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Abstract 

The rational design of effective oral vaccines based on synthetic peptides is a very ambitious undertaking, and 
involves the solution of huge problems related to protection of the antigens against degradation in the alimentary 
tract, efficient uptake of the antigens by the relevant cells, and efficient induction of long lasting systemic immunity. 
local immunity, or both. This paper summarises the steps, necessary to develop such synthetic oral vaccines. These 
steps involve: (1) the definition of B-cell epitopes; (2) the definition of T-cell epitopes: (3) definition of the carrier 
or backbone molecule; (4) definition of an immunomodulating element; (5) definition of an adjuvant element; and 
(6) definition of a targeting element. Good progress is being made with respect to the first three steps, the other 
steps still provide major challenges, notably the definition of targeting elements. Nevertheless, the first synthetic 
oral vaccines may become reality in the near future, depending on the speed by which new technology in the area of 
molecular recognition will develop, i.e. the appropriate chemistry, organic chemistry. molecular modelling, 
resolution of the molecular interaction of key molecules in microbiology and immunology. 
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lasting immunity against a spectrum of diseases 

after a single application. Development of such a 
vaccine is extremely ambitious and not yet feas- 

ible because necessary data and technology is 
lacking. However. less ambitious undertakings, 
for instance the development of a synthetic oral 
vaccine against a single disease which is stable 

and does not require a “cold chain” would 

already revolutionize vaccination programs. es- 
pecially in the developing countries. Such vac- 
cines would negate the need for trained medical 

personnel and the need to use syringes, which in 

itself, poses a considerable health risk. 
If oral vaccination is used as an alternative for 

parenteral vaccination then the target would be 
to establish, in addition to local immunity, sys- 
tematic immunity [l]. In this paper I limit myself 

to the possibilities to develop synthetic oral 
vaccines. Oral vaccines based on live carrier 

systems, for instance Sulmonella typhimurium [2] 
may be equally effective and are probably closer 

to realisation. however they are beyond the 
scope of this contribution. 

Development of effective synthetic oral vac- 
cines has to take into account three aspects, 

which are special to this route of application: (1) 

the antigen-should be sufficiently protected from 

the harsh environment to which it is exposed in 

the alimentary tract. i.e.. extreme differences in 

PH and the abundance of proteolytic enzymes: 

(2) due to the large surface of the epithelium of 

the alimentary tract the antigen should be pre- 

cisely targeted towards the entry point of the gut 
associated immune system in order to prevent 
the need for unrealistic high vaccine doses; and 
(3) due to the inherent low responsiveness of the 

gut associated immune system the antigen should 
be properly adjuvanted. When effective systemic 
immunity is needed in addition to local immuni- 

ty, appropriate immunomodulation may be re- 
quired as well. 

To address these aspects properly two basic 
strategies can be used (Fig. 1). Both strategies 
are based on delivering molecules carrying a 
combination of basic functions towards the 
appropriate site in the gut, i.e. the M cells of the 
Peyers patches. 

One strategy is based on the delivery of the 
“naked” molecule which is harnessed against the 

[‘lg. I, Two strategies to develop oral vaccines. Strategy A is 

hased on the USC of all necessary elements combined into one 

molecule. Strategy B is based on delivering all necessary 

clcments in an encapsulated form. In contrast to strategy A. a 

targeting device may not be necessary. because the encapsu- 

latcd particles. depending on their physical-chemical prop- 

et-tics. will he taken up spontaneously by the target cells. 

environment, the other strategy is based on 
delivery of the molecule or molecules shielded 

from the environment by encapsulation. Both 
strategies are different and one has to decide at 
an early stage which one should be followed. 

The functions or elements that are combined 

to form an effective oral vaccine are the follow- 
ing (they are the same in both strategies, how- 
ever differently combined): 

( 1) definition of the appropriate B-cell epitopes 
(3) definition of the appropriate T-cell epitopes 
(3) definition of the carrier or backbone mole- 

cule 
(4) definition of an immunomodulating element 
(5) definition of an adjuvant element 
(6) definition of a targeting element 

Definition of each element is highly dependent 
on the strategy that is being followed. If the 
naked molecule strategy is followed, the whole 
synthetic molecule: including the epitopes, must 
be resistant to the environment; this can be 
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effected using non-natural building blocks, for 
instance o-amino acids. The consequence is that 
the epitopes should be mapped using the same 
building blocks. 

