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Abstract 

Background:  Immune cell infiltration in the tumor microenvironment (TME) affects tumor initiation, patients’ prog-
nosis and immunotherapy strategies. However, their roles and interactions with genomics and molecular processes in 
hepatocellular carcinoma (HCC) still have not been systematically evaluated.

Methods:  We performed unsupervised clustering of total 1000 HCC samples including discovery and validation 
group from available public datasets. Immune heterogeneity of each subtype was explored by multi-dimension 
analysis. And a support vector machine (SVM) model based on multi-omics signatures was trained and tested. Finally, 
we performed immunohistochemistry to verify the immune role of signatures.

Results:  We defined three immune subtypes in HCC, with diverse clinical, molecular, and genomic characteristics. 
Cluster1 had worse prognosis, better anti-tumor characteristics and highest immune scores, but also accompanied by 
immunosuppression and T cell dysfunction. Meanwhile, a better anti-PD1/CTLA4 immunotherapeutic response was 
predicted in cluster1. Cluster2 was enriched in TAM-M2 and stromal cells, indicating immunosuppression. Cluster3, 
with better prognosis, had lowest CD8 T cell but highest immune resting cells. Further, based on genomic signatures, 
we developed an SVM classifier to identify the patient’s immunological status, which was divided into Type A and 
Type B, in which Type A had poorer prognosis, higher T cell dysfunction despite higher T cell infiltration, and had bet-
ter immunotherapeutic response. At the same time, MMP9 may be a potential predictor of the immune characteris-
tics and immunotherapeutic response in HCC.

Conclusions:  Our work demonstrated 3 immune clusters with different features. More importantly, multi-omics 
signatures, such as MMP9 was identified based on three clusters to help us recognize patients with different progno-
sis and responses to immunotherapy in HCC. This study could further reveal the immune status of HCC and provide 
potential predictors for immune checkpoint treatment response.
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Introduction
Hepatocellular carcinoma (HCC), the main histology 
type (70–90%) of liver cancer, ranks sixth in cancer inci-
dence and fourth in death. In recent years, the incidence 
of HCC has increased in most regions of the world and 
decreased in some countries in Asia [1, 2]. Currently, 
the main treatment for HCC patients in early stages is 
surgery, combination with transarterial chemoemboli-
zation, ablation and liver transplantation [3]. For oth-
ers in advanced stages, the effective approaches involve 
molecular targeting agents (tyrosine kinase inhibitors: 
sorafenib, lenvatinib and regorafenib) [4], and huaier 
granule, a traditional Chinese medicine [5]. Although 
these methods have improved the prognosis of HCC 
patients, the overall survival of HCC remains challenging 
for the heterogeneity of HCC [1, 6].

Immunotherapy has been a growing focus because of 
its effectiveness in many tumors [7, 8], Particularly, tar-
geted therapies for immune checkpoints such as anti-
CTLA4 and anti-PD1 have benefited a part of patients 
with solid tumors [9–12], although not all patients show 
the response to immunotherapy [13]. Even though clini-
cal trials are under way, the future of immunotherapy in 
HCC is uncertain. In chronic hepatitis caused by viral 
infection (HBV, HCV), alcoholism, metabolic diseases 
(non-fatty liver disease), and drug damage (aflatoxin, 
aristolochic acid), changes in the liver microenvironment 
and imbalance in the proportion of immune cells eventu-
ally lead to immune escape and the promotion of HCC 
[14, 15]. The role of different components (including 
tumor-associated macrophages (TAM), myeloid-derived 
suppressor cells (MDSC), regulatory T cells (Tregs), 
CD8+ cytotoxic T lymphocytes, fibroblasts) of tumor 
microenvironment (TME) in hepatocellular carcinoma 
has also been discussed in many studies [16]. Determin-
ing TME of patients with cancers before treatment can 
demonstrate the immune status to predict the prognosis 
of patients and the response to chemotherapy and immu-
notherapy drugs [17, 18].

To understand the immune microenvironment of 
HCC, some researches have done to investigate the 
immune subtypes of HCC [19]. However, there are lack 
of multi-omics (mRNA, miRNA, long non-coding RNA 
(LncRNA), somatic mutation, DNA methylation, copy 
number variations and reverse phase protein array 
(RPPA)) studying focusing on immune microenviron-
ment characteristics and immunotherapy strategies of 
HCC.

In this study, we used two computational algorithms 
to estimate the abundance of 26 TME cells of 1000 HCC 
samples and performed three clustering methods to con-
firm 3 clusters, the optimal number of clusters. Then 
we recognized the differences of immunes cell abun-
dance, immune gene expression, genomic characteristics, 
molecular and biological function, and clinical outcomes 
among the three subtypes of HCC. Finally, we developed 
a support vector machine (SVM) classifier using multi-
omics signatures to identify patients with significant 
prognostic differences and different responses to immu-
notherapy in HCC, and preliminarily demonstrated that 
the expression of MMP9 could predict the immune char-
acteristics of HCC.

