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Abstract

Objective: To characterize pharmacodynamic dosing strategies used at children’s hospitals using a national survey.

Design: Survey.

Setting: Children’s hospitals.

Participants: Volunteer sample of antimicrobial stewardship program (ASP) respondents.

Methods: A nationwide survey was conducted to gain greater insight into the current adoption of nontraditional dosing methods and mon-
itoring of select β-lactam and fluoroquinolone antibiotics used to treat serious gram-negative infections in pediatric populations. The survey
was performed through the Sharing Antimicrobial Reports for Pediatric Stewardship (SHARPS) Collaborative.

Results: Of the 75 children’s hospitals that responded, 68%of programs reported adoption of pharmacodynamically optimized dosing using prolonged
β-lactam infusions and 35% using continuous β-lactam infusions, although use was infrequent. Factors including routineMICmonitoring and formal
postgraduate training and board certification of ASP pharmacists were associated with increased utilization of pharmacodynamic dosing. In addition,
60% of programs reported using pharmacodynamically optimized ciprofloxacin and 14% reported using pharmacodynamically optimized levoflox-
acin. Only 20% of programs monitored β-lactam levels; they commonly cited lack of published guidance, practitioner experience, and laboratomory
support as reasons for lack of utilization. Less physician time dedicated to ASP programs was associated with lower adoption of optimized dosing.

Conclusions: Use of pharmacodynamic dosing through prolonged and continuous infusions of β-lactams have not yet been routinely adopted
at children’s hospitals. Further guidance from trials and literature are needed to continue to guide pediatric pharmacodynamic dosing efforts.
Children’s hospitals should utilize these data to compare practices and to prioritize further research and education efforts.

(Received 15 March 2021; accepted 7 September 2021)

Antibiotic-resistant bacteria account for >2 million illnesses and
23,000 deaths yearly in the United States.1 A significant increase in
multidrug-resistant (MDR) bacterial infections has occurred among
pediatric patients in the past 20 years.2,3 Although newer antibiotic
agents are available, they frequently come with a burden of cross re-
sistance and lack pediatric efficacy and safety data on approval, which
often limits their use in children with gram-negative infections.

An underutilized method for antimicrobial agent optimization is
pharmacodynamic dosing modification, including prolonged and

continuous infusion of β-lactams. These modalities have the potential
to suppress development of antibiotic resistance and they have been
shown to improve outcomes in adult patients.4–10 Utilizing prolonged
or continuous infusion allows adequate time above the minimum
inhibitory concentration (MIC) for the unbound antibiotic
(fT>MIC) needed for bactericidal activity, as demonstrated in both
adult and pediatric studies.4–18 In these analyses, the standard dosing
of β-lactams and fluoroquinolones used to treat gram-negative infec-
tions is often reported to be inadequate due to the increasing MIC of
gram-negative bacteria.19–21 Although a few cases using these
approaches in children have been reported, the extent of adoption
of these dosing strategies throughout pediatric practice is unknown.22,23

A critical need exists to assess current practices employed at children’s
hospitals to serve as a foundation for improvement initiatives.

In this study, we characterized pharmacodynamic dosing
strategies used at children’s hospitals by surveying the Sharing
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Antimicrobial Reports for Pediatric Stewardship (SHARPS)
Collaborative. The assessment of β-lactam and fluoroquinolone
nontraditional dosing strategies, limitations in dosing, as well as
hospital demographics and pharmacist and physician dedica-
tion to antimicrobial stewardship (ASP) services, will guide
future research.

Methods

This study was reviewed and approved by the Institutional Review
Board of University of Connecticut. Informed consent was
obtained from participants in the study prior to survey completion.
The survey was created in Qualtrics version June 2020 software
(Qualtrics, Provo, UT) and included 35 multiple-choice and
short-answer questions about dosing; use of pharmacodynamically
optimized dosing; utilization of factors like MIC, susceptible-dose-
dependent (SDD) defined MIC; and dosing based on severity of
infection (Supplementary Table 1 online). Frequencies were defined
as follows: always (>95%), frequently (51%–95%), sometimes (5%–
50%), and rarely (<5%). Hospital and personnel demographics were
collected, and associations were evaluated for the following factors:
hospital characteristics, physician and pharmacist full-time equiva-
lent (FTE) dedicated to ASP, and pharmacist training. Factors
limiting utilization were also assessed. Survey questions were
designed by the research team and were validated by a focus group
of pediatric pharmacists prior to distribution.

