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Acute myeloid leukemia (AML) is a highly heterogeneous hematologic neoplasm with poor
survival outcomes. However, the routine clinical features are not sufficient to accurately
predict the prognosis of AML. The expression of hypoxia-related genes was associated with
survival outcomes of a variety of hematologic and lymphoid neoplasms. We established an
18-gene signature-based hypoxia-related prognosis model (HPM) and a complex model
that consisted of the HPM and clinical risk factors usingmachine learningmethods. Both two
models were able to effectively predict the survival of AML patients, whichmight contribute to
improving risk classification. Differentially expressed genes analysis, Gene Ontology (GO)
categories, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis were performed to reveal the underlying functions and pathways implicated in AML
development. To explore hypoxia-related changes in the bone marrow immune
microenvironment, we used CIBERSORT to calculate and compare the proportion of 22
immune cells between the two groups with high and low hypoxia-risk scores. Enrichment
analysis and immune cell composition analysis indicated that the biological processes and
molecular functions of drug metabolism, angiogenesis, and immune cell infiltration of bone
marrow play a role in the occurrence and development of AML, which might help us to
evaluate several hypoxia-related metabolic and immune targets for AML therapy.
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INTRODUCTION

Acute myeloid leukemia (AML) is a clonal malignant aggressive hematological tumor, resulting in the
accumulation of acquired chromosomal, genetic, and epigenetic abnormalities in highly heterogeneous
myeloid precursors. It is the most common acute leukemia and accounts for approximately 80% of
cases in adults. In the United States, the age-adjusted incidence of AML is 4.3 per 100,000 population
annually (Shallis et al., 2019), which has a high mortality rate and variable prognosis. In recent years,
the incidence rate of AML is getting increasingly serious and poses an enormous threat to human
health. In the research of AML, there remain several challenges, advances in treatment for AML have
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remained quite limited, and the current prognostic evaluation
system cannot completely distinguish the prognosis of AML
patients. One of the hotspots and critical points for medical
research is to identify specific prognostic factors that may help
predict the outcomes.

Hypoxia is a common condition in the solid-tumor
microenvironment (Kim et al., 2007), playing an important role in
various biological processes, such as metabolic alteration,
angiogenesis, and metastasis (Cosse and Michiels, 2008; Godet
et al., 2019). However, the role of the pathophysiological
implications of hypoxia in AML remains controversial, and the
mechanism is still not clear. In bone marrow (BM), the low
oxygen partial pressure (pO2) is physiological (Harrison et al.,
2002). And the hypoxic microenvironmental niches within
leukemic BM compared with those of the normal BM were
expanded, accompanied by leukemia stem cell (LSC) proliferation
(Keith and Simon, 2007; Benito et al., 2011; Benito et al., 2013; Zhou
et al., 2016). The hypoxic BM microenvironment has also been
shown to contribute to acute leukemic progression, resistance to
chemotherapy, and minimal residual disease (MRD) (Frolova et al.,
2012;Matsunaga et al., 2012; Tabe andKonopleva, 2015). In response
to hypoxia, cells change their hypoxia-related gene expression, which
was proved to be correlated with prognosis for various solid tumors.

However, the European LeukemiaNet (ELN) 2017 risk
classification (ELN 2017) (Dohner et al., 2017), an important
AML risk stratification standard that has been widely used to
estimate prognosis of AML, is based on cytogenetic and molecular
features. Mutations in the FMS-like tyrosine kinase 3 gene (FLT3-
ITD) are quite common in AML and have been associated with
poorer overall survival (OS) (Kayser et al., 2009). Nucleophosmin
(NPM1) gene mutations have been associated with improved
outcomes in patients with AML (Becker et al., 2010). Mutations
of the CCAAT/enhancer binding protein alpha (CEBPA) gene
have been associated with a favorable outcome in patients with
AML, but mainly in those patients with cytogenetically normal
AML (Renneville et al., 2009; Rockova et al., 2011). Rare studies to
date have developed a hypoxia-related prognosis model (HPM) of
AML based on gene expression profiles. AML-suitable hypoxia
gene signatures still need to be developed.

To evaluate the potential utility of hypoxia-related gene
expression profiles in AML prognosis, The Cancer Genome
Atlas (TCGA) and MsigDB databases were analyzed, and the
clinical features of patients were considered to construct an 18-
gene-based hypoxia risk classifier. The model could be useful for
the prognostic evaluations and development of novel therapeutic
modalities aimed at interfering with hypoxia-sensing pathways
and modifying the hematopoietic microenvironment.

MATERIALS AND METHODS

Acquiring and Pre-Processing of Sample
Data and Primary Screening of Acute
Myeloid Leukemia Hypoxia-Related Genes
In this study, three public accessible transcriptome datasets of
BEATAML1.0 (Cohort 1, https://portal.gdc.cancer.gov/projects/