Materials and methods
Patients collection
We systematically collected nine HCC datasets with the 
number of patients in each set greater than 50 in the 
three datasets: NCBI GEO, the Cancer Genome Atlas-
Liver hepatocellular carcinoma (TCGA-LIHC), the Inter-
national Cancer Genome Consortium (ICGC). We used 
four datasets to compare the differences of immune cell 
abundance between carcinoma and adjacent tissues. 
TCGA-LIHC dataset (N = 374) was used for discovery 
cohort to identify the immune subtype of HCC. A meta-
validation cohort (N = 626) containing five independent 
RNA-seq and microarray datasets was used to validate 
the results. For the details of data, please see Additional 
file 1: Materials and methods. Another validation cohort 
of 134 patients, who were diagnosed as HCC by 2 inde-
pendent pathologists and underwent primary liver can-
cer resection in Wuhan Tongji hospital from 2014 to 
2015, with survival data by telephone follow-up, were 
included in this study. This research on patients’ tissues 
was authorized by the by the Ethic Committee of Wuhan 
Tongji Hospital and received written informed consent 
from patients.

Identify immune subtypes in discovery and validation 
groups
We calculated the relative TME cell abundance of by 
MCPcounter [20] and CIBERSORT [21]. Three packages 
(mclust [22], NbClust [23], and ConsensusClusterPlus 
[24]) were performed to determine the optimal number 
of clusters both in LIHC and validation cohorts. For the 
details of processing data, please see Additional file  1: 
Materials and methods.

Keywords:  Hepatocellular carcinoma, Immune subtypes, Multi-omics signatures, Immunotherapy, MMP9
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Statistics
Wilcoxon rank-sum test was used to compare two groups 
of continuously distributed variables. Kruskal–Wallis 
test was used to compare three or more groups of con-
tinuously distributed variables, and Steel–Dwass test was 
utilized for multiple comparisons of post hoc tests. The 
survival in different groups was evaluated by Log-Rank 
test. The categorical variables in contingency tables were 
compared by Chi-squared test or Fisher’s exact test. The 
FDR correction was performed in multiple tests.

The correlation coefficients of two variables were cal-
culated by Pearson or Spearman analysis, and |R| ≥ 0.15 
was considered to be correlated. All analyses were per-
formed in R software (version: 3.6.1). ns: no significance, 
*P < 0.05, **P < 0.01, ***P < 0.001.

Other methods
For the details of other methods and materials, please see 
the Additional file 1: Materials and methods.

Results
The subtypes of immune microenvironment in HCC
The schematic diagram of the whole analysis process is 
shown in Additional file  3: Fig. S1. Firstly, to find bio-
markers and understand the dynamic evolution of 
immune microenvironment in tumorigenesis, we evalu-
ated the composition of TME cells of both HCC tissues 
and adjacent tissues in four datasets. The abundance of 
endothelial cells, myeloid dendritic cells, CD8 T cells, 
macrophages M0, Tregs and activated dendritic cells 
were almost consistently higher in tumor tissues, while 
neutrophils and cytotoxic lymphocytes were lower than 
adjacent tissues (Fig.  1a). Since the adjacent tissues are 
hardly normal hepatocyte tissues, but rather comprise 
chronic hepatitis or cirrhosis tissues, the above-men-
tioned changes in immune cell composition might play 
an important role in the transformation of inflamma-
tory status to cancer, such as angiogenesis in tumor [25], 
immunosuppression of myeloid dendritic cells and mac-
rophages [26, 27].

Then we focused on the immune microenvironment 
of HCC. After expectation–maximization algorithm and 
unsupervised K-means clustering were applied to TCGA 
immune dataset, both methods supported that 3 immune 
subtypes were identified in 374 HCC samples (Addi-
tional file 3: Fig. S2). Similarly, the validation meta-cohort 
dataset with 626 HCC patients was also determined 3 
immune clusters (Additional file 3: Fig. S3). The cluster of 
each HCC patient in the discovery and validation cohorts 
could be seen in Additional file 2: Table S2.

Also, we found that under K-means clustering, the 
same K number in the TCGA and meta-cohort group 

showed the similar error value change, which revealed 
the consistency of the two cohorts (Additional file 3: Figs. 
S2c, S3c). To validate the concordance of the two data-
sets, we assessed reproducibility of discovery cohort’s 
subtypes in the independent validation group. The TME 
cells in the same cluster of the both groups show highly 
linear correlation (cluster1 is 0.786 (P = 1.99 × 10−6), 
cluster2 is 0.836 (P = 1.03 × 10−7), cluster3 is 0.886 
(P = 1.706 × 10−9), Pearson correlation) (Additional file 3: 
Fig. S4a).