The survey was distributed through the SHARPS Collaborative
listserv, an international group of >750 individuals, primarily con-
sisting of pediatric infectious diseases physicians and pharmacists
within the United States. E-mail requests to participate in the study
were distributed starting February 2020, and 3 reminder e-mails
were sent before the survey closed June 6, 2020. Participants could
skip any question they were not comfortable answering. A $25 gift
card was used to incentivize survey completion. Only the first com-
pleted survey from each institution was included. Results were gen-
eralized by determining response rate and distribution. Frequency
and descriptive statistics were used to characterize survey responses.

Results

Demographic characteristics

Responses were received from 75 institutions; 57% were from free-
standing children’s hospitals. Among these hospitals, 47% had
>200 beds, 33% had 101–200 beds, and 20% had 51–100 beds.
Respondents primarily included pharmacists (81%) and physicians
(16%). The median FTE for ASP physicians was 0.3 (interquartile
range [IQR], 0.2–0.6) and the median FTE for ASP pharmacists
was 1 FTE (IQR, 0.5–1).

Pharmacist training and certifications

Pharmacist specialized training varied among programs. Overall,
85% of ASP pharmacists had completed a postgraduate year 1
(PGY1) and 67% had completed a PGY2 training program. A
pediatric-focused PGY2 was the most commonly completed
program (54%), followed by infectious diseases programs (32%)
and pediatric infectious diseases programs (14%). Also, 13% of
ASP pharmacists had completed other training, including Making
a Difference in Infectious Diseases (MAD-ID) and Society of
Infectious Disease Pharmacists (SIDP) antimicrobial stewardship
certifications. Only 5% of ASP pharmacists had not completed
any postgraduate training. Most ASP pharmacists had a board cer-
tification (69%), including BPS board-certified pharmacotherapy

specialist (BCPS) (27%), BPS board-certified pediatric pharmacy
specialist (BCPPS) (22%), BPS board-certified infectious diseases
pharmacist (BCIDP) (11%), BCPS/BCIDP (16%), BCPS/BCPPS
(11%), BCPS/BCPPS/BCIDP (4%), BCPPS/BCIDP (2%), and
other (7%).

Pharmacodynamic dosing

β-lactams
Among 75 hospitals, 62 (83%) provided information regarding
dosing of β-lactam antibiotics. Of those, 85% used prolonged infu-
sion (PI) and 35% used continuous infusion (CI) of a β-lactam.
Respondents reported their PI use as frequently (7%), sometimes
(31%), and rarely (31%). Fewer hospitals utilized CI (i.e., 25%
sometimes and 34% rarely). Situations when respondents used
PI or CI for β-lactams included history of MDR organisms
(40%), cystic fibrosis exacerbations (33%), central nervous system
infections (15%), and sepsis (8%). Other situations included
endocarditis, critically ill children, modified dosing for outpatient
parenteral antibiotics, and osteomyelitis. Antibiotics utilized for PI
and CI included piperacillin-tazobactam (57% reported using it for
PI and 20% for CI), meropenem (57% reported using it for PI and
11% for CI), cefepime (43% reported using it for PI and 8% for
CI), and ceftazidime (31% reported using it for PI and 13%
for CI). Ceftriaxone was also used for PI at 1 institution.

