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Exploring Spatio-temporal 
Dynamics of Cellular Automata for 
Pattern Recognition in Networks
Gisele Helena Barboni Miranda1,*, Jeaneth Machicao2,* & Odemir Martinez Bruno1,2,*

Network science is an interdisciplinary field which provides an integrative approach for the study 
of complex systems. In recent years, network modeling has been used for the study of emergent 
phenomena in many real-world applications. Pattern recognition in networks has been drawing 
attention to the importance of network characterization, which may lead to understanding the 
topological properties that are related to the network model. In this paper, the Life-Like Network 
Automata (LLNA) method is introduced, which was designed for pattern recognition in networks.  
LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces 
a spatio-temporal pattern used to extract the feature vector for network characterization. The method 
was evaluated using synthetic and real-world networks. In the latter, three pattern recognition 
applications were used: (i) identifying organisms from distinct domains of life through their metabolic 
networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns 
varying according to different lighting conditions. LLNA was compared to structural measurements and 
surpasses them in real-world applications, achieving improvement in the classification rate as high as 
23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition 
applications using networks and demonstrates potential for general applicability.

Networks have been successfully used in many areas of knowledge that covers practically all fields of Science: 
Earth1–6, Social7–12, Life13–18, Physical19–23 and Formal Sciences24–27. The main reason behind the growing interest 
in networks lies in the fact that it shows a different perspective of the traditional data analysis. During centuries, 
the scientific research paradigm was ruled by the reductionist approach. Scientific and technological advances 
increased the amount of data and also encouraged the development of powerful computers, which are capable of 
processing and storing this huge amount of data. This scenario, often called “big data”28, requires the development 
of an integrative paradigm of science. Complex systems, in particular, chaos theory and networks are research 
fields that have contributed with interesting approaches to this scenario. Both have shown to be able to handle 
multiple actors, multiple events and multiple variable problems29–31. Particularly, networks are a good approach to 
model complex systems once they incorporate the connectivity among the elements of the system.

During the last decades, Pattern Recognition (PR) has been widely used in both fundamental and applied 
sciences. Remarkably, most of the PR applications deals with a big amount of data which are difficult handle 
with the reductionist approach. A classical example is the medical field, where computational and mathematical 
methods dealing with huge amount of data allowed a strong innovation in the field. Networks are a natural tool 
for data modeling. In face of that, the combination of PR and networks arises as an important alternative in the 
big data scenario for finding, identifying, analyzing, and clustering patterns that are unfeasible to deal with other 
approaches. Pattern recognition in networks aims at the characterization of networks by extracting information 
regarding the correlation between vertices and their relationship with topology. This information may lead to 
the comprehension of network patterns that are intrinsically related to the network model. Therefore, the choice 
of adequate network descriptors is crucial for this kind of applications. Many measurements can be extracted 
from the network topology and be used to distinguish network types32. These measurements can be related to 
connectivity attributes, such as the mean degree and the degree distributions and correlations. Distances and 
path lengths are also important topological attributes when the spatial position of nodes is relevant. Moreover,  
there are measurements related to cycles in networks such as transitivity and the clustering coefficient33, which 
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quantifies the small-world phenomenon in networks. We can also mention centrality measures, such as between-
ness, closeness and eigenvectors. Other measurements include spectral and hierarchical measures as well as frac-
tal dimension among many examples32.

Structural measures have been investigated mainly in the context of network analysis, however much less 
effort was made in pattern recognition applications. A few related studies have addressed this challenging topic 
and have had significant advances. Costa et al.34 analyzed both traditional measures regarding structural prop-
erties of networks and methods for dimensionality reduction, as many measures can be correlated to each other. 
They also discuss the possibility of expanding classical pattern recognition techniques to network analysis. 
Moreover, Golçalves et al.35 proposed a method based on partially self-avoiding deterministic walks to classify 
network models using the agent trajectory over the network topology. The joint distribution of the transient time 
and the cycle period were used to compose the feature vector. Their results indicate an improvement in the correct 
classification rate when compared to traditional network measures. Networks have also been used to perform 
pattern recognition tasks in Computer Vision, such as contour36,37 and texture analysis38,39.

In this paper we proposed the Life-Like Network Automata (LLNA) which was designed as a method for 
network analysis for pattern recognition applications. In the LLNA approach, networks are modeled as the CA’s 
tessellation and the spatio-temporal pattern obtained from the evolution of the CA is used to extract the feature 
vector for network characterization. Life-Like Network Automata uses a family of CAs inspired by the rules of 
Life-like, which is an extension of the popular Conway’s Game of Life40. The network descriptor is obtained from 
the spatio-temporal pattern as described in Fig. 1.

Cellular Automata (CA) are dynamical systems defined over tessellations of the Euclidean space, which are 
governed by deterministic rules that define the states of the cells at each time step. CAs are essentially discrete, 
i.e., time, space and the set of states are discrete. In recent years, CAs were largely explored as modeling tools of 
systems characterized by many variables which would be difficult to handle with partial differential equations. On 
the other hand, the evolved spatio-temporal patterns can provide emergent behavior, resulting from the dynam-
ics of each individual cell. Therefore, they have also become a relevant tool for the study of complexity and the 
formation of spatio-temporal patterns41. CA were originally designed in regular tessellations (square-grids), not-
withstanding, most of the real-world systems are built upon irregular tessellations and present topologies that are 
much more complex such as the scale-free networks.