Immune microenvironment and biological processes 
among three HCC subtypes
These three immune subtypes were associated with dis-
tinct patterns of immune environment cell abundance. 
Cluster1 was rich in high infiltration activated adap-
tive immune cells (CD8 T cells, cytotoxic lymphocytes, 
T follicular helper cells), tumor-associated macrophage 
(TAM)-M0, plasma cells, and Tregs, while some innate 
and inactivated immune cells (resting mast cells, resting 
memory CD4 T cells, monocytes and neutrophils) and 
stromal cells (endothelial cells and fibroblasts) tended 
to decrease. Cluster2 was chartered by high infiltration 
of stromal cells (endothelial cells and fibroblasts) and 
TAM-M2, low abundance of cytotoxic lymphocytes and 
TAM-M0, implying immunosuppressive status. And the 
abundance of other immune cells in cluster 2 is moder-
ate infiltration between cluster1 and cluster3. Cluster3 
showed increased infiltration characteristics on inacti-
vated immune cells (resting memory CD4 T cells, rest-
ing mast cells, resting NK cells and resting dendritic 
cells), stromal cells (endothelial cells and fibroblasts) and 
monocytes, which were depleted in cluster1. And CD8 T 
cells, T follicular helper cells, and Tregs were reduced in 
cluster3 (Fig. 1b, Additional file 3: Fig. S4b).

Considering the heterogeneity of HCC, other immune 
biological processes would have different impacts on 
the TME subtypes. We calculated the abundance level 
of T effector, Th1, Th2, Th17 cells, and found they were 
highly infiltrated in cluster1 except the Th17 cells (Fig. 1c, 
Additional file 3: Fig. S5a), which was consistent with the 
above results and previous reports that Th17 inhibited 
the anti-tumor effects of Th1 and Th2 cells [16, 28]. On 
the other hand, we tested immune related gene modules. 
Cluster1 had a beneficial anti-immune response (higher 
IFN-γ, TNF-α and DNA damage repair response, leu-
kocyte fraction and lower reactive stroma and angio-
genesis), despite high levels of gene modules in hepatic 
fibrosis, proliferation and differentiation (Fig. 1c, d, Addi-
tional file  3: Fig. S5a). And cluster3 exhibited opposite 
levels. Further, there were no significant difference in the 
DNA reads of HBV and HCV among the three clusters 
(Additional file 3: Fig. S5b, c).
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These results implied that cluster1 might be in a 
state with the highest anti-tumor characteristics (leu-
kocyte fraction, cytotoxic CD8 T, Th1, Th2 cells and 
IFN-γ response) but high immunosuppressive features 
(Tregs, TAM-M0 and Th17 cells, proliferation and 

differentiation), cluster2 tended to be an immunosup-
pressive status, and cluster3 might be an immune resting 
state.

Given the immunotherapeutic role of CD8 T cells in 
tumors, cluster1 was classified as “CD8 T cell-hot” and 
immune-counterbalanced type tumor (with coexisting 
immune-activation and immune-suppression), cluster3 

b

c d

a

Fig. 1  The subtypes of immune microenvironment in HCC. a Comparison of TME cells between HCC samples and adjacent tissues in multiple 
cohorts. Red: The abundance of TME cell is high in HCC tissues; Blue: The abundance of TME cell is low in HCC tissues; Green: No significance 
between HCC and non-tumor tissues. The size of the bubble means − log10 (FDR). Wilcoxon signed rank test was used to compare the significances 
of TME cell fractions between HCC samples and adjacent tissues. b Unsupervised clustering of TME cells in TCGA-LIHC with 374 patients. The 
representative anti-tumor (c) and immunosuppressive (d) characteristics among the three clusters. ns: no significance, *P < 0.05, **P < 0.01, 
***P < 0.001
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intended to be “CD8 T cell-cold”, and cluster2 was 
between other two clusters and immunosuppressive.

Clinical characteristics of TME cells among subtypes in HCC
In consideration of the prognosis of TME in tumor, each 
immune cell was evaluated the effect on prognosis. Four 
immune cell infiltration (resting memory CD4 T cells, 
cytotoxic lymphocytes, CD8 T cells, resting mast cells) 
indicated better overall survival, while Tregs, TAM-M0 
and resting dendritic cells were significantly correlated 
with the poor survival (Log rank test, P < 0.05, Fig.  2a). 
And we also analyzed the prognosis effect of each 
immune cell abundance among the 3 immune subtypes. 
As a whole, each immune cell had similar prognosis 
effect among 3 subtypes, though their significances var-
ied (Fig. 2b). An immune risk score system, a lasso score 
model based on TME cells, was established to estimate 
the immune risk of each patient. We found that patients 
with high immune risk scores would have worse prog-
nosis, and cluster1 and cluster2 had higher immune risk 
scores (Fig.  2c, d). Then we focused on the prognosis 
among the three subtypes. Although cluster1 had high-
est CD8 T cells infiltration, this cluster had worse overall 
survival, while cluster3 with lowest CD8 T cells infiltra-
tion had better prognosis (Fig.  2e), which seemed para-
doxical with previous studies that that “CD8 T cell-hot” 
type tumor was beneficial to survival [29–32].

Next, we tested the relation between clinicopathologic 
features and the 3 immune subtypes. Patients in cluster1 
had higher α-fetoprotein (AFP), and there existed more 
patients in advanced stages (T2/T3, Stage II/Stage III) 
and less in early stage (T1, Stage I) in cluster1 (Table 1; 
Chi-squared test or Fisher’s exact test, P < 0.05). In addi-
tion, we analyzed the influence of three clinical charac-
teristics (AFP, T stage and pathological stage) on the 
prognosis. T stage and pathological stage showed strong 
effects on the prognosis (Additional file  3: Fig. S6). The 
higher the stage, the worse the survival. This result par-
tially explained why cluster1 had worse prognosis.