Furthermore, the relative high number of 
elements that need to be combined more or less 
requires to keep the physical size-the molecular 
weight-of each element as small as possible; for 
instance, as small peptides or peptide-like mole- 
cules. 

2. Definition of the elements of a synthetic oral 
vaccine 

The minimal elements necessary to induce a 
proper immune response are B- and T-cell epi- 
topes. B-cell epitopes are necessary to induce 
antibodies, T-cell epitopes to switch on the 
immune response. 

2.1. Dejinition of B-cell epitopes 

B-cell epitopes are defined as those parts of 
the molecule which bind antibodies with the 
appropriate properties, for instance virus neutral- 
izing activity. In the case of proteins they are 
between 12 and 20 amino acids long. Since 
multiple, partially overlapping, B-cell epitopes 
may be located on an antigenic site [3], it is 
better to use the term “antigenic site” if the 
object is to define an antigen which will induce 
the appropriate antibodies. However, for sim- 
plicity sake I shall use the term B-cell epitopes 
instead. 

From a practical point of view B cell epitopes 
can 

(I) 

(2) 

(3) 

be divided into-three groups (Fig. 2 i4,5]): 

Real linear epitopes. These epitopes are 
easily mapped using peptides, but probably 
do not occur very often. 
Discontinuous epitopes with relative large 
linear parts. The linear parts of these epi- 
topes are easily mapped using peptides. 
Epitopes of this group probably form a large 
minority of all existing epitopes. 
Discontinuous scattered epitopes. These epi- 
topes probably form the majority of all 
existing epitopes. They are difficult to map 

anllbody epirope 

Fig. 2. Schematic representation of the three theoretically 

possible epitope configurations (epitope: antigenic determi- 

nant of a monoclonal antibody). The antibody is represented 

as a rough outline of the Fab fragment. The hatched area 

indicates the part of the antibody in contact with the amino 

acids of the epitope. The amino acids of the epitope are 

represented by small circles. If the amino acids of the epitope 

form a single protein strand the epitope is called linear; if the 

amino acids are located on two or more protein strands which 

are spatially next to each other due to the conformation of 

the antigen molecule, the epitope is called discontinuous. The 

most extreme case has been called discontinuous scattered. 

(From Ref. [4].) 

with peptide based methods. One has to rely 
on methods like ‘site directed mutagenesis’, 
or, in the case of replicating agents, on 
‘escape mutations’. Often the data will only 
produce a useful definition of the epitope if 
the spatial structure of the protein carrying 
the epitope is known. 

The precise definition (i.e., length, core, role of 
individual amino acids) of epitopes of the first 
group is relatively straightforward, using PEP- 
SCAN methods (Fig. 3 [4]) or other peptide- 
based methods. Also the reconstruction of such 
epitopes as synthetic peptides is relatively easy 
and has been shown to induce readily the appro- 
priate antibodies or even protection [5-71. The 
precise definition of parts of discontinuous epi- 
topes with relative large linear parts is equally 
easy. 

The precise definition of epitopes of the third 
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Fig. 3. Schematic representation of the PEPX‘AN method. On top IS shown the primal-y amino acid scqucncc of gpl20 01 HIV-I. 

the major glycoprotein of HIV-I. Each circle represents an amino acid. For the amino acids the single character code is used (i.e. 

A, alanine; C. cystcine: D. aspartic acid: E. glutamic acid: F. phcnylalanine: C;. glycine: H. histidinc: 1. isolcucinc: K, lysinc: L, 

leucine: M. methioninc: N. asparagine: P, prolix: 0. glutaminc: R. argininc: S. serine: ‘I‘, threonine: V. saline: W. tryptophan: Y. 

tyrosine). The amino acid sequence of gpl20 of HIV-I is then divldcd Into overlapping peptides. as indicated. Peptide no. I is the 

peptide which starts with amino acid no. I and ends with amino acid nn. 4, peptide no. 2 is the peptide starting at amino acid no. 2 

to amino acid no. IO. etc. The peptides arc: synthesized on polqcthylene rods, as shown at the bottom of this picture: the peptidcs 

arc indicated as -. (The rods arc in such a configuration that they lit into microtiter wells; this greatly simplifies handling of the 

rods and data manipulation.) All rods with peptides arc then contacted with the same antibody (indicated as -<). Some pcptidcs 

will hind this antibody. After the rods are taken out of the antibody solution and have been washed, the antibody still prcscnt on 

the rods (bound to the pcptidc) can then lx tcstcd with anti-antibody conjugate for the presence of antibody. This directly 

produces the squcnce of the peptide which hound the antIhod!. After this process the antibody can be removed from the 

peptides and the pcptides can he reused. One technician can easily test 2000 different peptides daily for reactivity with a given 

antihody. Over 2000 different pcptides are being synthesized on a routmc basks at our laboratory each month. (From Ret. 141.) 