Fluoroquinolones
Fluoroquinolones are optimized by ensuring the appropriate total
drug exposure or area under the curve. Previous Monte Carlo sim-
ulations have demonstrated that, for children aged 5–14 years, cur-
rent dosing recommendations may not achieve a high probability
of adequate pharmacodynamic targets for resistant organisms.21,24

In this survey, we applied a scenario-based question for a docu-
mented gram-negative sepsis in a 6-year-old child with normal
renal function and asked which dose of ciprofloxacin and levoflox-
acin they would recommend, respectively. Dosing recommenda-
tions were reported by 58 (77%) of the 75 respondents for both
ciprofloxacin and levofloxacin. Ciprofloxacin 30 mg/kg/day IV
was the most commonly employed: 60% responded that they
would divide every 8 hours and 5% would divide every 12 hours.
In addition, 26% responded that they would utilize ciprofloxacin
10 mg/kg/day IV divided every 12 hours. For levofloxacin, 74%
would utilize 10 mg/kg/day; 14% would utilize higher doses of
14 mg/kg/day divided twice daily and 3% would utilize 20 mg/
kg/day divided twice daily. Finally, 7% of those who would use
ciprofloxacin and 9% of those who would use levofloxacin stated
that they would not use a fluoroquinolone for this scenario.

Barriers to utilization of pharmacodynamic dosing

Survey respondents were asked to provide factors that discouraged
them from utilizing pharmacodynamically optimized dosing, and
they were able to select multiple answers. Lack of clear guidance on
appropriate β-lactam serum levels was the most frequently indi-
cated reason (48%), followed by lack of experience (36%), unreli-
able IV access (29%), lack of published data (24%), cost (20%), and
lack of physician support (9%).

Utilization of MIC, susceptible dose-dependent markers, and
resistance markers

MIC was routinely monitored by 60% of responding programs.
Thirty-five percent of programs routinely reported SDD.

2 Lauren M. Puckett et al

https://doi.org/10.1017/ash.2021.199


Routine monitoring of resistance-related gene markers [eg,
extended-spectrum β-lactamases (ESBL), Klebsiella-producing
carbapenemase (KPC)] was reported by 63% of responding pro-
grams. Overall, a moderate-to-low prevalence of gram-negative
bacteria with borderline-susceptible MICs was described. In those
45 programs that monitor MIC, cefepime use for anMIC of>2 μg/
mL, nonsusceptible for both Enterobacterales and Pseudomonas
aeruginosa, was only reported as frequently used by 2%, as some-
times used by 53%, and as rarely used by 45%. Piperacillin-tazobac-
tam resistance (i.e., MIC >16/4 μg/mL for Enterobacterales and
P. aeruginosa) was reported as sometimes used by 76% and as
rarely used by 24%. Meropenem use for MIC >1 μg/mL, which
is nonsusceptible for Enterobacterales, was reported as sometimes
used by 27% and as rarely used by 73%.

Also, 26 programs (35%) reported utilization and routine
reporting of SDD. Of those 26 programs that reported SDD,
25% would use cefepime for organisms with MICs in this range
with almost equal respondents using conventional dosing (n= 9)
or prolonged infusions (n= 8).

Previously, Clinical and Laboratory Standards Institute (CLSI)
recommended not performing screening or confirmatory testing
for ESBL organisms but instead relying on lowerMIC break points.
Since then, there has been significant clinical debate regarding
whether it is reasonable to treat susceptible organisms with an iden-
tified ESBLwith select cephalosporins, specifically cefepime. In addi-
tion, 47 hospitals responded their comfort using cefepime for an
ESBL-positive organism with low MIC: 55% suggested case-by-case
evaluation, 36% would not use cefepime, and 9% were comfortable
using cefepime if the organism was susceptible. Examples provided
for case-by-case use included cystitis or urinary tract infection
without bacteremia (15%), nonseptic patients (8%), tracheitis (4%),
low-inoculum infections (4%), and use dependent on duration,
treatment, and organisms (4%).

Survey participants were asked if they would adjust dose based
on 1 or more of the following factors: MIC, organisms reported as
SDD, or severity of infection. Moreover, 72% of programs reported
that they would adjust antibiotic dosage based on severity of infec-
tion; 52% reported that they would adjust antibiotic dosage based
on MIC; and 29% would adjust antibiotic dosage for an SDD
organism.