In the 1990s, studies modeling CAs on irregular tessellations began appearing in the literature. The first stud-
ies integrating both areas of Networks and CAs can be found in refs 42, 43. Watts discusses CA computation in 
small-world networks in tasks, such as the density classification problem and synchronization. Tomassini et al. 
discuss properties of small-world networks in the global computing capacity of CA, such as the robustness of the 
network topology44. Marr & Hütt45,46 also studied the dynamics of evolving networks through the use of CAs. 
Their results indicate a strong association between entropy measurements obtained from the spatio-temporal 
patterns and the degree distribution of a network. Moreover, the majority problem and some related rules are 
explored in this context. Dynamic pattern evolution was also studied by Zhou & Lipowsky47 regarding scale-free 
topology. The Ising model is used to describe the states of each vertex that evolve according to local majority rules. 
The authors found that scale-free networks present qualitatively different dynamic behavior given a threshold 
exponent of γ/2 (γ is the power law exponent). In other related works, the network topology was also explored 
using CAs and other dynamical models48–50.

Figure 1.  Pattern Recognition in networks using spatio-temporal patterns evolved by a cellular automata. 
(a) Modeling a binary cellular automata over the network topology. Black cells represent the nodes in the “on” 
state and white cells, the nodes in the “off ” state. (b) Spatio-temporal diagram of the evolved automaton. Each 
column of the diagram represents the evolution of a single node and each row represents the configuration 
of the states at each time step. (c) Network descriptor represented by a vector of attributes obtained from the 
previous diagram.
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In contrast, LLNA is based on the spatio-temporal patterns of a binary CA governed by the dynamics of 
rules inspired by Life-like CA. Instead of using the number of living cells, the proposed CA performs a map-
ping between the density of living neighbors and a specific Life-like rule. We evaluated LLNA in two distinct 
types of applications: synthetic networks and real-world networks. In the former, we performed the classification 
of theoretical network models in two experiments: general and scale-free models. We used well-known general 
models namely, random, small-world, scale-free and geographical. For the scale-free classification, we consid-
ered five categories of scale-free networks generated according to the models proposed by Barabási & Albert51 
and Dorogovtsev & Mendes52. In the latter, we performed classification tasks for real-world applications that use 
networks as data representation. These data are composed by samples of different categories, and therefore, their 
automatic identification remains an important problem for each specific application. We used LLNA in three 
pattern recognition applications: (i) identifying organisms from distinct domains of life, Archaea, Bacteria and 
Eukaryota, through their metabolic networks. The dataset used was first studied by Jeong et al.13; (ii) identifying 
structural patterns in two online social networks, Twitter and Google+​, using the samples of social interactions 
obtained from the SNAP database53, and, finally, (iii) classifying stomata distribution patterns varying according 
to different lighting conditions54. Using theoretical network models supports the understanding of the obtained 
results, as these topologies present known properties, and using real-world networks is a strong evidence that 
LLNA is a good choice for pattern recognition applications using networks and demonstrates general applicability.

Results
Life-Like Network Automata (LLNA).  LLNA is a method for pattern recognition which uses a family of 
CAs inspired by the rules of Life-like. The choice of the Life-like family was due to the flexibility of these CAs 
which provide a vast rule space55–57. CAs are usually represented on regular tessellations (square grids) in n-di-
mensional Euclidean spaces, n, and the set of transition rules, Φ​, is defined over a fixed number of neighbors. 
However, when considering CAs built upon irregular tessellations45,58,59, such as networks, the number of neigh-
bors of each cell may vary considerably. This issue can restrict the comparison between two systems. To overcome 
this, we focused on a particular solution42,45 that uses the neighborhood density instead of the number of neigh-
bors alive when applying the transition rules.

Given a CA described by the quintuple C T N φ= s, , , ,0 , we assume the following correspondences: (i) the 
tessellation   is represented by the network. In this approach, every network node is considered as a CA cell, i.e. 
both terms “node” and “cell” are used here interchangeably. (ii) The set of states  is composed by two elements, 
such that ∈si , where si =​ 0 represents the “dead” state and si =​ 1 represents the “alive” state. (iii) s0 is the initial 
configuration of the states for all the cells ∈ci   i.e., s(ci, 0) =​ s0(ci). (iv) The set of neighbors   is given by the 
adjacency matrix A, where Aij =​ 1, if i is connected to j and Aij =​ 0, otherwise. Thus, the number of neighbors or 
degree of node i is defined as: = ∑ =k Ai j

N
ij1 , where N is the total number of nodes. As expected, ki varies for each 

node and, therefore, each type of network has a characteristic degree distribution. Moreover, the neighborhood 
density (ρi) of node i for a given state sk =​ s can be generically defined by
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state of cell ci in time t. The classic Life-like CA can be characterized by the notation Bx/Sy (e.g. B23/S3, B18/S246, 
B567/S09, etc), such that, = … ∈ ≤ ≤x x x x x x{ , , , , 0 8}n i i0 1  and = … | ∈ ≤ ≤y y y y y y{ , , , , 0 8}m i i1 2  
are two sets corresponding to the numbers of possible living cells that satisfy the conditions of birth and survival. 
Notice that, when combining these conditions, there is a total of 2(9+9) (=​262144) Life-like rules. This family of CAs 
are defined over a two dimensional regular tessellation and their neighbors are given by Moore’s neighborhood 
which is composed by the eight nearest neighbors. Therefore, B and S are sets containing from zero up to eight ele-
ments (additional information about Life-like CAs can be found in section S1 of supplementary material). We 
traced a correspondence between the number of alive neighbors, given by the Life-like rule, and the density ρi of 
each network node. This correspondence takes place with the definition of nine intervals. The first eight intervals are 
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verifies whether the interval defined over x is satisfied for node i. For instance, considering rule B3/S23, three 
neighbors must be alive so that a node is born (x =​ 3), therefore the birth condition is given by: =h t( ) 1i