group requires different methods and such epi- 
topes are difficult or even impossible to recon- 
struct as linear epitopes. Their resolution needs 

different approaches, for instance the use of 
(random) peptide libraries which would allow the 
definition of peptide mimics of complex con- 

formational epitopes [8-141. Results are promis- 
ing and the first useful examples may materialize 
soon. Nevertheless, a significant number of pep- 
tides has been defined which readily induce anti- 
viral, anti-bacterial, anti-parasite, anti-hormone 

or anti-allergen antibodies. 
The viruses include: foot-and-mouth disease 

virus [4,15-211, parvoviruses [22,23], herpes vi- 
ruses [24,25], retro viruses [26-431; corona vi- 
ruses [44-501, and others [51-551. The bacteria 
include: mycobacteria [56]. The parasites include: 

malaria, trypanosoma and chlamydia [57-631. the 
hormones include: hCG and inhibin [64,65]. The 

allergens include: house dust mite major allergen 
der p II [66]; cat allergen Fe1 d I [67]. Others 
include alpha-bungarotoxins [68], fat globules 
[69], tumour necrosis factor-alpha [70]. 

Before starting to define B-cell epitopes to be 
used in an oral vaccine it is necessary, as dis- 
cussed above. to decide which strategy (Fig. 1) 
will be followed. If the “encapsulated” strategy is 
selected, natural amino acids can be used; 
furthermore it may not be necessary to have all 
elements combined into one large molecule. If 
the naked molecule strategy is chosen than the 
epitopes have to be mapped using the same 
building blocks as used in the synthesis; because 
the use of non-natural amino acids may be 
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mandatory to counteract the action of proteolytic 
enzymes, the same amino acids have to be used 
for the epitope mapping (using PEPSCAN or 
other methods based on synthetic peptides this is 
hardly a problem). 

2.2. Definition of T-cell epitopes 

T-cell epitopes are necessary to switch on the 
immune response. Without T-cell epitopes poor 
responses, if any, are obtained. Thus T-cell 
epitopes must be present in a vaccine. 

Preferentially T-cell epitopes should be from 
the same agent for which the vaccine is designed. 
Sometimes however T-cell epitopes can be bor- 
rowed from other proteins [6]. Pathogens nor- 
mally carry numerous T-cell epitopes; it depends 
however on the genetic make-up of the vacci- 
nated individual which epitope will be used 
[71,72]. For the development of peptide vaccines 
this forms an unsolved problem. Solutions are 
sought using “promiscuous” T-cell epitopes, i.e. 
epitopes that can be used by the immune system 
of individuals with different genetic make-up 

[731. 
T-cell epitopes are linear peptides approxi- 

mately between 9 and 15 amino acids long. Since 
large sets of free linear peptides can be made 
[74] systematic definition of T-cell epitopes, at 
the level of single amino acids, is equally simple 
and straightforward as that for linear B-cell 
epitopes [5]. Just as in case of B-cell epitopes one 
has to decide at the very beginning which 
strategy (Fig. 1) will be followed, because this 
determines how the T-cell epitopes must be 
mapped. 

2.3. Definition of the carrier or backbone 
molecule 

Normally protein molecules, like bovine serum 
albumin, ovalbumin or keyhole limpet 
haemocyanin, are used as carrier molecules for 
peptides. They provide two functions: firstly they 
make the peptides immunogenic due to the 
larger molecular weights of the peptide carrier 
molecule combination (peptides shorter than 18 
amino acids are often non-immunogenic); sec- 
ondly the carrier molecules provide the necessary 

T-cell epitopes to switch on the immune re- 
sponse. 

However, for oral vaccines these carrier mole- 
cules have disadvantages. For instance they are 
vulnerable to proteolytic attack; furthermore if 
they are being encapsulated their relative bulk 
may be disadvantageous. In addition protein 
carrier molecules suffer from the general ‘dis- 
advantage that the linkage and exposure of the 
peptides coupled to the carrier molecule are ill 
defined. 