Therapeutic drug monitoring for β-lactams

Very few programs (n = 16, 21%) reported the use of therapeutic
drug monitoring (TDM) for β-lactams. Of those that reported
TDM, 1 hospital reported always using TDM, 6 hospitals
reported using TDM sometimes, and 9 hospitals reported that
they rarely utilized TDM. Of the programs that reported using
TDM for β-lactams, most occurred when pharmacokinetics were
expected to be altered: 33% used TDM when patients had altered
renal function, 27% used it in patients receiving extracorporeal
membrane oxygenation, and 20% used it in cystic fibrosis
patients. Other TDM uses included in cases in which there was
uncertainty of dose (20%), those who did not respond to conven-
tional regimens (20%), or in patients with either infections with
confirmed MDR organisms, or those with infections with resist-
ant organisms limiting treatment options. Among respondents,
17% provided a goal, including targets ranging from >50% time
above MIC (T>MIC; n = 7) to 40%–50% T>MIC (n = 4) to 100%
T>MIC (n = 2).

Associations with dose modifications and pharmacokinetic/
pharmacodynamic dosing

An evaluation was performed to determine associations between
pharmacist or physician FTE and employing specific processes.
Institutions with a larger physician FTE for ASP had higher
frequencies of PI and CI use (Table 1). Physician FTE did not affect
the use of TDM for β-lactams or routine monitoring of MIC. We
detected no trends with pharmacist FTE in relation to use of modi-
fied infusion times or use of TDM (Table 1).

Overall usage of pharmacodynamic dosing (based on MIC,
SDD, and severity of infection) was analyzed based on pharmacist
training and board certifications (Table 2). Most hospitals reported
that ASP pharmacists had received PGY1 training or beyond.
Among them, most stated that they would adjust dose based upon
MIC or severity of infection. Institutions with pediatric or pediatric
infectious diseases–trained pharmacists responded similarly, not-
ing that they would adjust dose based upon MIC, SDD, and
severity. The only category in which >50% of infectious diseases
trained pharmacists reported preference for dose adjustment
was severity of infection. Notably, institutions with no board-
certified pharmacists stated that they would adjust dose for
SDD, whereas institutions with BCPPS and BCIDP certified phar-
macists reported adjusting dose for MIC and severity of infection.

Table 1. Dedicated Physician Full Time Equivalent to ASP Activities in Relation
to Use of Pharmacodynamic Dose Modification

Variable

Dedicated ASP
Physician FTE,
Median (IQR)

Dedicated ASP
Pharmacist FTE,
Median (IQR)

Use of prolonged infusions

Frequently (n= 5) 0.5 (0.3–0.7) 1 (0.5–1)

Sometimes (n= 23) 0.5 (0.3–0.9) 1 (0.5–1)

Rarely (n= 21) 0.3 (0.2–0.5) 0.9 (0.5–1)

Never (n= 11) 0.3 (0.1–0.3) 1 (1–1)

Use of continuous infusions

Sometimes (n= 14) 0.81 (0.3–1) 0

Rarely (n= 21) 0.3 (0.2–0.6) 1 (0.6–1)

Never (n= 24) 0.3 (0.2–0.4) 0.9 (0.5–1)

TDM for β-Lactams

Always (n= 1) 0.25 1

Sometimes (n= 6) 0.3 (0.2–0.5) 0

Rarely (n= 9) 0.4 (0.3–0.7) 0.5 (0.4–0.6)

Never (n= 42) 0.3 (0.2–0.6) 1 (0.7–1.5)

Performs routine MIC monitoring

Yes (n= 44) 0.3 (0.2–0.5) 1 (0.5–1)

No (n= 12) 0.3 (0.2–0.5) 1 (1–1)

Dosing modifications performed based on factors

MIC (n= 38) 0.35 (0.3–0.6) 1 (0.5–1)

SDD (n= 21) 0.5 (0.3–0.8) 1 (0.5–1)

Severity (n= 53) 0.3 (0.2–0.5) 1 (0.5–1)

Note. ASP, antimicrobial stewardship program; FTE, full-time equivalent; IQR, interquartile
range; TDM, therapeutic drug monitoring; MIC, minimum inhibitory concentration; SDD,
susceptible dose dependent.
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Lastly, those with BCPS-certified pharmacists reported that they
would modify dose only for infection severity.