The immunogenicity and genomic alterations 
among immune types of HCC
To demonstrate the genomic alterations among three 
clusters and why cluster1 with the highest abundance of 

CD8 T cells had poor survival, we analyzed the genomic 
changes of the three clusters. We could not find signifi-
cant changes in overall tumor mutation burden (TMB), 
neoantigen load, indel, immunogenic mutation and 
immunogenic indel (Additional file 3: Fig. S7a–e), which 
were potential biomarkers for immunotherapy respon-
siveness [33–35], indicting other genomic mechanisms 
affecting all three subtypes. Then, we compared some 
indicators based on copy number variations (CNVs) 
and somatic mutations, such as CNV burden, intratu-
moral heterogeneity (ITH), homologous recombina-
tion deficiency (HRD), loss of heterozygosity (LOH) and 
aneuploidy. In general, cluster1 had highest CNV bur-
den, HRD scores, aneuploidy scores and LOH segments 
(P < 0.05, Fig.  3a–d, Additional file  3: Fig. S7f ). In addi-
tion, ITH scores in cluster1 seemed higher, but there 
was no distinct difference in ITH scores among three 
clusters (P = 0.112, Additional file 3: Fig. S7g). These data 
suggested high CNV alterations in cluster1 might cause 
silenced immune surveillance [36].

Among the genes with significant mutations in HCC 
(top 15), we found that only TP53 was significant in three 
clusters (Fig. 3e, Additional file 3: Fig. S7h). Notably, the 
role of TP53 in TME had been widely researched [37, 38], 
which further explained the poor prognosis of cluster1. 
Further, we focused on CNVs of patients with different 
immune status (Additional file  3: Fig. S7i). Concretely, 
amplifications in 83 regions including 2033 genes and 
deletions in 45 regions including 1194 genes were sig-
nificant among the three cluster (FDR < 0.1, Additional 
file  2: Tables S3, S4). And most significant regions or 
genes related amplification or deletion were enriched in 
cluster1 immune subtype, such as TP53 deletion (Fig. 3f, 
g), which implied immune escape in cluster1 might be 
driven by genomic alterations. Overall, these somatic 
mutations and CNVs in HCC provided new research 
ideas for the formation of TME in HCC.

Regulation of immunomodulators and prediction 
to immune checkpoint blockade therapy
Immunomodulators are crucial in the formation of TME, 
immune surveillance, immune escape, and immunother-
apy [39, 40], Therefore, we detected 76 immunomodula-
tors (14 antigen presentation molecules, 25 inhibitors and 

Fig. 2  Prognostic evaluation of TME cells in HCC. a Network graph of TME cells’ interaction in HCC. The bubble color represents different prognostic 
effects: Red: high-risk TME cells, Blue: protective immune cells; The size of bubble indicates P-value, and bold edges means significant survival of 
TME cells (univariate COX regression, P < 0.05); The lines of network represent the correlations among TME cells (Spearman correlation). The thicker 
the line, the stronger the correlation. The red represents a positive correlation, and the light grey represents a negative correlation. b Prognostic 
analysis of each TME cell for each subtype. c Kaplan–Meier overall survival curves based on TME cell LASSO model. High risk and low risk group was 
divided by the optimal cutoff value by survminer package. d Distribution of TME immune risk scores based on TME cell LASSO model and e Kaplan–
Meier OS curves among three subtypes. ns: no significance, *P < 0.05, **P < 0.01, ***P < 0.001

(See figure on next page.)
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37 stimulators; Additional file 2: Table S5) gene expression 
under CNVs, epigenetics and miRNA controls.

33 immunomodulators gene expression varied among 
three subtypes (Additional file  3: Figs. S8–S10). Most 
genes were highly expressed in cluster1 (Fig. 4a). Promoter 
methylation of these immunomodulators were negatively 
correlated with their corresponding mRNA expression, 
such as TGFB1, PD1, IL10, CTLA4 (Additional file 3: Fig. 
S11a), which implied the epigenetic cis-regulation of DNA 
methylation. In another way, we also investigated the way 
in which miRNA regulated immunomodulators. Negative 
correlations between expression of miRNAs and immu-
nomodulators revealed the complexity of regulating immu-
nomodulators (Additional file 2: Table S6, Additional file 3: 
Fig. S11b), which suggested the important roles of miRNA 
in TME formation.

CNVs of immunomodulators were detected, the ampli-
fication frequency of 4 immunomodulators (CD27, IFNG, 
IL10, IL2RA) and the deletion frequency of 4 immunomod-
ulators (CD276, CXCL10, CXCL9, HLA-A) were signifi-
cantly different among the three subtypes (Chi-squared 
test or Fisher’s exact test, P < 0.05). And we noticed that 
these 8 genes were amplified or deleted most in cluster1 
and least in cluster3 (Fig. 4b, Additional file 3: Fig. S11c), 
indicting the TME modulation differences of the three 
immune subtypes.