BEATAML1.0-COHORT; Supplementary Data Sheet S1),
TARGET-AML (Cohort 2, https://portal.gdc.cancer.gov/
projects/TARGET-AML; Supplementary Data Sheet S2), and
TCGA-LAML (Cohort 3, https://portal.gdc.cancer.gov/projects/
TCGA-LAML; Supplementary Data Sheet S3) were used
throughout the training and validation stages. The latest
clinical follow-up information was also obtained from Vizome
(http://www.vizome.org/; Supplementary Data Sheet S4) (Tyner
et al., 2018) or TCGA database (https://cancergenome.nih.gov/;
Supplementary Data Sheet S5, S6). A total of 315 hypoxia-
related genes defined in the Molecular Signatures Database
(http://www.gsea-msigdb.org/gsea/msigdb/; Supplementary
Table S1) were used as the initial candidates for Cox and least
absolute shrinkage and selection operator (LASSO) survival
analysis. We applied strict quality control (QC) for these
datasets on sample and gene levels, respectively. On the
sample level, we removed patients diagnosed with
myelodysplastic syndromes (MDSs), myeloproliferative
neoplasms (MPNs), or other non-AML diseases; we also
filtered out individuals with no survival information. On the
gene level QC, we kept genes having expression information in all
three transcriptome datasets; genes with low expression quantity
in all samples [reads per kilobase of transcript per million
mapped reads (RPKM) < 1] were removed from downstream
analysis. The principal component analysis (PCA) was also
performed to identify the outlier; we removed individuals who
deviated from the study samples. The ComBat method was used
to correct the potential batch effects of RNA sequencing
(Supplementary Figure S1). At this point, a total of 419
samples in Cohort 1, 156 samples in Cohort 2, and 151
samples in Cohort 3 (315 hypoxia-related genes) were kept for
survival analysis (Supplementary Data Sheet S7–S9).

Identification of Hypoxia-Related
Signatures and Establishment and
Verification of a Hypoxia Risk Score Model
Univariate Cox proportional hazards regression was first used
to preliminarily screen the AML prognostic genes (p < 0.05).
Next, Cohort 1 was randomly divided into a training set of 293
cases and a test set of 126 cases (7:3 ratio). To narrow down
the prognostic genes for prediction, a Cox proportional
hazards regression model combined with the LASSO
(Goeman, 2010) using the “glmnet” package was applied to
select the most important hypoxia-related signatures, and the
optimal values of the penalty parameter λ were determined by
10-fold cross-validations at which the minimal mean squared
error (MSE) is achieved in the training set (Simon et al., 2011).
Afterward, the multivariate Cox regression analysis was
performed to estimate independent prognostic factors
associated with patient survival. Finally, the stepwise
method was employed to select the best subset of
predictors in a risk score model. To this, a hypoxia-related
prognostic risk (HRS) score model was built, with the
regression coefficients (β) weighted by the multivariate Cox
proportional hazards regression model in the training set. The
HRS model formula was as follows:
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Hypoxia risk score � ∑
n

i�1
(βi p xi)

βi are coefficients (β) weighted by the multivariate Cox
proportional hazards regression model, and xi is the RNA
expression level.

We calculate the HRS of the study samples and use the median
HRS of the training group as the cutoff point to label the low-risk or
high-risk individual of the three cohorts. The trained model was
then tested using the test and validation sets (other independent
cohorts: Cohort 2 and Cohort 3). The “survminer” package was
used for the Kaplan–Meier (KM) survival analysis of patients in the
high-risk and low-risk groups, while the “timeROC” package was
used to construct time-dependent receiver operating characteristic
(ROC) curves and calculate the area under the ROC curve (AUC)
at 1-, 3-, and 5-years OS.

Construction and Evaluation of the
Nomogram Model
We explored the relationship between HPM and other clinical
parameters for AML patient outcomes. Univariable Cox analysis
and multivariate Cox analysis were performed with all patients’
clinical covariates in the BEATAML1.0 cohort by the “rms” package.
Samples with incomplete data about potential prognostic factors
were excluded from the multivariable Cox analyses. Pearson’s
correlation between HPM and different clinical characteristics
was calculated by “stats” package and plotted by “corplot”
package. A nomogram was formulated using the “rms” r package
based on the results of themultivariate analyses; and calibration plots
and time-dependent ROC plots were performed to assess the
prognostic accuracy of the nomogram. The predicted outcomes
and observed outcomes of the nomogram were plotted in the
calibration curve to evaluate the degree of fitting of the
nomogram, and the 45° line represented the best prediction.

Biological Phenotypes Associated With the
Hypoxia Risk Score Model
Hypoxia-Related Metabolic Alterations
We procured 3,695 human metabolic genes concerning 145
metabolic subsystems from the Recon 3D (http://vmh.life)
(Brunk et al., 2018). Among them, 3,224 metabolic genes were
matched to our Cohort 1 data. The empirical Bayes algorithm of
the R package “limma” (Ritchie et al., 2015) was used to identify
differentially expressed genes (DEGs) between the top 25% samples
of the high- and low-risk groups (totally 210 samples). All gene
expression values were log2 transformed to identify the metabolic
genes with significant differential expression during hypoxia stress
[logarithmically transformed fold change (log2(FC)) ≥ 1 or
(log2(FC)) ≤ −1 and p-value < 0.05]. Besides, we performed
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene
Ontology (GO) enrichment analyses of DEGs with clusterProfiler
package (Yu et al., 2012). KEGG pathway enrichment analysis
utilized the KEGG database (http://www.genome.jp/kegg) while
GO enrichment was utilized (http://www.geneontology.org).

Hypoxia-Related Immune Alterations
Regarding the association between the hypoxia risk score and
immune cells in the BM microenvironment, CIBERSORT
algorithm (Newman et al., 2015) was used to estimate the
relative immune cell fractions in the BM samples of Cohort 1,
based on the standard LM22 leukocyte signature matrix that
distinguishes 22 immune cell subtypes and 1,000
permutations (CIBERSORT R script v1.03 is available on
http://cibersort.stanford.edu/). We performed the following
analyses in CIBERSORT: B cells, CD4+ T cells, CD8+ T cells,
Tregs, NK T cells, γδ-T cells, lymphocytes, and macrophages.
Further, xCell (http://xcell.ucsf.edu/) was used to validate the
result.