Although programs with pharmacists who had been trained in
pediatrics (92%) or pediatric infectious diseases (80%) reported
using PI at least rarely, 29% of programs with infectious dis-
eases–trained pharmacists reported never using this modality
(Figs. 1 and 2). Institutions in which pharmacists had BCPPS cer-
tification had the highest reported use of PI or CI (100% reported
using PI and 84% used CI) versus pharmacists with BCPS (77%
used PI and 59% used CI) or BCIDP (79% used PI and 57% used
CI). We also detected a significant association between routine
MIC monitoring and the use of modified dosing regimens.
Institutions that did not routinely monitor MIC utilized signifi-
cantly less PI (P < .001) and CI (P = .01) than institutions that
utilized routine monitoring.

Discussion

Treatment of gram-negative infections in children continues to
be challenging due to increasing MICs and prevalence of resis-
tance. A recent meta-analysis showed an increase in MDR
P. aeruginosa from 15.4% to 25% between 1999 and 2012.25

One potential method for suppressing resistance development
is pharmacodynamic dosing.4–7 Although these methods have
shown enhanced clinical response rates and improvement in
surrogate markers of outcomes in adults, only a small amount
of published information has shown similar outcomes in pedi-
atric patients.8–10,22,23,26–34 Unfortunately, because pediatric
patients have different pharmacokinetic parameters than adults,
the specifics of dosing optimization cannot be simply extrapo-
lated from adult models. Monte Carlo simulations have been
recommended as one method to help optimize pediatric

antibiotic dosing.12 Many of these simulations have found that
traditional dosing of β-lactams was only predicted to provide bac-
tericidal activity for many organisms with low MICs. Courter
et al20 showed the potential for continuous and prolonged
infusions to optimize pharmacodynamics of time-dependent anti-
biotics in children. Although traditional doses with standard inter-
mittent infusions were unlikely to provide bactericidal activity
against P. aeruginosa strains, use of higher dosing or PI or CI
achieved 90% likelihood of bactericidal exposures for common
β-lactam antibiotics.20

In this study, most children’s hospitals use PI of cefepime,
piperacillin-tazobactam, and meropenem only in patients with
known high MICs or unique pharmacokinetic parameters (e.g.,
cystic fibrosis). In comparison, most rarely or never used CI for
β-lactams. Reasons for the not using PI or CI were lack of guide-
lines, lack of experience, and insufficient patient venous access.

Although the pediatric Surviving Sepsis guidelines recommend
the use of PI and CI in treating pediatric patients, they do not pro-
vide any guidance regarding dosing or monitoring.35 To address
these barriers, studies assessing benefits and outcomes in pediatric
patients are needed.

Monte Carlo simulations have also been performed to evaluate
and optimize fluoroquinolone dosing in children.21,24 In simula-
tions, dosages of ciprofloxacin at 30–40 mg/kg/day every 12 hours
were needed to achieve high probability of meeting pharmacody-
namic targets.24 For levofloxacin, the specific dosage needed for
optimal bactericidal activity against gram-negative organisms is
uncertain. A Courter et al21 model suggested that in children
5–14 years, even doses of levofloxacin 8 mg/kg every 12 hours only
achieved pharmacodynamic targets in 90% of patients for gram-
positive bacteria with an MIC ≤ 1 mg/L.21 Given that gram-
negative bacteria require higher pharmacodynamic targets,
optimal activity would only be seen at even lower MICs.