Further, the higher level of most immune-related stimu-
lators implied the activated immune state of cluster1. Then, 
we evaluated the immune state among three clusters with 
immune score and stromal score, calculated by ESTIMATE 
algorithm [41] to estimate infiltrating overall immune cells 
and stromal cells in tumor tissues. Although P value of 
immune and stromal score in three subtypes was not sig-
nificant in TCGA-LIHC (P = 0.068 and P = 0.083), cluster1 
tended to have higher immune scores and lower stromal 
scores (Fig. 4c, Additional file 3: Fig. S12a), which was fur-
ther verified in the meta-validation cohort with significant 
differences (P < 0.05, Additional file 3: Fig. S12b, c), possi-
bly due to the larger number of patients in the validation 
cohort (N = 626). These results showed activated immune 
state of cluster1. However, we also observed that most 
immune inhibitors (immune checkpoints) were highest in 
cluster1, which demonstrated that cluster1 might associate 
with T cell dysfunction and immunosuppression, despite 
high CD8+ cytotoxic T lymphocytes infiltration. To ver-
ify this observation, we evaluated the T cell dysfunction 
in the TCGA group and validation cohort by scoring the 

Table 1  Associations between  clinical characteristics 
of HCC patients from TCGA and three immune subtypes

Italics font of P-value represented P < 0.05

Cluster1
(n = 104)

Cluster2
(n = 135)

Cluster3
(n = 132)

P-value

Gender

 Female 33 (31.7%) 42 (31.1%) 46 (34.8%) 0.788

 Male 71 (68.3%) 93 (68.9%) 86 (65.2%)

Race

 Asian 52 (50.0%) 52 (38.5%) 54 (40.9%) 0.116

 Black 7 (6.7%) 7 (5.2%) 3 (2.3%)

 White 42 (40.4%) 74 (54.8%) 68 (51.5%)

Alcohol consumption 35 (33.7%) 48 (35.6%) 47 (35.6%) 0.299

HBV 63 (60.6%) 84 (62.2%) 82 (62.1%) 0.172

HCV 21 (20.2%) 22 (16.3%) 18 (13.6%) 0.808

Drug treatment 13 (12.5%) 21 (15.3%) 30 (22.5%) 0.109

AFP

 AFP < 200 47 (45.2%) 70 (51.9%) 84 (63.6%) 0.018

 AFP > 200 31 (29.8%) 19 (14.1%) 27 (20.5%)

Vascular invasion

 None 46 (44.2%) 74 (54.8%) 86 (65.2%) 0.057

 Yes 38 (36.5%) 33 (24.4%) 38 (28.8%)

Tumor grade

 G1 9 (8.7%) 30 (22.2%) 16 (12.1%) 0.053

 G2 50 (48.1%) 57 (42.2%) 70 (53.0%)

 G3 40 (38.5%) 43 (31.9%) 39 (29.5%)

 G4 5 (4.8%) 3 (2.2%) 4 (3.0%)

T stage

 T1 38 (36.5%) 62 (45.9%) 81 (61.4%) 0.010

 T2 34 (32.7%) 36 (26.7%) 24 (18.2%)

 T3 28 (26.9%) 31 (23.0%) 21 (15.9%)

 T4 4 (3.8%) 5 (3.7%) 4 (3.0%)

M stage

 M0 75 (72.1%) 92 (68.1%) 99 (75.0%) 0.215

 M1 1 (1.0%) 0 (0%) 3 (2.3%)

 MX 28 (26.9%) 43 (31.9%) 30 (22.7%)

N stage

 N0 69 (66.3%) 84 (62.2%) 99 (75.0%) 0.103

 N1 2 (1.9%) 2 (1.5%) 0 (0%)

 NX 32 (30.8%) 49 (36.3%) 33 (25.0%)

Pathological stage

 Stage I 36 (34.6%) 57 (42.2%) 78 (59.1%) 0.002

 Stage II 32 (30.8%) 32 (23.7%) 22 (16.7%)

 Stage III 32 (30.8%) 31 (23.0%) 22 (16.7%)

 Stage IV 1 (1.0%) 1 (0.7%) 3 (2.3%)

(See figure on next page.)
Fig. 3  Somatic and immunogenic mutation alterations among three subtypes. Comparison of CNV burden fraction (a), Aneuploidy score (b), 
LOH segments (c), HRD score (d) among three clusters. e TP53 mutation frequency among three clusters (Chi-squared test, P < 0.05). Heatmap of 
significant amplification genes (f) and deletion genes (g) in each subtype (Chi-squared test or Fisher’s exact test, FDR < 0.1). ns: no significance, 
*P < 0.05, **P < 0.01, ***P < 0.001
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defined gene set (TGFB1, CD274, CTLA4, IL10, PDCD1, 
TNFRSF9, CD276, HAVCR2, LAG3, TIGIT, ICOS), which 
had been proven to exhaust T cells [42, 43]. As we referred, 
cluster1 had the highest scores in both the test and valida-
tion cohorts (Fig. 4d, Additional file 3: Fig. S12d, P < 0.001). 
These results indicated that patients in cluster1 had more 
T cell exhaustion, and the T cell function of these patients 
needs to be reinvigorated by immune checkpoint therapy 
[44].