3 , while 
the survival condition is given by =h t( ) 1i

2  or =h t( ) 1i
3 . Finally, the transition function for LLNA is defined by
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where φi(t +​ 1) will be the state of node i in the next time step and φi(t) is its current state.
Figure 2(a) shows the spatio-temporal diagrams obtained for random, small-world, scale-free and geograph-

ical networks which were evolved by rule B1357/S2468 according to Eq. 3. All the networks used to obtain the 
respective diagrams present N =​ 500 nodes and different mean degree 〈​k〉​ and they were evolved for t =​ 500 
time steps. Initially, in t =​ 0, a possible state is assigned to each node according to a uniform distribution. The 
space-time diagram depicts the pattern formation where each column represents a node while each row repre-
sents the time evolution of the states for each node. Traditionally, for elementary CAs, every node is surrounded 
by its neighbors, since the number of neighbors is fixed. However, in the diagrams of Fig. 2, the neighborhood 
relation was not preserved due to variations in the degree of the nodes. Nevertheless, the columns were ordered 
according to their connectivity where the left-most corresponds to nodes with the smallest values of ki, and, the 
right-most, to the ones with the largest values of ki.

Figure 2.  Space-time diagrams for different network models: random, small-world, scale-free and 
geographical. These networks were evolved using rule B1357/S2468. (a) All the diagrams of this figure were 
obtained for networks generated with N =​ 500 nodes and four different values of 〈​k〉​. The CA was evolved for 
t =​ 500 time steps. (b) Highlighted space-time diagram of a scale-free network with 〈​k〉​ =​ 8. The states of the 
nodes are represented horizontally (from left to right), where the white pixels correspond to the “alive” nodes 
and the black pixels to the “dead” nodes. Each time step t is represented vertically. The colors observed at the 
bottom of the diagram correspond to the values of entropy of each node. The red cells correspond to the highest 
entropy values while the blue cells, to the lowest.
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There are four main patterns observed in these diagrams in terms of dynamics: stable, oscillating, chaotic 
and complex. For instance, all of these patterns can be observed in different regions of the highlighted diagram 
of Fig. 2(b), which was obtained using a scale-free network as tessellation with 〈​k〉​ =​ 8. The colors at the bottom 
of this figure are related to values of the Shannon entropy which quantifies how homogeneous is the evolution 
pattern and is defined in the Materials and Methods section. Red cells represent the highest entropy values. 
For this example network, hubs tend to present chaotic and complex patterns once they are on the right-most 
side of this diagram. Whereas in the diagram of the same network model with 〈​k〉​ =​ 10 there are no stable pat-
terns. Moreover, the spatio-temporal diagrams of the other models also present some of these patterns, although 
they may change considerably regarding the area of occupation. Random patterns appear more frequently as 〈​k〉​ 
increases, consequently, the entropy also increases. This effect is due to the addition of new edges in the network.

The Shannon entropy, the word length and the Lempel-Ziv complexity were used to assess the spatio-temporal 
patterns (see section S2 of supplementary material for details about their definitions). We have investigated how 
these measurements vary for the different topologies studied in this paper. The evolution provided by each net-
work node was analyzed in terms of a time series containing only zeros and ones. Except for the word length, 
which is calculated for the whole diagram, and, therefore is a global measurement, the other two, the Shannon 
entropy and the Lempel-Ziv complexity, were calculated for each network node. Then, the distributions of the 
three measurements were obtained and the corresponding histograms are illustrated in Fig. 3. Each row repre-
sents a distribution: Shannon entropy µ��( )S , word length frequency µ��( )W  and the Lempel-Ziv complexity µ��( )L , 
while each column represents a different network model. The networks used to generate these histograms present 
N =​ 500, 〈​k〉​ =​ 4 and t =​ 350. It can be observed that the scale-free network at Fig. 3 presents large frequency of 
nodes with high entropy by comparing µ��S among the different network topologies. These nodes correspond to the 
nodes with the highest values of 〈​k〉​, as observed in Fig. 2. The histogram corresponding to the other topologies 
also present large frequency of nodes with high entropy. This is due to the presence of oscillating spatio-temporal 
patterns. Regarding µ��W , the respective histograms show that the most frequent words are the smallest ones. 
Moreover, the Lempel-Ziv distribution µ��L also shows significant differences among the network models.

Analysis and selection of parameters.  LLNA can be influenced by the following parameters: the Life-like 
rule; t, the number of evolution steps of the automaton, and, σ​, the percentage of the initial alive population in 
t =​ 0. The selection of the Life-like rule for a pattern recognition application is performed through an optimiza-
tion procedure in which classification accuracy is maximized. In this context, accuracy is the percentage of cor-
rect classified instances. All Life-like rules are evaluated regarding the accuracy they provide as transition 
function (see Eq. 3) of the proposed Life-Like Network Automata. We have conducted an experiment in order to 
find the most discriminating rules for classifying network models using this optimization procedure. Therefore, 
each network model was defined as a class in this experiment: random, small-world, scale-free and geographical. 
We used the rule-selection-dataset which contains networks of each theoretical model and is described in detail in 
the Materials and Methods section. Figure 4(a) presents the histogram of the accuracy achieved by all Life-like 
rules. We used k-NN classifier and the Shannon entropy distribution µ��( )S  as feature vector. It can be observed that 
the majority of the rules provided accuracies greater than 60% and a set of specific rules provided accuracies 
greater than 90%. From this set, we selected the 10 rules which provided the highest accuracies in order to be used 
in the subsequent experiments with synthetic networks.