Based on survey data, pharmacodynamically optimized dosing
of ciprofloxacin was more commonly utilized than optimized dos-
ing of levofloxacin (by 65% and 17% of respondents, respectively).
Interestingly, almost 10% of respondents said that they would
not use a fluoroquinolone to treat gram-negative sepsis. These
responses could possibly reflect different interpretations of the
survey question, the fact that fluoroquinolones are not a first-
line–recommended agent in pediatric sepsis, or limited literature
or previous experience with suboptimal outcomes.

The TDM of β-lactams has been used sporadically in pediat-
rics, and use will likely increase thanks to new recommendations
in the Pediatric Surviving Sepsis Campaign International
Guidelines.35 In this survey, TDM was reportedly used at 20%
of institutions, with lack of published guidelines, testing and lab-
oratory support identified as common barriers. Responses also
reflected an overall lack of experience and confidence with
employing TDM; few respondents provided an opinion on
appropriate therapeutic goals for β-lactam monitoring. For this
technology to see wider utilization, more literature, guidance,
and timely processing are needed.

Debate continues regarding the use of certain cephalosporin
antibiotics to treat ESBL-positive organisms.36 Data from adults
studies suggest that outcomes are closely related to the MIC of
the infecting organism and that clinical failure significantly
increases with increasing MIC.37–39 No specific pediatric data
are available on this topic, making it uncertain whether lowering
the MIC break points is sufficient to ensure successful outcomes
with susceptible ESBL-positive organisms. This cautious outlook
seems to be shared by survey respondents, who reported using

Table 2. Pharmacist Training in Relation to Modified Dosing Regimens Based on
Patient Factors

Modified Dose
MIC,

No. (%)
SDD,

No. (%)
Severity,
No. (%)

PGY1 training or higher (n= 64) 35 (55) 22 (34) 53 (83)

Any PGY2 or fellowship training (n= 50) 29 (58) 17 (34) 40 (80)

Pediatric2 (n= 28) 23 (82) 14 (50) 27 (96)

Infectious diseases3 (n= 24) 11 (46) 8 (33) 17 (71)

Pediatric infectious diseases4 (n= 7) 5 (71) 4 (57) 4 (57)

No postgraduate training (n= 3) 2 (67) 1 (33) 1 (33)

Any board certification (n= 52)5 28 (54) 15 (29) 40 (77)

BCPPS (n= 22) 13 (59) 6 (27) 15 (68)

BCPS (n= 29) 9 (31) 8 (28) 18 (62)

BCIDP (n= 16) 9 (56) 4 (25) 13 (81)

No board certification (n= 18) 10 (56) 8 (44) 14 (77)

Note. MIC, minimum inhibitory concentration; SDD, susceptible dose dependent; PGY,
postgraduate year of training; BCPPS, board-certified pediatric pharmacy specialist; BCPS,
board-certified pharmacotherapy specialist; BCIDP, board-certified infectious diseases
pharmacist. PGY1 or higher includes pharmacists that noted training of PGY1, PGY2 (any
type), fellowship or any combination of those trainingmodalities. Pediatrics training includes
(pediatrics (PGY2 or fellowship). Pharmacist infectious diseases training includes infectious
disease (PGY2 or fellowship) and pediatric infectious disease (PGY2 or Fellowship). Pediatric
infectious diseases training includes only pediatric infectious disease (PGY2 or fellowship).
Some pharmacists have multiple trainings, so numbers of specific trainings are higher than
overall number with board certification. Red: 0 to < 33%; Yellow 33% to < 66%; Green >/=
66%
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cephalosporin antibiotics only on a case-by-case basis (63%) or
never (36%). Example scenarios in which respondents would
use a cephalosporin included low-inoculum infections and
instances in which an infection is exposed to high levels of antibi-
otic for an extended period (e.g., cystitis without bacteremia treated
with renally eliminated antibiotics).

The implementation of the SDD category by the CLSI has
allowed for retained utilization of important antimicrobials in

adult patients by providing specific dosing regimens to use with
higher MICs.40 Caution should be taken when extrapolating
CLSI recommended doses to pediatric patients due to differing
pharmacokinetic parameters in children. and such dosing should
be evaluated specifically at the SDD MIC.20,41 Concern about
extrapolating these standards to pediatric patients was shared by
most survey respondents; only 29% of programs reported dose
modification with SDD MIC organisms.