RESULT

A flowchart overviewing the procedures of this study is presented
in Figure 1.

Patient Clinical Characteristics
We analyzed clinical characteristics of patients with AML from
Cohort 1, including age, gender, ELN 2017, the mutations of
NPM1 and FLT3, and CEBPA Biallelic status (Table 1).
Differences in general clinical information of two sets are not
statistically significant. Among the 419 AML patients with
complete clinical information in BEATAML1.0, the mean
diagnosis age was 56.22 ± 18.23 years, while the proportion of
males was 55.61% (233/419).

Establishment of Hypoxia Risk Score Model
A univariate Cox regression was performed to identify
prognostic hypoxia-related genes associated with OS in
BEATAML1.0 dataset. A total of 33 genes (ALDH1A1,
ALDOC, BACE2, BATF3, CA9, CALD1, COL5A1, DR1,
EGLN3, ELOB, HBP1, HK1, ID2, KRT14, LRP8, NOS1, NOS2,
PDK3, PLOD2, PSMA2, PSMA7, PSMB6, PSMC1, PSMC4,
PTGS1, RPS27A, SIAH2, SLC16A1, SORL1, TGM2, THBS1,
TPD52, and UBA52) were identified to have a significant
prognostic value in patients with AML (p < 0.05). Then,
LASSO-penalized Cox analysis with 10-fold cross-validation
(Figures 2A,B) was performed for further screening, and 23
genes were left. Finally, a total of 18 hub genes (ALDOC, BATF3,
COL5A1, DR1, ELOB, HBP1, HK1, KRT14, NOS2, PSMA2,
PSMA7, PSMB6, PSMC1, PTGS1, SIAH2, SORL1, THBS1, and
UBA52) were identified from the stepwise multivariate Cox
regression (Figure 2C), and the formula to calculate the
hypoxia risk score was as follows:

Hypoxia risk score � 0.2737 × ALDOC + 0.1343 × BATF3

× 0.0762 × COL5A1 + 0.2795 × DR1 + 0.6469 × ELOB − 0.5492

×HBP1 − 0.4513 ×HK1 − 0.1064 × KRT14 + 0.0740 ×NOS2

+ 0.3421 × PSMA2 + 0.8385 × PSMA7 − 1.1489 × PSMB6

+ 0.4238 × PSMC1 + 0.1434 × PTGS1 + 0.3213 × SIAH2

− 0.1447 × SORL1 + 0.0994 × THBS1 − 0.4732 × UBA52
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Prognostic Value of the Hypoxia Risk Score
The KM survival curves revealed that patients in the high-risk
group exhibited a significantly lower OS rate than the low-risk
group in all cohorts (training set, test set, Cohort 2, and Cohort 3;

p < 0.0001, p � 0.04, p < 0.001, and p < 0.01, respectively;
Figure 3). In the training dataset of BEATAML1.0 Cohort, the
median OS of low-risk patients was 1.970 years (95% CI:
1.734–3.775), whereas the median OS of high-risk patients was

FIGURE 1 | Flowchart of data collection, modeling, and further analysis.

TABLE 1 | Patients’ basic characteristics in BEATAML1.0 cohort.

Total
n = 419

Training set
n = 293

Test set
n = 126

p-value

Age (mean (SD)) (%) 56.22 (18.25) 55.98 (18.29) 56.77 (18.23) 0.685
<65 256 (61.1) 185 (63.1) 71 (56.35) 0.231
≥65 163 (38.9) 108 (36.9) 55 (43.7)

Gender (%) 0.582
Female 186 (44.4) 127 (43.3) 59 (46.8)
Male 233 (55.6) 166 (56.7) 67 (53.2)

ELN 2017 (%) 0.846
Favorable 108 (25.8) 77 (26.3) 31 (24.6)
Intermediate 140 (33.4) 93 (31.7) 47 (37.3)
Adverse 149 (35.6) 108 (36.9) 41 (32.5)
Favorable or intermediate 14 (3.3) 9 (3.1) 5 (4.0)
Intermediate or adverse 7 (1.7) 5 (1.7) 2 (1.6)
Not available 1 (0.2) 1 (0.3) 0 (0.0)

NPM1 (%) 0.439
Negative 309 (73.7) 213 (72.7) 96 (76.2)
Positive 107 (25.5) 77 (26.3) 30 (23.8)
Not available 3 (0.7) 3 (1.0) 0 (0.0)

FLT3-ITD (%) 0.233
Negative 321 (76.6) 218 (74.4) 103 (81.7)
Positive 97 (23.2) 74 (25.3) 23 (18.3)
Not available 1 (0.2) 1 (0.3) 0 (0.0)

CEBPA Biallelic (%) 1
No 412 (98.3) 124 (98.4) 288 (98.3)
Yes 7 (1.7) 2 (1.6) 5 (1.7)
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0.718 years (95% CI: 0.575–0.912), and the HR is 3.261 (95% CI:
2.398–4.435). In comparison, in the test dataset of BEATAML1.0
Cohort (validation Cohort 1), the median OS of patients with
low-risk scores was 1.592 years (95% CI: 1.230–NA), and the

median OS of patients with high-risk scores was 0.978 years (95%
CI: 0.860–1.556), while HR is 1.626 (95% CI: 1.007–2.626). In
TARGET-AML cohort (validation Cohort 2), the median OS of
patients with low-risk scores was NR (not reached), and the