Figure 3.  Histogram of the three distributions used to quantitatively analyze the spatio-temporal patterns 
of distinct network models: Shannon entropy µ��S, word length µ��W and Lempel-Ziv complexity µ��L. The 
following parameters were adopted: N =​ 500, 〈​k〉​ =​ 4 and t =​ 350.
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We also analyzed whether accuracy may be affected by the other two parameters: t and σ​ and the results are 
shown in Fig. 4(b) and (c), respectively. In the first one, we can observe that the correct classification rate tends to 
increase as the values of t also increases. The initial accuracy is already high given that the three illustrative rules 
are amongst the ten previously selected rules. There is also a rapid convergence of the accuracy values, which 
was observed for the three analyzed rules, although this behavior cannot be assumed for all the rules. However, 
for patterns that do not converge, an increase in the number of time steps may provide more details about the 
topology being evolved. Regarding the influence of the number of alive nodes in the initial configuration of the 
automaton, we have σ​ representing the probability of having cells ci such that s(ci) =​ 1 at t =​ 0. We performed the 
same experiment of network classification considering different values of σ​. We observed that values of σ​ close to 
a uniform distribution of states, i.e. σ​ =​ 50%, provided the highest accuracies, as shown in Fig. 4(c).

Based on the observed behavior of t and σ​, we adopted the following values t =​ 350 and σ​ =​ 50% in the sub-
sequent experiments performed in this paper. Additionally, we performed an analysis of the influence of the 
number of network nodes, N, which is presented in Section S5 of supplementary material.

Pattern recognition in synthetic networks.  This section presents three experiments with synthetic net-
works in order to illustrate the pattern recognition approach of Life-Like Network Automata and also to validate 
the parameters obtained in the training phase, as shown in the previous section. Similarly to the training phase, 
the first experiment also aims at the classification of network models (random, small-world, scale-free and geo-
graphical). However, a new dataset, named synthetic-dataset, was generated containing other samples of the same 
network models. Therefore, there is no intersection between the rule-selection-dataset and the synthetic-dataset 
(see Materials and Methods section for a complete description of both datasets). The networks present different 
combinations of N and 〈​k〉​ in order to increase the heterogeneity of synthetic-dataset. We compared the perfor-
mance of LLNA with the following structural measurements of networks: average degree (〈​k〉​), average hierarchi-
cal degree of level 1 〈 〉H( )k1

, average hierarchical degree of level 2 〈 〉H( )k2
, average clustering coefficient (〈​cc〉​), 

average path length (l) and degree Pearson correlation (ρP). For LLNA, we used the following measurements 
extracted from the spatio-temporal patterns: Shannon entropy, word length and Lempel-Ziv complexity. The 
distribution of these measurements µ��S, µ��W  and µ��L, were used as feature vectors, respectively, as well as the com-
bination of them µ µ µ�� �� ��[ , , ]S W L . We also tested the accuracy of the average values of those measurements as feature 
vectors: [〈​μS〉​, 〈​μW〉​, 〈​μL〉​]. The structural measurements were also evaluated both individually and combined. All 
the experiments presented in this section were performed using SVM classifier and 10-fold cross validation.

Figure 5(a) presents the accuracy of four rules that are among the ten previously selected rules. We can observe 
high accuracy values for all the feature vectors except for the vector [〈​μS〉​, 〈​μW〉​, 〈​μL〉​], which is composed by the 
average values of each measurement. The maximum accuracy obtained was 99.992 ±​ 0.002% for rule B135678/
S03456 using the combination of the distributions µ µ µ�� �� ��[ , , ]S W L . When analyzed separately, the distributions also 
provided high values of accuracy, especially the distribution of the Shannon entropy, µ��S. Figure 5(b) presents the 
canonical analysis for the synthetic-dataset using µ��S as attribute and rule B135678/S03456 as transition function. 
The canonical analysis is a regression analysis that provides a linear combination of the original attributes which 
maximizes the separation between the classes of interest60. Therefore, the first and the second canonical variables 
correspond to the eigenvectors with the highest eigenvalues of a matrix that quantifies the intra-class variation 
regarding the instances of the same class, and, another matrix which quantifies the inter-class variation among the 
classes. There is a clear separation among the four network models which corroborates the high accuracies 
obtained for the distributions as feature vectors. Additionally, Fig. 5(g) presents the comparison between the 
structural measurements and the best LLNA rule. Both approaches provided similar results (100% of accuracy 
considering the standard deviation). This can be explained by the fact that the networks used in this experiment 
were generated from classical theoretical models which present known properties that can be characterized by 
several measurements.