To further validate this result, we applied the Tumor 
Immune Dysfunction and Exclusion (TIDE) [45] tool 

to predict the response of patients to immune check-
point blockade (CTLA4 and PD1 therapy). We found 
the overall response in HCC was dissatisfactory, with 
42 responders in 374 TCGA patients and 11 respond-
ers in 221 validated patients. We evaluated treatment 
response in each cluster, and most response events 
occurred in cluster1 (TCGA-LIHC response rate: 
22/104 (21.1%) vs. 13/137 (9.5%) vs. 7/133 (5.3%), 
Chi-squared test, P < 0.001; LICA-FR and GSE64041 
cohorts: 11/72 (15.3%) vs. 0/65 (0%) vs. 0/84 (0%), Fish-
er’s exact test, P < 0.001; Fig.  4e, Additional file  3: Fig. 
S12e). These results suggested immunotherapy might 
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be suitable for cluster1 with high CD8 T cell infiltration 
despite T cell dysfunction.

Support vector machine (SVM) model based 
on multi‑omics signatures for recognizing of immune 
subtypes
According to the above analysis results, cluster1 was 
quite different with cluster2 and cluster3 in immune-
related molecular and genomic characteristics, while 
cluster2 and cluster3 showed similar features despite the 
significantly different overall survival. And GSEA analysis 
showed DNA damage repair and inflammation pathways 
were enriched in cluster1, while cluster3 had significant 
enrichments in some metabolic pathways (Additional 
file 2: Table S7, Additional file 3: Fig. S13a, b).

Next, we obtained differentially expressed proteins, 
mRNA, miRNA, LncRNA and CpG methylation sites. 
Interestingly, the differentially expressed genes between 
cluster1 and cluster3 were the most, while those between 
cluster2 and cluster3 were the least. The same results 
were found in miRNA, LncRNA and CpG methylation 
sites (Additional file  3: Fig. S13c–f). These results are 
consistent with the conclusions above that there was 
great heterogeneity between cluster1 and cluster2 or 
between cluster1 and cluster3. To identify the signatures 
of high immune risk, immune escape and better response 
to immunotherapies (anti-PD1/CTLA4) in HCC, we 
selected cluster1 and cluster3 as the phenotypes for com-
parison, because of the variances in clinical, molecular 
and genomic characteristics of cluster1 and cluster3 as 
described above. Boruta method [46] based on random 
forest algorithm was used for feature selection by dimen-
sion reduction to obtain differential mRNAs, miRNAs, 
DNA methylation sites and proteins, which were multi-
omics signatures based on immunophenotype of HCC. 
Finally, 112 mRNAs, 27 miRNAs, 44 LncRNAs, 96 CpG 
methylation sites and 9 proteins were confirmed in 
determining immune subtypes (Fig. 5a, Additional file 2: 
Tables S8–S12, Additional file 3: Fig. S14a–d).

Then we established an SVM classifier with fivefold 
cross-validation based on cluster1 and cluster3. Cluster2 
was set as an internal validation set since it had similar 
survival to cluster 1 but similar molecular and genomic 
characteristics to cluster 3, and GSE14520, GSE76427, 
LIRI-JP, microRNA dataset GSE31384 and meta-valida-
tion cohort were set external validation sets. In the train-
ing group, most patients cluster1 were trained to a group 
named “Type A” and patients in cluster3 were trained to 
“Type B” group (Fig. 5a, b). Further, we used this classi-
fier to test the internal group cluster2 and found it could 
be divided into two groups and there existed survival dif-
ferences between the two groups (Additional file  3: Fig. 
S15a), suggesting internal immune diversities in cluster2. 

Therefore, the TCGA cohort could be classified into 
two groups: Type A had worse survival, higher immune 
scores, lower stroma scores, higher CD8 T cells, but 
higher potential of immune escape, more T cell dysfunc-
tion and better response to immunotherapy than Type B 
(predicted immunotherapy response rate: 37/159 (23.3%) 
vs. 5/215 (2.3%), Chi-squared test, P < 0.001, Fig. 5c–h).

To validate the robustness of the SVM classifier, we 
test the model in other independent datasets (GSE14520, 
GSE76427, LIRI-JP and GSE31384 were used to vali-
date the survival and meta-validation cohort were used 
to validate the immune characteristics). Except that 
patients in GSE76427 cohort, Type A had worse survival 
in the three external validating datasets and whole HCC 
datasets (Fig. 5i, Additional file 2: Table S13, Additional 
file 3: Fig. S15b–f). And also, Type A had higher immune 
scores, lower stroma scores, higher CD8 T cells, more T 
cell dysfunction and better response to immunotherapy 
(predicted immunotherapy response rate: 10/92 (10.9%) 
vs. 1/129 (0.1%), Fisher’s exact test, P < 0.001, Additional 
file  3: Fig. S15g–k). Finally, we used the SVM model to 
evaluate the prognosis of TCGA Pan-cancer datasets 
(32 types of cancer including 9783 tumors). Overall, the 
prognosis of each tumor type was diverse although Type 
A still had worse survival in pan-cancer datasets (Addi-
tional file 3: Fig. S16). In brain lower grade glioma (LGG), 
adrenocortical carcinoma (ACC), kidney renal clear 
cell carcinoma (KIRC) and pancreatic adenocarcinoma 
(PAAD), Type A had worse clinical outcome, while Type 
A had better prognosis in lung squamous cell carcinoma 
(LUSC), breast invasive carcinoma (BRCA) and rectum 
adenocarcinoma (READ) (Additional file  3: Fig. S16), 
implying that these tumors with similar outcome in Type 
A had analogous molecular characteristics, which was 
consistent with the results that LUSC and KIRC showed 
two diverse immune escape tactics and KIRC had more T 
cell dysfunction despite high T cell infiltration [45].