FIGURE 2 | (A) Tenfold cross-validation for tuning parameter selection in the LASSO model. (B) Least absolute shrinkage and selection operator (LASSO)
coefficient profiles of the 33 prognostic genes. (C) Forest plot of 18 hypoxia-related genes significantly associated with overall survival according to multivariate Cox
regression analysis.
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medianOS of patients with high-risk scores was 2.227 years (95%CI:
1.689–5.195), and the HR is 2.283 (95% CI: 1.455–3.582). In TCGA-
LAML cohort (validation Cohort 3), the median OS of patients with

low-risk scores was 2.170 years (95% CI: 1.581–3.838), the median
OS of patients with high-risk scores was 0.833 years (95% CI:
0.586–1.003), and the HR is 1.773 (95% CI: 1.190–2.642).
Furthermore, the prognostic accuracy of the hypoxia risk score
was assessed with time-dependent ROC analysis for OS at 1, 3, and
5 years in all datasets, and the results were as follows. In the training
set, the AUCwas 0.813 at 1 year, 0.788 at 3 years, and 0.899 at 5 years
(Figure 3E); 0.675 at 1 year, 0.767 at 3 years, and 0.753 at 5 years
(Figure 3F) in the test set; 0.616 at 1 year, 0.684 at 3 years, and 0.690
at 5 years (Figure 3G) in Cohort 2; and 0.712 at 1 year, 0.657 at
3 years, and 0.640 at 5 years (Figure 3H) in Cohort 3, which revealed
that the hypoxia risk score was a valuable predictor. We next studied
whether the HRS could improve prognostic assessment in AML
patients on the 2017 ELN genetic risk stratification (Dohner et al.,
2017) basis. In each ELN2017 stratification, the HPM high-risk
group had a poorer prognosis than the HPM low-risk group
(Figure 3I). Furthermore, we found that 37 out of 108 ELN2017
favorable patients (51.7%) were high-risk for the HPM and had
significantly worse survival. In this patient subgroup (ELN
favorable–HPM high), representing 9.3% (37/397, only contains
patients who had clear ELN2017 stratification) of the BEATAML1.0
cohort, their survival was similar to that of ELN intermediate/
adverse-risk patients with HPM low-risk. To further evaluate the
performance of the HPM, we compared our HPM with other gene
expression based AML prognostic models, which were published
within the last 5 years, including PMID29138577 (Huang et al.,
2017), PMID32268820 (Zhang and Xiao, 2020), PMID29956722
(Zhao et al., 2018), and PMID34282207 (Jiang et al., 2021). Risk
score was calculated based on formulas from the corresponding
literatures.We used the p-value of the KM survival analysis to reflect
the discrimination and the AUC value to evaluate the accuracy. The
survival analysis showed that the HPM was significantly correlated
with the survival of the patients in all three datasets. In contrast,
other models could only perform well in at most two of the three
datasets (Supplementary Figure S2). The AUC values of the HPM
were more stable, which means a wider range of suitable population
(Supplementary Figure S3; Supplementary Table S2).

Hypoxia-Related Characteristics of High-
and Low-Risk Patients, Based on the
Prognostic Risk Score Model
Association Between the Hypoxia Risk Score and the
Clinical Characteristics
We ranked the risk scores of patients in the training and test sets,
and the distributions associated with gene expression, survival
time, and status are shown in Figures 4A,B. Hypoxia risk score
increased with higher age, worse 2017 ELN genetic risk
stratification, NPM1 wild type, and FLT3-ITD wild type and
have no CEBPA double mutation (Figure 4C).

Hypoxia-Related Prognosis Model-Related Metabolic
Alterations
To study the relationship between HRS and metabolic flux, we
performed differential gene expression analysis using “limma”
package, 115 DEGs were shortlisted from the raw dataset, and 93

FIGURE 3 | Prognostic value of the hypoxia risk score Kaplan–Meier
survival curves of overall survival (OS) between the low- and high-risk group
patients in all three cohorts. (A) Training dataset of Cohort 1 and (B) test
dataset of Cohort 1, (C) Cohort 2, and (D) Cohort 3. ROC curves of the
hypoxia risk score model based on the 18 characteristic genes. (E) Training
dataset of Cohort 1 and (F) test dataset of Cohort 1, (G) Cohort 2, and (H)
Cohort 3. ROC, receiver operating characteristic; AUC, area under the curve.
(I) Comparison of survival between six different ELN2017 and hypoxia-related
prognosis model (HPM) risk subgroups of patients.
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genes were upregulated in the high-risk group while 22 genes
were downregulated. Results were visualized into volcano plot
(Figure 5A) and heatmap (Figure 5B). To evaluate the molecular
mechanisms of DEGs, KEGG metabolic pathways enrichment
analyses, and GO functional annotation were conducted (Table 2;
Figure 5). Unsurprisingly, pathways associated with
oxidoreduction activity were enriched. Unexpectedly, we found

12 immune-related pathways such as “leukocyte mediated
immunity” and “cell activation involved in immune response,”
which were significantly overrepresented. Besides, two pathways
of angiogenesis were significantly enriched in the upregulated
genes for the high-risk group. And the enrichment of “heme
binding” and “tetrapyrrole binding” might be associated with
oxygen-carrying capacity. Moreover, drug catabolic process

FIGURE 4 | Risk score distributions, genes expression, survival time, and status profiles in the (A) training and (B) test set. (C) Hypoxia risk score group by
stratification factors.
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pathways were markedly enriched, such as “xenobiotic metabolic
process,” “drug catabolic process,” “Drug metabolism—other
enzymes,” “Drug metabolism—cytochrome P450,” and
“Metabolism of xenobiotics by cytochrome P450.” Moreover,
the enrichment of the pathway “Chemical carcinogenesis”
suggests different disease susceptibility between the high- and
low-risk groups.