In another experiment, we evaluated the influence of the network mean degree, 〈​k〉​, in the spatio-temporal 
pattern. As shown in Fig. 2, different evolution patterns can be observed for the same network model given differ-
ent values of 〈​k〉​. One question that can be raised is whether the spatio-temporal pattern for a given network model 
with specific 〈​k〉​ is unique. We performed this investigation considering now the combinations of 〈​k〉​ and the 
network models as classes. Therefore, we have a total of 28 classes, resulting from the combination of seven distinct 

Figure 4.  (a) Accuracy distribution for the 262144 rules of the Life-like family regarding the correct 
classification rate of network models (random, small-world, scale-free and geographical). The highlighted rules 
provided the best results. (b) Accuracy (%) in relation to the evolved time t for the three highlighted rules.  
(c) Accuracy (%) for different initial distributions of alive nodes (σ​) using rule B135678/S03456.
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values of 〈​k〉​, varying from 〈​k〉​ =​ 4 to 〈​k〉​ =​ 16, and four network models. This experiment was also performed with 
synthetic-dataset. The results regarding accuracy are shown in Fig. 5(c). The four rules highlighted in this figure are 
the ones that provided the highest accuracies among the ten selected rules. Using the same set of feature vectors, 
the maximum accuracy obtained was 90.76 ±​ 0.07% for rule B01678/S0457. This rate was also achieved using the 
combination of the distributions as attributes, and, when comparing the three distributions separately, we can see 
that µ��S provided the highest accuracies individually for the selected rules. This result shows that we can distinguish 

Figure 5.  Synthetic network characterization with LLNA. (a) Accuracy (%) and standard deviation obtained 
in classifying network models: random, small-world, scale-free and geographical, using five different feature 
vectors and four Life-like rules. The vectors µ��S, µ��W and µ��L represent the distributions of the Shannon entropy, 
the word length and the Lempel-Ziv complexity, respectively. The vector µ µ µ

�� �� ��[ , , ]S W L  is composed by the 
combination of these distributions, and, [〈​μS〉​, 〈​μW〉​, 〈​μL〉​] contains the average values of the same 
measurements. (b) Canonical analysis of the four network models using rule B135678/S03456 and µ µ µ�� �� ��[ , , ]S W L  
as feature vector. (c) Accuracy (%) obtained in classifying network models in combination with 〈​k〉​ as classes. 
(d) Canonical analysis of the 7 distinct values of 〈​k〉​ for the geographical network model using rule B01678/
S0457 and µ µ µ�� �� ��[ , , ]S W L . (e) Accuracy (%) obtained in classifying scale-free network models generated with 
linear and non linear preferential attachment. (f) Canonical analysis of (e) using rule B0157/S457 and 
µ µ µ
�� �� ��[ , , ]S W L . Plots (g), (h) and (i) present the comparison with structural measurements which are related to 

the plots presented in (a), (c) and (e), respectively. The following measurements were used: mean degree (〈​k〉​), 
average hierarchical degree of level 1 〈 〉H( )k1

, average hierarchical degree of level 2 〈 〉H( )k2
, average clustering 

coefficient (〈​cc〉​), average path length (l) and degree Pearson correlation (ρP). The best accuracy obtained by 
LLNA is highlighted in yellow.
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the evolution pattern not only for the network models, but also for networks with distinct values of 〈​k〉​. The average 
measurements did not present a good performance as well as for the classification of the network models.

Figure 5(d) presents the canonical analysis regarding the 7 distinct values of 〈​k〉​ for the geographical network 
model using the feature vector and the rule that provided the best performance in Fig. 5(c). The confusion matrix 
for rule B01678/S0457 and the canonical analysis for the other network models are shown in Figs S2 and S3 of 
supplementary material, respectively. It can be observed that as the values of 〈​k〉​ increases the network topology 
tends to be highly connected, and, therefore, the error rate also increases and the discrimination among the 
classes becomes less clear, as shown in Fig. 5(d). These results are corroborated by measurements derived from the 
confusion matrix (see Table S6 of supplementary material). Considering, for instance, the values of the area under 
the curve in the ROC (Receiver Operating Characteristic) analysis, it can be observed that the AUC value decreases 
for larger values of 〈​k〉​ for all the network models. The performance measurements for all the 10 selected rules 
and for both experiments described so far can be found in Sections S6 and S7 of supplementary material. Finally, 
Fig. 5(h) presents the comparison between the structural measurements and the best LLNA rule (B01678/S0457). 
In this case, there was an improvement in the accuracy rate when using LLNA. The maximum accuracy obtained 
with the structural measurements as attributes was 65.2 ±​ 0.2% when combining five measurements in the same 
feature vector ([〈 〉Hk1

, 〈 〉Hk2
, 〈​cc〉​, l, ρP]). Therefore, the improvement in accuracy using LLNA was 25.5 ±​ 0.3%. In 

this analysis, we did not used 〈​k〉​ as attribute since we want to classify the network model in combination with  
〈​k〉​.

In the third experiment with synthetic networks, we evaluated LLNA in the characterization of different 
scale-free models. We performed the classification of scale-free networks with both linear and non-linear prefer-
ential attachment: α =​ 0.5, 1.0, 1.5, 2.0. These networks were generated according to the well-known method 
proposed by Barabási & Albert51. We also considered another set of scale-free networks generated using the 
method proposed by Dorogovtsev & Mendes52. We used the synthetic-scalefree-dataset in this experiment, which 
contains instances of five distinct classes representing the different scale-free models. Similarly to the other exper-
iments, the performance of each feature vector is shown in Fig. 5(e). The combination of the distributions also 
provided the highest accuracies for the synthetic-scalefree-dataset and the maximum accuracy obtained was 
98.3 ±​ 0.2% by rule B0157/S457. The performance of the Shannon entropy and the Lempel-Ziv complexity distri-
butions can also be highlighted. However, there is an heterogeneity regarding the performance of the feature 
vectors for each rule, e.g., the vector [〈​μS〉​, 〈​μW〉​, 〈​μL〉​] performed very well for rule B035678/S0123456 
(89.5 ±​ 0.2%). In contrast, the same feature vector provided accuracy of 70 ±​ 1% for rule B01678/S0457 (see 
section S8 of supplementary material for quantitative results of all the ten selected rules). The obtained results 
indicate that even networks with similar topologies can provide specific temporal evolution, which may be used 
as signature vectors in a pattern recognition context. Figure 5(f) presents the canonical analysis for rule B0157/
S457 and µ µ µ�� �� ��[ , , ]S W L  as feature vector. There is a clear separation among the three classes and an intersection 
between the scale-free models with α =​ 1.5 and α =​ 2.0. Finally, Fig. 5(i) presents the comparison with structural 
measurements for the synthetic-scalefree-dataset. LLNA also surpasses the accuracy obtained with the combina-
tion of structural measurements (96.20% ±​ 0.03) providing an improvement of 2.08 ±​ 0.25%.