Fig. 1. Relation of pharmacist training to frequency of use of prolonged infusions of β-lactams. Note. PGY, postgraduate year of training; BCPPS, board-certified
pediatric pharmacy specialist; BCPS, board-certified pharmacotherapy specialist; BCIDP, board-certified infectious diseases pharmacist. (1) PGY1 or higher includes
pharmacists that noted training of PGY1, PGY2 (any type), fellowship or any combination of those training modalities. (2) Pediatrics training includes pediatrics (PGY2
or fellowship). (3) Pharmacist infectious diseases training includes infectious disease (PGY2 or fellowship) and pediatric infectious disease (PGY2 or fellowship). (4)
Pediatric infectious diseases training includes only pediatric infectious disease (PGY2 or fellowship). (5) Some pharmacists have multiple trainings, so numbers of
specific trainings are higher than the overall number with board certification are higher than overall number with board certification.

Fig. 2. Relation of Pharmacist training to frequency of use of continuous infusions of β-lactams. Note. PGY, postgraduate year of training; BCPPS, board-certified
pediatric pharmacy specialist; BCPS, board-certified pharmacotherapy specialist; BCIDP, board-certified infectious diseases pharmacist. (1) PGY1 or higher includes
pharmacists that noted training of PGY1, PGY2 (any type), fellowship or any combination of those training modalities. (2) Pediatrics training includes pediatrics (PGY2
or fellowship). (3) Pharmacist infectious diseases training includes infectious disease (PGY2 or fellowship) and pediatric infectious disease (PGY2 or fellowship). (4)
Pediatric infectious diseases training includes only pediatric infectious disease (PGY2 or fellowship). (5) Some pharmacists have multiple trainings, so numbers of
specific trainings are higher than the overall number with board certification are higher than overall number with board certification.
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This study included a large number of participating hospitals, in
part due to the utilization of the SHARPS Collaborative. As
expected, most responding institutions were freestanding child-
ren’s hospitals with >100 beds. Most survey responders were
ASP pharmacists. Surveyed hospitals were supported by a median
of 1 FTE ASP pharmacist with some level of postgraduate training.

Programs employing a pharmacist with pediatric training,
either in pediatrics or pediatric infectious diseases, were more fre-
quent users of PI and CI β-lactams, and they performed
more dose modification based on MIC and infection severity.
Although this finding is likely multifactorial, it is probably related
to the children’s hospitals hiring well-trained pharmacists to man-
age critically ill children and pharmacists with pediatric training
better understanding children’s unique pharmacokinetics.

In this study, most reporting hospitals were ≥100 beds and met
the recommended ASP pharmacist FTE percentage with a median
of 1 FTE.42 These factors may be why pharmacist FTE was not
associated with any observed differences in responses. Physician
FTE was lower, at a median of 0.3 (IQR, 0.2–0.6). Importantly, sites
that reported lower ASP physician FTE were less likely to partici-
pate in dose optimization strategies, perhaps because the physician
is not given sufficient time to actively assist and champion
the ASP.42

This study has several limitations. Data collection was from
respondents entering information based upon their practice.
Bias may have been introduced into the data because only 1 staff
member responded to the survey questions, and different staff may
have had different responses based on their experiences. This study
may also have been affected by sampling bias; only hospitals that
were part of the SHARPS Collaborative listserv received the survey.
Most responding institutions were also freestanding children’s
hospitals, potentially limiting the generalizability of these findings
to other institution types. Because response was voluntary, institu-
tions that elected to participate in this survey may inherently place
higher priority on antimicrobial dosing initiatives, whichmay have
introduced further bias to the analysis.

Overall, variation exists in the optimization of dosing antimi-
crobials for pediatric patients in an era of increasing resistance.
Further guidance by national and international groups is needed
to continue to guide and increase pharmacodynamic dosing of
children.
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