Hypoxia-Related Prognosis Model-Related Immune
Alterations
Based on the foregoing GO enrichment analysis results, we
conjecture that hypoxia is related to immunity. Using
CIBERSORT, we found the proportion of resting mast cells
and plasma cells in the high-risk group significantly to be
lower than that of the low-risk group, whereas the proportion
of neutrophils, monocytes, M0 macrophages, γδ-T cells, and
regulatory T cells (Tregs) increased in high-risk patients
(Figure 6A; Supplementary Data Sheet S10). Cell types were
also predicted and visualized using xCell, giving similar results.
Further, xCell also shows that the Immune Score and
Microenvironment Score of the high-risk group were
significantly higher than of the low-risk group (Figure 6B).
An overview of the predictive result of mechanism exploration
is presented in Figure 7.

A Complex Model for Prognostic Evaluation
of Acute Myeloid Leukemia
To explore the independent prognostic factors for AML,
univariate and multivariate Cox analyses were sequentially
performed in the BEATAML1.0 dataset (Figure 8A), including
the hypoxia risk score and other available clinical characteristics,
such as age, gender, ELN 2017, the mutations of NPM1 and FLT3,
and CEBPA Biallelic status. The HRS, ELN 2017, and age
remained statistically significant (p < 0.05) in both the
univariate and multivariate Cox analyses, indicating that HRS,
ELN 2017, and age were independent prognostic factors. NPM1
status was an independent factor of prognosis after adjustment
for other clinical factors. The correlation between clinical factors
was analyzed and visualized in Figure 8B. HRS was positively
correlated with survival status, age, and ELN2017 while negatively
correlated with survival time and NPM1 status. Furthermore,
Figures 8C–E indicate that the HRS had a higher AUC than other

FIGURE 5 | Differential gene expression analysis of metabolic genes.
And Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology
(GO) analysis of differentially expressed genes (DEGs). (A) Volcano plot
showing DEGs between the top 25% samples of the high- and low-risk
groups. Each dot represents one gene. Red dot represents upregulated gene
(log2 (fold change) > 1 and p-value < 0.05). Blue dot represents
downregulated gene (log2 (fold change) < −1 and p-value < 0.05). And black
dot represents non-differentially expressed gene. (B) Heatmap of DEGs

(Continued )

FIGURE 5 | associated with hypoxia-related prognosis model (HPM) risk
group. (C) Bubble graph of the enrichment KEGG pathways for the down-
regulated genes (there are no significantly enriched KEGG pathways for
upregulated genes). (D) Enrichment map of the enrichment KEGG pathways
for the downregulated genes showing the association between different
pathways. (E) Heatmap of the enrichment KEGG pathways for the down-
regulated genes, showing the association between pathways and genes. (F)
Lollipop plot of GO term enrichment for Biological Process, Cellular Com-
ponent, and Molecular Function. In the figure, the size of the dot indicates the
number of DEGs that were enriched in the pathway, the color of the dot
corresponds to the different p-values, and the solid line is used for GO terms
enriched for upregulated genes, while dashed line is used for GO terms
enriched for downregulated genes.
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clinical factors in 1-, 3-, and 5-years survival prediction. Overall,
these results demonstrated that the HPM can predict the AML
prognosis independently and effectively. To reveal the prognostic
value, maximize practicability, and facilitate clinicians’ usage of
our model, we constructed a nomogram that was composed of
both the hypoxia risk score and available clinical risk factors
based on BEATAML1.0 cohort (Figure 8F). A combination of
HRS and clinical risk factors was found to improve its prognostic
value with a markedly better AUC than the 2017 ELN genetic risk
stratification (Figure 8G). It is shown that the complex model can
predict more accurately in the long term with the increasing
tendency of AUC. To validate the predicted and actual
probabilities at 1, 3, and 5 years, calibration plots were
constructed (Figures 8H–J), and the nomogram performs
well. These findings demonstrated that the nomogram is an
optimal model for predicting the survival probability of AML
patients than individual prognostic factors.

DISCUSSION

AML is a highly aggressive and heterogeneous hematologic
malignancy (Döhner et al., 2015). Hypoxia is a significant
outcome factor of leukemia patients, which could be reflected
by the changed expression of related genes (Benito et al.,
2016). Here, in our analysis, we identified an 18-hypoxia

TABLE 2 | KEGG pathway enrichment analyses and GO functional annotation
result.