MMP9 was a potential indicator of HCC immune 
characteristics
In order to further verify the validity of our multi-omics 
signature, we sorted all multi-omics signatures according 
to the P value and identified the biomarker with the low-
est P value, MMP9 mRNA (Additional file 3: Fig. S17a). 
MMP9, a member of matrix metalloproteinase family 
and mainly secreted by TAM, has been to break down the 
extracellular matrix, inhibit interferon receptor 1, facili-
tate HBV DNA replication, and promote the occurrence 
and metastasis of HCC [47–49]. And also, inhibition of 
MMP9 could modulate immunosuppression in tumor 
[50, 51].

Next, we performed immunohistochemical experi-
ments to validate the relationship between MMP9 and 
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immune characteristics in HCC. We used single-gene 
MMP9 to construct an SVM model based on TCGA-
LIHC dataset and verified the SVM classifier in the Tongji 
cohort under immunohistochemical staining and scor-
ing. In our cohort including totally 134 HCC patients, 
31.3% (42/134) of the patients who were classified as Type 

A had higher levels of MMP9 expression, but also higher 
expressions of CD8A, PD1 and CTLA4. 68.7% (92/134) 
of the patients were Type B, which had lower expression 
of MMP9, CD8A, PD1, and CTLA4 than type A (P < 0.05, 
Fig.  6a, Additional file  3: Fig. S17b–e). In addition, we 
also found worse overall survival in Type A (HR = 1.77, 
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P = 0.035, Fig.  6b). Obviously, these consistent results 
could be found in the TCGA-LIHC dataset, with high 
levels of MMP9, CD8A, PD1, and CTLA4, and poor sur-
vival in Type A (P < 0.05, HR = 1.54, Additional file 3: Fig. 
S18a–e). In addition, Type A with high MMP9 expres-
sion might be more suitable for immunotherapy (Addi-
tional file 3: Fig. S18f ). These results showed Type A and 
Type B could be recognized by MMP9 at both proteins 
and mRNA levels, and Type A might have more CD8 T 
cell infiltration, accompanied by functional exhaustion 
caused by high expression of immune checkpoints.

Discussion
Immunotherapy has turned into one of the most promis-
ing treatments in cancer [7, 8, 13]. However, the future of 
immune checkpoint therapy in liver cancer still remains 
unclear, with the failure of phase III clinical trial [52] 
(anti-PD-1) despite a small proportion (15%) of response 
to PD-1 inhibitor in phase II clinical trial [53]. One of the 
keys of immunotherapy to HCC is deeply understanding 
the immunological characteristics of liver cancer. In this 
study, we recognized the TME in HCC including differ-
ences of immune microenvironment between carcinoma 
and adjacent tissues, clinical, molecular and genomic 
characteristics in HCC immune subtypes, and signa-
tures helping identify patients with high T cell infiltration 
but T cell dysfunction and higher response to immune 

checkpoint therapy from TCGA-LIHC and other inde-
pendent cohorts.

Our work showed that most TME cells varied between 
tumor and adjacent non-tumor tissues. However, few 
researches focused on the infiltration alterations of TME 
cells, and we inferred that changes of immune cell com-
position might initiate the occurrence of tumors during 
the process of immune surveillance, especially in HBV 
and HCV related HCC. And also, the roles of TME cells 
in the diagnosis and prediction of liver cancer are rarely 
reported. This result could provide more new sights 
to seek the mechanisms of HCC initiation. And this 
research was dedicated to exploring the heterogeneity 
of immune subtypes of HCC based on large public data-
sets. There existed 3 clusters in HCC by unsupervised 
learning, with distinct immune cell abundance and dif-
ferent from the discovery of Yutaka et al. [54] that HCC 
patients could be purely classified as high, middle and 
low immune cell infiltration. The main reasons for the 
deviations in analysis may be the differences in immune 
cell estimation and classification methods, which were 
realized based on unsupervised clustering of machine 
learning in this research. Despite the distribution diver-
sities of TME cells among the three clusters, we found 
cluster1 had more mature adaptive immune cells such 
as CD8 T cells and cytotoxic lymphocytes, which used 
to be considered an indicator of improved survival for 
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cancer patients [30, 55]. Also, this conclusion was also 
validated in our study that high infiltration of CD8 T cells 
and cytotoxic lymphocytes predicted better outcome 
both in the whole sample and in each subtype of HCC by 
univariate Cox regression (Fig. 2a, b). However, cluster1 
had poor survival, which may be caused by high expres-
sion of some classic or newly discovered immune check-
points (PD1, CTLA4 and TIM-3), more infiltration of 
immunosuppressive cells (TAMs, Tregs and Th17 cells), 
and genomic alterations (TP53 mutation and deletion). 
Meanwhile, there are some anti-tumor characteristics 
in cluster1, such as high lymphocyte infiltration of CD8 
T cell and lymphocyte, high IFN-γ response, and high 
expression of immune co-stimulators, which indicated 
that there may be more immunotherapeutic responses 
[40, 56]. Furthermore, we also found that cluster1 might 
be more suitable for immunotherapy, which is consistent 
with the high expression of some immunocheckpoints 
and makes up for the lack of differences in the expression 
of classic checkpoints such as PD-L1. However, this con-
clusion will need to be confirmed by clinical trials in the 
future.