Pattern recognition in real-world applications.  Three examples of LLNA in real-world applications are 
described in the next subsections. In all the experiments performed, we used the LLNA method to classify specific 
categories of each application. All the datasets used in the experiments were split into rule-selection and classi-
fication sets. The rule-selection set was used to perform the selection of the Life-like rules that could provide the 
best classification rates to discriminate classes of interest, whereas the classification set was used to evaluate the 
model. The details of the statistical approach used for the classification are described in Materials and Methods 
section.

Identifying organisms using metabolic networks.  Metabolic networks describe the chemical reactions of the met-
abolic pathways that rule the transformations between chemical compounds through the action of enzymes. 
The aim of using LLNA is to characterize the metabolic networks of distinct organisms grouped by evolutionary 
classes. In this application, we investigated whether three distinct classes of organisms could be distinguished by 
the proposed method. The dataset used for this task was previously constructed by Jeong et al.13 and is publicly 
available61. This dataset contains 43 metabolic networks, which provides a description of the metabolic pathways 
of three types of organisms: archaea, bacteria and eukaryotes13. The original database was built based on the 
metabolic reactions found in the WIT database62. These metabolic networks were generated considering the 
educt-educt complexes and associated enzymes as representations of nodes and edges respectively.

The first plot of Fig. 6(a) shows an example of the histograms representing the distributions of the Shannon 
entropy µ��( )S  for one sample of each of the three classes. This histogram is used as the network descriptor and 
illustrates its behavior. These distributions were obtained through the spatio-temporal patterns resulting from the 
Life-like dynamics over the respective metabolic network. It can be observed distinct distributions for the three 
classes. For instance, the network of the “Eukaryote” class provided high frequency of low entropy values, which 
can be understood as the presence of more stable and/or oscillating patterns in the respective spatio-temporal 
diagram. The separation of the “Eukaryote” class is also clear in Fig. 6(b), which presents the canonical analysis 
for the metabolic-dataset using the same parameters and the same feature vector of the samples of Fig. 6(a). Both 
figures highlight the potential of the network descriptor to identify the classes of organisms.

The results regarding the performance of LLNA in the classification set for the metabolic networks are pre-
sented in Fig. 7(a). Specifically for the metabolic-dataset we used the re-sampling strategy, as described in the 
Materials and Methods section, as the number of samples per class is not uniform. The feature vector composed 
by the distribution of the Shannon entropy µ��S provided the highest accuracy value, 87 ±​ 13%, using rule B05/



www.nature.com/scientificreports/

9Scientific Reports | 6:37329 | DOI: 10.1038/srep37329

S13568. This percentage corresponds to the highest accuracy for the classification of the different domains of life. 
Additional performance measurements for this dataset can be found in section S9 of supplementary material. For 
instance, it is possible to observe from Table S10 that the descriptors obtained with LLNA could completely sep-
arate the “Eukaryote” class from the others. F-measure, MCC (Matthews Correlation Coefficient) and AUC (Area 
Under the Curve) using ROC analysis achieved 1.0 for this class. Finally, in Fig. 7(b) we can observe the compar-
ison between the best accuracy obtained with LLNA and the accuracies obtained with different structural net-
work measurements. In this case, LLNA provided an increase in the classification accuracy of 23 ±​ 23% when 
compared to the clustering coefficient attribute which provided the best accuracy among the network measure-
ments, 64 ±​ 10%.

Identifying structural patterns in social networks.  Social networks are examples of complex systems that have 
been studied for many decades using different theoretical approaches. More recently they have been used to 
illustrate several properties of complex networks. Online social networks offer a great variety of ways for social 
interactions and, in addition, supported by the technological advances, they can store a huge amount of data. 
Some of them present tools for sharing and grouping people in communities of specific topics. Different soft-
wares for constructing social networks can bias the way people connect to each other, yielding this way, specific 
structures in the network. The goal of this experiment is use LLNA to identify the software tool used to create the 
social network. We used networks from the SNAP database53,63 in order to distinguish networks from Google+​ 
and Twitter. In this context, LLNA was used to analyze different structural properties of both types of networks, 
which correspond to the classes of this application.

Figure 6(c) and (d) illustrate the differences regarding the spatio-temporal dynamics of each social network, 
Google+​ and Twitter (see Materials and Methods for details about the social-dataset). The distributions presented 
in Fig. 6(c) illustrate that the descriptor can distinguish very well between the two classes. Notice that, the Twitter 
histogram presents the Lempel-Ziv values concentrated between 0.6 and 0.9, whereas the Google+​ histogram 
presents the Lempel-Ziv values distributed across the histogram, with peaks in the beginning. The separation 
between both classes is clear in Fig. 6(d), which presents the canonical analysis for the social-dataset.

