (ASOs)
(Beermann et al., 2016). As mentioned above, ncRNAs modulate
progression of EV71-induced HFMD by regulating the viral life
cycle and host immune and inflammatory responses; therefore,
these processes can serve as potential therapeutic targets. The
miRNAs such as miR-296-5p, miR-197, miR-16-5p, and miR-27a
inhibit EV71 proliferation and reduce host injury by modulating
viral replication and host apoptosis, respectively. The miRNA
analogues can be designed for treatment of EV71-induced
HFMD. In addition, inhibitors of proinflammatory factors such as
miR-21, miR-146a, and miR-124 can modulate immune response
and hence relieve inflammatory injury caused by EV71. Clinical
trials of miRNAs based on therapy in cancers are underway
implying that miRNA-based therapy for HFMD may be realized
in the future (Janssen et al., 2013; van Zandwijk et al., 2017).

However, some limitations were noted in the current study,
several of which should be solved before miRNAs can be
applied in clinical practice. First, some miRNAs, such as the
miR-143/145 cluster (Dimitrova et al.) mentioned above,
exhibit opposite effects under different conditions, and thus
unified standards of the disease model should be determined.
Second, it has been noted that one miRNA can target several
genes, whereas one gene can be targeted by several miRNAs.
Studies should explore strategies to ensure that miRNAs act on
desired targets and to minimize side effects. Third, miRNAs
function in multiple organs of the whole body, and the blood-
brain barrier blocks entry of most pathogens and drugs.
Methods for facilitating miRNA-targeted transport to the
brain and across the blood-brain barrier should be explored.
Finally, stability of mRNAs should be improved and rapid
degeneration of miRNAs should also be minimized.
Therefore, further studies should be conducted to explore the
role and mechanism of miRNAs in HFMD induced by EV71.
6 CONCLUSIONS AND PERSPECTIVE

As the main pathogen of HFMD with severe neurological
complications, EV71 significantly does harm to patient health
and results in a huge economic burden. Therefore, explore
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
neuropathogenic mechanism of EV71 is necessary for reducing
severe cases and for development of effective therapeutic ways.
We illustrate recent advances concerning the role of ncRNAs in
EV71-induced CNS infection and CNS injury by virus-host
interaction. As the essential molecules of gene regulation,
ncRNAs present broad clinical application prospects.
Especially in diagnosis of HFMD, the different expression of
ncRNAs have potential in prediction of disease severity and
differentiation of HFMD. In conclusion, ncRNAs are closely
related to EV71-induced infection progression and virus-host
interaction, as well as represent a significant potential direction
for therapeutic and diagnostic research. Among them, miRNAs
were widely reported in regulation of EV71 life cycle and host
immune response. However, although lncRNAs have been
shown to participate in viral replication, host apoptosis, and
immune and inflammatory responses in enteroviruses infection
(Shi et al., 2016; Liu et al., 2019; Zhang Y. et al., 2020), current
research on the role of lncRNAs in EV71 infection is limited. It
has been shown that lncRNAs may be equally or even more
important compared with miRNAs in terms of clinical benefits
owing to their tissue specificity. Therefore, there is still need for
further studies to explore role of lncRNAs in pathogenesis,
diagnosis and treatment of EV71 is necessary.
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