These disadvantages could be overcome by 
coupling the B- and T-cell epitopes to a synthetic 
backbone molecule [75]. Thus multiple peptides 
forming B- and T-cell epitopes combined into a 
single molecule, have been shown to form good 
immunogens [76]. This approach allows the use 
of both natural or small synthetic building blocks 
and is equally well applicable in both strategies. 

2.4. Dejinition of the immunomodulrzting 
element 

The object is to switch on the appropriate 
immune response (local, systemic or both). Al- 
though it is not yet completely clear how this can 
be done, it appears that by influencing the 
cytokines that regulate the development of the 
immune response, the outcome may be influ- 
enced [77-791. Thus the incorporation of certain 
cytokines, cytokine inducers or cytokine an- 
tagonists into the vaccine, may help to influence 
the outcome of the vaccination. The use of 
cytokines, especially in oral vaccine, is probably 
not very practical due to proteolytic attack by 
environmental enzymes and due to the cost. 
However it has recently be shown that peptides 
derived from cytokines may still be bioactive 
[80,81]; unpublished observations), which would 
make them excellently suited to be incorporated 
into a vaccine. Theoretically such peptides could 
be made proteolysis resistant by using non-natu- 
ral amino acids; the cost of such peptides would 
compare very favourable with the cost of whole 
cytokines. 

2.5. Dejinition of the adjuvant element 

Adjuvants are probably highly necessary for 
oral vaccines because normally the local immune 



system is known to produce transient responses 
of short duration or even the induction of a 
suppressor response [82]. Unfortunately, the 
working mechanism of adjuvants are poorly 
defined. Adjuvants probably work among other 
things, by inducing cytokine cascades. It is there- 
fore possible that adjuvant and immuno- 
modulating activities overlap. It remains to be 
seen whether they can be separated. 

Relative small molecules have been described 
that exert adjuvant activity [83]. One of them is a 
peptide derived from IL-l [84], well suited to be 
incorporated into a synthetic vaccine. Such syn- 
thetic molecules may be used directly mixed into 
the vaccine or hooked up to the backbone 
molecule. 

2.6. Definition of a targeting eletient 

In order to counteract the huge dilution and 
continuous movement of the vaccine within the 
alimentary tract, the encapsulated vaccine or 
naked vaccine molecule needs to be targeted to 
receptors of the appropriate cells in the gut. 
Unfortunately, such receptors are still ill defined. 
Nevertheless if such receptor binding peptides 
can be defined they can be exposed on the outer 
layer of the encapsulate vaccine or hooked on to 
the naked vaccine molecule. Candidate peptides 
could perhaps be designed as peptides which 
mimic the binding site of cholera toxin for its cell 
receptor, ganglioside GM1 [85]. Pending the 
development of such peptides one could use 
cholera toxin B subunit (CTB) as a carrier 
molecule [86] in case of the naked vaccine 
strategy. In case of the encapsulated strategy a 
targeting molecule may not be necessary because 
antigen containing microspheres, of the appro- 
priate size and appropriate physical-chemical 
make-up, are taken up spontaneously by the 
appropriate cells in the gut, after oral ingestion 

P71. 

3. Conclusion 

The rational design of effective oral vaccines 
based on synthetic peptides is a very ambitious 
undertaking, and involves the solution of huge 

problems related to protection of the antigens 
against degradation in the alimentary tract, effi- 
cient uptake of the antigens by the relevant cells, 
and efficient induction of long-lasting systemic 
immunity, local immunity, or both. 

Rational approaches need additional data with 
respect to the details of the antigen uptake by M 
cells, the mechanism by which the internalized 
antigens induce a response, and the mode of 
action of adjuvants. 

On the other hand, microorganisms exist 
which efficiently induce immune responses via 
the oral route. Furthermore, systematic methods 
are available to define the necessary epitopes, 
cell attachment sites and immunostimulating 
molecules in the form of simple synthetic natural 
or non-natural peptides. Also the chemistry is 
being developed to combine these components 
into biological active degradation-resistant vac- 
cines. Thus, oral vaccines may soon be reality, 
while the ultimate oral vaccine, which is cheap 

. 
and stable and induces longlasting immunity 
against a series of diseases after a single applica- 
tion, may one day be feasible as well. The speed 
of this development will depend on the speed by 
which new technology in the area of bio molecu- 
lar recognition will develop, i.e. the appropriate 
peptide chemistry, organic chemistry, molecular 
modelling, resolution of the molecular interac- 
tion of key molecules in microbiology and immu- 
nology. 
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