Figure 6.  Characterization of real-world applications with LLNA. (a) Histogram of the Shannon entropy, µ��S, 
for three samples of each category of organisms. These histograms were generated using rule B05-S13568.  
(b) The corresponding canonical analysis of the metabolic-dataset highlighting the separation among the three 
classes. Similarly, (c) and (d) present the histogram of each class of the social-dataset and its canonical analysis. 
For this dataset the histograms were generated using the distribution of the Lempel-ziv complexity, µ��L, as 
feature vector and rule B0167-S248. Finally, (e) and (f) present the corresponding plots for the stomata-dataset 
using rule B12345/S04568. Specifically, (e) shows the average values of Shannon entropy 〈​μS〉​ at each threshold 
δT for the different lighting conditions.
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Regarding the classification performance of LLNA for this dataset, Fig. 7(c) presents the accuracies obtained 
for the different feature vectors and their combinations. The best accuracy value for distinguishing the evolution 
patterns of both social network tools, Google+​ and Twitter, was obtained using the distribution of the Lempel-ziv 
complexity µ��( )L , 92 ±​ 1%, and, rule B0167/S248. However, the feature vector µ��S provided good accuracy as well 
for the same rule. When compared to the performance of the structural measurements (Fig. 7(d)), LLNA also 
surpasses the accuracy obtained when using the combination of these measurements as feature vector, 88 ±​ 2%. 
Therefore, we have an increase in the classification rate of 4 ±​ 3% for the social-dataset (see section S10 of supple-
mentary material for additional performance measurements for the social-dataset).

Classifying stomata distribution patterns.  Stomata distribution in leaves represents the phenotypic plasticity 
of plants, which is the ability to adapt their behavior to environmental conditions, such as light, temperature, 
amount of nutrients, among others. We used the LLNA method in order to characterize the phenotypic plasticity 
of the species Tradescantia zebrina to different light conditions regarding the distribution patterns formed by their 
stomata. We used an image dataset yielded by Florindo et al.54, which consists of six images for each lighting con-
dition: sunlight (natural), 4 hours (L4) and 24 hours (L24) of artificial light. For modeling the stomata into a net-
work, each stoma was segmented from the leaf image and its coordinates were assessed. For each image, a stomata 
network was modeled. The network represents the relationship of the centroids distance given a threshold radius 
δT. As δT increases, more connections will be established between the centroids, and, therefore, the density of the 
network will be higher, producing a network dynamics that is used for image modeling. The construction of this 
network is detailed in Fig. S4 of the supplementary material. This approach for modeling images into networks 

Figure 7.  LLNA Validation: Plots (a), (c) and (e) present the classification accuracy and standard deviation 
obtained for the respective validation sets of each application for the best four rules and for all the feature 
vectors: the distribution of the Shannon entropy µ��( )S , the distribution of the word length µ��( )W , the distribution 
of the Lempel-ziv complexity µ��( )L , the combination of the previous three distributions ( µ µ µ�� �� ��[ , , ]S W L ) and 
average values of the same measurements ([〈​μS〉​, 〈​μW〉​, 〈​μL〉​]). Plots (b), (d) and (f) show the classification 
accuracy (%) and standard deviation of the classes related to real-world applications using structural network 
measurements as feature vectors: mean degree (〈​k〉​), average hierarchical degree of level 1 〈 〉H( )k1

, average 
hierarchical degree of level 2 〈 〉H( )k2

, average clustering coefficient (〈​cc〉​), average path length (l) and degree 
Pearson correlation (ρP) in comparison with the best accuracy obtained using LLNA (yellow).
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was adapted from ref. 36. The main characteristic of this method is the concatenation of the network descriptors 
obtained at each value of δT. We used 16 threshold values with δi =​ 0.25, incremented by 0.0625 until reaching a 
final threshold of δf =​ 1. Figure 6(e) presents the LLNA analysis of the stomata-dataset. We obtained the LLNA 
descriptors for the networks generated at each threshold δT. The bar-plot shows the average values of the Shannon 
entropy 〈​μS〉​ at each threshold δT for the different lighting conditions. The separation among the three classes is 
also highlighted in the canonical analysis shown in Fig. 6(f). We can see that the class “L24” is linearly separable 
from the others.

Figure 7(e) and (f) present the classification results for the stomata-dataset. The highest accuracy obtained 
for this dataset was 90 ±​ 6% using rule B12345/S04568 and [〈​μS〉​, 〈​μW〉​, 〈​μL〉​] as feature vector, as reported in 
Fig. 7(e). The standard deviation for this dataset is higher due to the small number of instances for each class, 
and, there is also a higher heterogeneity regarding the behavior of the rules for the different feature vectors (see 
section S11 of supplementary material for the additional performance measurements for the stomata-dataset). 
When compared with structural measurements, LLNA provided an improvement in classification rate of 7 ±​ 9%. 
The best classification rate obtained using structural measurements was 83 ±​ 4%.

Discussion
In this paper, we presented the Life-Like Network Automata (LLNA) method for pattern recognition in networks. 
LLNA uses a network as a tessellation of a CA and the feature extraction is based on the spatio-temporal patterns 
obtained through its evolution. We evaluated the performance of LLNA in two type of datasets: synthetic and 
real-world networks and we also performed the comparison of LLNA with structural network measurements 
obtained directly from the network topology when used as feature vectors.