Terms ID Description

KEGG hsa00140 Steroid hormone biosynthesis
hsa00983 Drug metabolism—other enzymes
hsa00982 Drug metabolism—cytochrome P450
hsa00980 Metabolism of xenobiotics by cytochrome P450
hsa05204 Chemical carcinogenesis
hsa04976 Bile secretion

GO: BP GO:
0002283

Neutrophil activation involved in immune response

GO:
0042119

Neutrophil activation

GO:
0002446

Neutrophil mediated immunity

GO:
0043312

Neutrophil degranulation

GO:
0043299

Leukocyte degranulation

GO:
0002366

Leukocyte activation involved in immune response

GO:
0002443

Leukocyte mediated immunity

GO:
0036230

Granulocyte activation

GO:
0002274

Myeloid leukocyte activation

GO:
0002275

Myeloid cell activation involved in immune response

GO:
0002444

Myeloid leukocyte mediated immunity

GO:
0002263

Cell activation involved in immune response

GO:
0045055

Regulated exocytosis

GO:
0006887

Exocytosis

GO:
0045766

Positive regulation of angiogenesis

GO:
1904018

Positive regulation of vasculature development

GO:
0016192

Vesicle-mediated transport

GO:
0022603

Regulation of anatomical structure morphogenesis

GO:
0051187

Cofactor catabolic process

GO:
0071466

Cellular response to xenobiotic stimulus

GO:
0009410

Response to xenobiotic stimulus

GO:
0006805

Xenobiotic metabolic process

GO:
0042737

Drug catabolic process

GO:
0042743

Hydrogen peroxide metabolic process

GO:
CC

GO:
1904724

Tertiary granule lumen

GO:
0070820

Tertiary granule

GO:
0034774

Secretory granule lumen

GO:
0060205

Cytoplasmic vesicle lumen

(Continued in next column)

TABLE 2 | (Continued) KEGG pathway enrichment analyses and GO functional
annotation result.

Terms ID Description

GO:
0031983

Vesicle lumen

GO:
0042581

Specific granule

GO:
0035580

Specific granule lumen

GO:
0030141

Secretory granule

GO:
0099503

Secretory vesicle

GO:
0031225

Anchored component of membrane

GO:
MF

GO:
0020037

Heme binding

GO:
0046906

Tetrapyrrole binding

GO:
0048037

Cofactor binding

GO:
0004497

Monooxygenase activity

GO:
0005506

Iron ion binding

GO:
0016709

Oxidoreductase activity, acting on paired donors, with
incorporation or reduction of molecular oxygen, NAD(P)H
as one donor, and incorporation of one atom of oxygen

GO:
0016705

Oxidoreductase activity, acting on paired donors, with
incorporation or reduction of molecular oxygen

Note: BP, biological process; CC, cellular component; GO, gene ontology; KEGG, kyoto
encyclopedia of genes and genomes; MF, molecular function.
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FIGURE 6 | Landscape of immune infiltration in the bone marrow (BM) of acute myeloid leukemia (AML) patients, as estimated from gene-expression data (Cohort
1, BM samples n � 216) using CIBERSORT. (A) Boxplots visualizing significantly different immune cell infiltrations between high- and low-risk patients. The p-values
calculated from Wilcoxon test are shown: *p-values < 0.05; **p-values < 0.01; ***p-values < 0.001. (B) Immune Score and Microenvironment Score between high- and
low-risk patients scoring by xCell based on estimated immune cell proportion. Higher hypoxia risk is associated with higher Immune Score and Microenvironment
Score.

FIGURE 7 | The hypoxia-related mechanisms that are involved in a poor prognosis of acute myeloid leukemia (AML) patients. Hypoxia may affect the prognosis of
patients with AML by affecting angiogenesis, drug metabolism, and bone marrow immune microenvironment.
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FIGURE 8 | The establishment of a nomogram to predict the overall survival of acute myeloid leukemia (AML) patients. (A) Forest plot of univariate and multivariate
Cox regression analysis of clinical characteristics in AML patients. The red dot with bar indicates statistical significance (p < 0.05). (B) Pearson’s correlation between
hypoxia-related prognosis model (HPM) and different clinical characteristics (*p-values < 0.05; **p-values < 0.01; ***p-values < 0.001). Receiver operating characteristic
(ROC) plot of HRM and important clinical characteristics at 1 (C), 3 (D), and 5 years (E). (F) Survival analysis for HPM risk and other prognostic factors in AML. (G)
Nomogram of the complex model for overall survival at 1, 3, and 5 years in AML patients. (H) Time-dependent ROC curves for complex model and ELN 2017. Calibration
plot at 1 (I), 3 (J), and 5 years (K) for validation of prognostic nomogram.
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related gene-based prognosis model that could independently
predict the survival probability of AML patients. To facilitate
clinical application, we combined our HPM, 2017 ELN
genetic risk stratification, and clinical risk factors to
construct a complex model and nomogram, which
outperformed 2017 ELN genetic risk stratification in the
prediction of survival rate. Thus, the comprehensive
nomogram could be utilized by clinicians in the near
future. Further, we surmise that hypoxia may affect the
prognosis of AML patients by affecting the angiogenesis,
drug metabolism, and BM immune microenvironment.