What’s more, it is worth reminding that our results 
did not contradict previous findings that high infiltra-
tion of CD8 T cells indicated beneficial prognosis, but 
extended and enriched this conclusion. We demonstrated 
that there is a group of HCC patients with higher CD8 
T cell infiltration, but T cell dysfunction and increased 
immune escape, resulting in a poor prognosis, which 
was consistent with discoveries in other tumors [43, 57]. 
These results, to some extent, explain the unsatisfactory 
situation of immunotherapeutic response in HCC [52, 53, 
58], which are in concordance with our results. It further 
indicates that some patients with increased T cell infiltra-
tion are more likely to receive immunotherapy, but show 
not very high responsiveness for the increased immune 
escape and T cell dysfunction.

To recognize and immune subtype and predict the 
response of immunotherapy in HCC, multi-omics 
signatures were obtained. Using SVM classifier, we 
regrouped HCC patients into two groups and Type A 
showed similar characteristics (clinical outcomes, CD8 
T cell, T cell dysfunction and response to immunother-
apy) with cluster1 in both TCGA cohort and external 
validation cohorts. Due to the limited responsiveness 
of targeting immune checkpoint therapy, only a small 
part of patients show response. The construction of 
multi-omics SVM model in our study could maximally 
predict the benefit of immunotherapy in patients with 
HCC. Additionally, the SVM model could also predict 
prognosis of several other cancers, suggesting that 
these tumors might have similar or opposite immune 

mechanisms to HCC, which was consistent with previ-
ous studies that READ, LUSC and BRCA belonged to 
C1 and C2, while LIHC, PAAD, ACC, LGG belonged 
to C3,C4 and C5 type [59–61]. These results imply 
the multi-omics signatures could provide new clues to 
investigate the TME of HCC or other tumors in future.

Furthermore, we preliminarily verified the immune 
role of MMP9, a secreted protein produced by TAMs 
[47], in HCC through immunohistochemical experi-
ments. High expression of MMP9 indicated higher 
levels of PD1, CTLA4 and CD8A and poor survival in 
partial HCC patients, which was in line with our above 
analysis that some HCC patients with high CD8 T cell 
infiltration but dysfunction were immunosuppressed. 
MMP9 can affect the immune state through a variety 
of ways, such as releasing VEGF to promote angio-
genesis [62] and binding CD44 to release TGFβ [63]. 
Furthermore, MMP9 can be used as a biomarker of 
chemotherapy response, with high expression of MMP9 
meaning better responsiveness to chemotherapy [64]. 
Perhaps, MMP9 could be a good indicator of T cell dys-
function and immunotherapy responsiveness. In addi-
tion to anti-PD1/CTLA4 immune checkpoint therapy, 
our study suggests that the combination of anti-check-
point with anti-MMP9 [51] or anti-TAMs [65] may be 
more beneficial to patients with T cell dysfunction in 
HCC. However, due to the lack of large sequenced HCC 
cohort and prospective clinical trials that have received 
immunotherapy, the effect of MMP9 expression on the 
efficacy of immunotherapy in HCC patients remains 
concerned.

The advantage of our study is that we used a large 
number of publicly available independent data sets 
(from TCGA, ICGC and GEO) and our own cohort, 
applying different research methods (genomics, tran-
scriptomics, IHC and so on) to detect problems and 
verify them, which makes the conclusions consistent 
and reproducible. However, our study is still limited 
in that the data sources we used were all retrospec-
tive. In addition, most of our conclusions are based on 
bioinformatics analysis. Although multiple datasets 
from different sources show feasibility, it still needs 
further experimental verification and application. And 
the intriguing perspectives and conjectures on our 
multi-omics SVM model and the immunological role 
of MMP9 in this study need to be further verified in 
future prospective clinical trials and molecular biology 
researches.

Overall, in this research, comprehensive analysis and 
assessment of TME patterns based on multi-omics in 
HCC can provide some new strategies about response 
to immunotherapy, and the combination of targeting 
drugs.
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Conclusions
Our work demonstrated 3 immune clusters with differ-
ent features. More importantly, multi-omics signatures, 
such as MMP9 was identified based on three clusters to 
help us recognize patients with different prognosis and 
responses to immunotherapy in HCC. This study could 
further reveal the immune status of HCC and provide 
potential predictors for immune checkpoint treatment 
response.
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