The risk model created in this study consisted of 18 hypoxia-
related genes, many of which were reported in cancer. ALDOC
encodes a member of the class I fructose-biphosphate aldolase
gene family and is involved in HIF-1 signaling pathway.
ALDOC was identified as activators of Wnt signaling, a
signaling pathway involved in cancer genesis and progression
when it was over-activated (Caspi et al., 2014). Meanwhile,
ALDOC was overexpressed in gallbladder carcinoma (Fan et al.,
2020), melanoma (Izraely et al., 2020), and lung cancer (Yuan
et al., 2021), associated with their growth or pathogenesis.
BATF3 is an AP-1 family transcription factor that controls
the differentiation of CD8(+) thymic conventional dendritic
cells in the immune system. According to the KEGG database, it
was involved in PD-L1 expression and PD-1 checkpoint
pathway in cancer. Immunotherapy with immunomodulatory
monoclonal antibodies targeting PD-1 or CD137 requires Batf3-
dependent dendritic cells (Sanchez-Paulete et al., 2016).
COL5A1 is a member of the fibrous subfamily of collagen.
Overexpression of COL5A1 may promote metastasis of lung
adenocarcinoma (Liu et al., 2018) and the progression of
muscle-invasive bladder cancer (Ewald et al., 2013) and may
increase the risk of hematogenous and lymphatic metastasis in
serous ovarian cancer (Yue et al., 2019). COL5A1 is also
overexpressed in gastric cancer, which may regulate the
proliferation of gastric cancer cells by affecting the tumor
microenvironment and is associated with poor prognosis
(Wei et al., 2020). HBP1 plays a role in the regulation of the
cell cycle and is a tumor suppressor (Bollaert et al., 2019).
Downregulating HBP1 promotes the migration and invasion of
oral squamous cell carcinoma (Li K. et al., 2020) and breast
cancer (Li et al., 2011). HK1 encodes hexokinase 1, which is the
first rate-limiting enzyme in glycolysis, is related to the
progression of ovarian cancer (Li Y. et al., 2020) and
colorectal cancer (Li S. et al., 2020). PSMA7 interacts with
proteins such as HIF-1α, EMAP II, c-Abl, and Arg tyrosine
kinases, which participated in tumorigenesis. Studies reported
that PSMA7 expression was elevated in testicular, liver, breast,
prostate, cervical, gastric, and colorectal cancers (Xia et al.,
2019), while UBA52 is overexpressed in the colon (Barnard
et al., 1995), and renal cancers (Kanayama et al., 1991). THBS1
was also implicated in the development of several cancers,
including breast, gastric, melanoma, and cervical cancers and
glioblastoma (Qi et al., 2021).

To probe into the mechanism of hypoxia in leukemia,
differential gene expression analysis and enrichment analysis
were implemented. The enriched biological process like

“leukocyte mediated immunity” and “cell activation involved
in immune response” suggested that hypoxia might affect cell-
mediated immunity against cancer cells. Angiogenesis, which was
particularly important for tumor survival in the hypoxic
condition (Hanahan and Weinberg, 2011), was significantly
enriched in the upregulated genes for the high-risk group.
Although there are few studies about angiogenesis in
hematological malignancy, BM angiogenesis in AML patients
has been observed and may play a role in the pathogenesis
(Hussong et al., 2000; Padro et al., 2000; Testa et al., 2020).
BM microvessel density of AML patients is higher than that of
healthy individuals at the time of diagnosis and decreases after
remission (Padro et al., 2000; Song et al., 2015). The vascular
niches could support the survival of leukemic cells and protect
AML by regulating AML cell cycle through paracrine secretion
and adhesive contact with endothelial cells, helping to resist
chemotherapy (Cogle et al., 2016). Moreover, higher
microvessel density at the time of diagnosis was associated
with poor prognosis (Kuzu et al., 2004; Rabitsch et al., 2004).
In addition, drug metabolism is significantly affected by changes
in pharmacokinetics, expression, and function of drug metabolic
enzymes and transporters under hypoxia (Donovan et al., 2010).
Hypoxia affects the transcription and function of cytochrome
P450 (CYP450) through HIF-1α (Min et al., 2019). CYP enzymes
and other drug-metabolizing enzymes are expressed in BM
stroma (Alonso et al., 2015). CYP450 is involved in the
stroma-mediated resistance of AML cells to chemotherapy
(Alonso et al., 2015). Drug catabolic process pathways, such as
“xenobiotic metabolic process,” “drug catabolic process,” “Drug
metabolism—other enzymes,” “Drug metabolism—cytochrome
P450,” and “Metabolism of xenobiotics by cytochrome P450,”
were markedly enriched, which might correlate with
chemotherapeutic drugs concentration and sensitivity change
in a hypoxic microenvironment of AML. Hypoxia might
promote angiogenesis, disturb cell-mediated immunity balance,
and affect pharmacokinetics to result in a bad prognosis.

To explore hypoxia-related changes in the BM immune
microenvironment, immune cell composition analysis was
performed. We found that the proportion of resting mast cells in
the high-risk group was significantly lower than in the low-risk group,
while activated mast cells in the high-risk group were higher than in
the low-risk group, even though the difference did not reach statistical
significance (mean proportion 0.12 vs. 0.02, p � 0.22). The present
study shows thatmast cells can promote cancer growth by stimulation
of neoangiogenesis andmodulation of the immune response (Dyduch
et al., 2012). This might indicate that hypoxia affects angiogenesis and
immune response by affecting the proportion of mast cells. The
proportion ofmonocytes andM0macrophages in the high-risk group
were significantly higher than the low-risk group, which contribute to
the poor prognosis of high-risk group patients. Tumor-infiltrating
monocytes and macrophages have well-recognized facilitative roles in
the initiation, migration, and invasion of solid tumors (Condeelis and
Pollard, 2006; Qian and Pollard, 2010; Richards et al., 2013). Although
not widely researched, there are indications of a similar pro-tumor
function in hematological malignancy. Lee et al. demonstrated that
monocytes have a promoting effect on migration and invasion of
human B-cell precursor acute lymphoblastic leukemia (BCP-ALL)
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in vitro (Lee et al., 2012). Al-Matary et al. showed an increase of
monocytes/macrophages in the BM of AML patients and AML
mouse models, which might support the proliferation of AML
cells in vitro, and it was also observed that the grade of
macrophage infiltration was correlated with the survival of AML
mice (Al-Matary et al., 2016). The proportion of monocytes and M0
macrophages in the high-risk group was significantly higher than in
the low-risk group, which contributes to the poor prognosis of high-
risk group patients. Tregs, which were regarded as suppressor T cells
preventing autoimmunity, were found to be aberrantly accumulated
in some types of tumor, playing a crucial role in dampening antitumor
immunity and establishing an immunosuppressive
microenvironment (Wang et al., 2017). Higher Treg percentages
could indicate poor prognosis in a variety of cancer types
(Overacre-Delgoffe and Vignali, 2018), and AML is no exception.
Williams et al. found that an increased amount of Tregs in peripheral
blood of AML patients is also associated with an increased risk of
relapse (Williams et al., 2019). These studies are consistent with our
findings that Treg proportion is higher in high-risk patients than low-
risk patients. The detailed mechanism needs further investigation in
the future. And the scRNA-seq transcriptome data can provide
precision and details of the interaction between the tumor cells
and the microenvironment. Zhang et al. developed a novel
scRNA-seq data-based approach to reconstruct a multilayer
signaling network that contains pathways from intercellular
ligand–receptor interactions, intracellular transcriptional factors,
and their target genes (Zhang et al., 2020). Meanwhile, the single-
cell RNA-sequencing data based on multilayer network method
(scMLnet) (Cheng et al., 2021) also help to resolve
tumor–microenvironment interactions and dissect the
microenvironment-mediated intercellular and intracellular signaling
pathways of tumor cells, whichmight help to investigate the influence
of microenvironment on the tumor growth, drug resistance, and
patient prognosis.

Concerning treatment, Tregs have been targeted in the clinic,
although the efficacy is limited (Overacre-Delgoffe and Vignali,
2018). Targeting macrophages with bisphosphonate could reduce
angiogenesis and tumor growth in melanoma-bearing mice
(Gazzaniga et al., 2007). In a mouse model of AML, Tregs
accumulate at the site of disease and suppress the function of
adoptively transferred cytotoxic T cells (CTL), and depletion of
Tregs restored CTL function and reduced leukemia progression
(Zhou et al., 2009). Anti-CD47 monoclonal antibody can inhibit
the immune escape of AML leukemic stem cells to macrophages
and play an antileukemic role by phagocytosis of leukemic stem
cells through macrophages (Majeti et al., 2009). Clinical trials of
CD47 mAb magrolimab (Hu5F9-G4) as a single agent or in
combination for the treatment of relapsed refractory AML have
shown promising efficacy (magrolimab, Phase I, ClinicalTrials.gov
ID: NCT02678338; magrolimab + atezolizumab, Phase I,
ClinicalTrials.gov ID: NCT03922477; magrolimab + azacitidine,
Phase Ib, ClinicalTrials.gov ID: NCT03248479). Antiangiogenic
therapymay be an effective method in AML patients. Reduced BM
angiogenesis may help to restore drug sensitivity of drug-resistant
AML (Lin et al., 2019). Antiangiogenic therapy may be an effective
method in AML patients. Lin et al. demonstrated that wogonoside,
one of the metabolites of traditional Chinese medicine Huangqin,

could inhibit the BM angiogenesis and tumor progression of AML
in vivo and in vitro (Lin et al., 2019). Based on the results of clinical
trials, some antiangiogenic drugs that inhibit vascular endothelial
growth factor (VEGF), such as bevacizumab (Karp et al., 2004),
cediranib (Fiedler et al., 2010), AG-013736 (Giles et al., 2006), and
SU5416 (Fiedler et al., 2003), could be an effective treatment for
AML, either alone or in addition to chemotherapy that works
independently on different targets. Hypoxia is becoming an
emerging target in AML. Hypoxia-activated prodrug, a new
class of anti-cancer agents, selectively deliver cytostatic or
cytotoxic agents to hypoxic subregions, uncloak at low oxygen
pressure, and release the active drug. Small-scale clinical trials
about hypoxia-activated prodrugs PR-104 and TH-302 treating
patients with relapsed and/or refractory AML were conducted,
showing a definite antileukemia activity (Konopleva et al., 2015;
Badar et al., 2016) (TH-302, Phase 1, clinicaltrials.gov ID:
NCT01149915; PR-104, Phase 1, ClinicalTrials.gov ID:
NCT01037556). BCL-2, a proapoptotic protein, could be
overexpressed in hypoxia conditions; its inhibitors can reduce
oxidative phosphorylation and eradicate quiescent chemo-
resistant AML stem cells (Ashton et al., 2018). Echinomycin, a
hypoxia-inducible factor HIF-1α inhibitor, can selectively kill the
leukemia-initiating cell without affecting host HSCs in relapsed
AMLmice (Wang et al., 2014). The preliminary pathophysiological
observation of this study may provide a perspective for further
investigation and a potential therapeutic target in the future.

Although large cohorts were utilized to establish our model,
there are still certain limitations in our study. The study was based
on retrospective cohorts, lacking prospective cohorts, and
experimental evidence. Data from different centers and various
platforms are necessary to validate the performance of our model.
Further studies including animal experiments and in vitro cellular
experiments will be needed to confirm our findings and delineate
the pathophysiological mechanism.

CONCLUSION

In summary, our HPM, complex model, and nomogram had
excellent predictive power for clinical applications, helping
clinicians in making clinical decisions. Our hypoxia-related
immune and metabolic alterations might help to find a
potential therapeutic target.
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