The importance of the characterization of theoretical network models is related to the known properties of 
these models which may be useful in the comprehension of their spatio-temporal patterns. The first experiment 
considering four network models as classes (random, small-world, scale-free and geographical) provided a basic 
classification problem to evaluate the proposed method and LLNA could distinguish them with 99.992 ±​ 0.002% 
of accuracy. Additionally, we evaluated LLNA regarding its robustness to noise. We made structural changes in 
the network topology by randomly adding and removing edges according to a noise rate ρN (see Section S6.1 of 
supplementary material). The classification results obtained using this set of “noisy” networks also show a good 
performance of the proposed method, which evidences its robustness.

In the second experiment, we performed the classification considering the combinations of 〈​k〉​ and the net-
work model as classes. Besides the heterogeneity of the dataset, which is composed by networks with different 
values of 〈​k〉​ and N, LLNA provided a good performance achieving 90.76 ±​ 0.07%. This experiment provided an 
analysis of the influence of the connectivity of the network in the spatio-temporal pattern. As the connectivity 
increases, the distinction between the patterns of network models is less accurate. We can see from the confu-
sion matrix presented Fig. S2 of supplementary material that the error rate is higher for the classes representing 
networks with also higher 〈​k〉​. In the last experiment with synthetic networks, different scale-free models, with 
linear and non-linear preferential attachments, were distinguished using LLNA being 98.3 ±​ 0.2% the highest 
accuracy obtained. The synthetic-scalefree-dataset is composed by networks whose degree distributions are very 
similar. Nevertheless, LLNA could also capture the structural differences among the distinct classes of scale-free 
networks. Therefore, the preferential attachment parameter directly influences the spatio-temporal patterns.

For all experiments using synthetic networks, the analysis of the different feature vectors shows that the overall 
performance of the distributions µ��( )S , µ��( )W  and, µ��( )L  was higher when compared to the feature vector composed 
by the average values of the same measurements. The combination of the distributions of the selected measures 
( µ µ µ�� �� ��[ , , ]S W L ) provided the best results when distinguishing the categories of interest in each experiment. 
Moreover, when analyzed separately, all the distributions were also very discriminative in many cases.

The accuracy provided by LLNA was compared with other structural network measurements. In the case of 
classifying network models, the performance of LLNA is as high as the performance obtained for a specific set 
of structural network measurements. Both approaches achieved maximum performance, which makes difficult 
to compare the methods. For the other two experiments (classification of 〈​k〉​ in combination with the network 
model and the classification of scale-free models), the classification task provided a better performance analysis, 
since both methods did not achieve the maximum performance. LLNA provided an improvement in accuracy of 
25.5 ±​ 0.3% for the former, and 2.08 ±​ 0.25% for the latter, demonstrating to be a better discriminative method.

LLNA was evaluated in three real-world applications: identifying organisms using metabolic networks, iden-
tifying structural patterns in social networks, and, classifying stomata distribution patterns. Each application has 
a different scope allowing to analyze LLNA as a general tool for pattern recognition. Regarding the analysis of 
the metabolic networks, in the original study13, the authors showed that even organisms of distinct evolutionary 
classes present metabolic networks with similar topology. All of them have power-law degree distributions what 
characterizes them as scale-free networks. In addition, in this study, we have shown that pattern recognition 
algorithms can go a step further in terms of analyzing the network topology as they are able to find subtleties 
that can be used to distinguish networks within the same topological group, allowing the characterization of 
sub-categories of networks. The maximum accuracy obtained with LLNA was 87 ±​ 13% in contrast to 64 ±​ 10% 
using the clustering coefficient as feature vector. The two-class problem of distinguishing Twitter and Google+​,  
and, the analysis of the stomata distribution patterns also demonstrated the feasibility of the proposed method 
as a pattern recognition tool. In the former, the different tools provided by each social network may influence 
the way people connect to each other resulting in structural differences between both social networks, although 
some properties such as the preferential connection of nodes and presence of hubs may exist in both of them. The 
maximum accuracy obtained with LLNA for this application was 92 ±​ 1% in contrast to 88 ±​ 2% using the com-
bination of five structural measurements as attributes. In the latter application, the plant plasticity for different 
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lighting conditions is reflected in the network of connections between the stomata centroids. In this case, the 
proposed method could capture the specific characteristics of the three classes of interest. For this application, the 
maximum accuracy obtained with LLNA was 90 ±​ 6% in contrast to 83 ±​ 4% using the hierarchical mean degree 
as feature vector. The performance of LLNA in the real-world applications was compared with the structural 
measurements. It provided a significant improvement in the correct classification rate as high as 23 ±​ 23% for the 
first, 4 ±​ 3% for the second and 7 ±​ 9% for the third application. The accuracy obtained using LLNA surpasses the 
accuracy obtained using traditional measurements as attributes, both individually and combined.

Besides the good performance of the proposed method, some characteristics of the method can be high-
lighted. LLNA is invariant to the size of the network. Networks with the same topology but with different sizes 
preserve the descriptor. This property is demonstrated in the Section S5 of supplementary material. The four 
synthetic networks (random, small-world, scale-free and geographical) were built with different number of nodes 
(500, 1000, 1500 and 2000) and the signature of each network model preserves its shape independently of the size. 
The method can also be extended to weighted and directed networks, which makes it suitable to a large number of 
applications which are based on di-graphs and that the weight of each link is important for the characterization. 
It was also demonstrated that the Life-like rule is the most influential parameter as the set of rules that provided 
the best classification rates are different for the distinct applications. In this study, we pointed out that among 
the 262144 rules of Life-like CA, there is a set of them that provides optimal solutions for a specific problem. 
Therefore, this set must be validated for each application. This issue can be explored in future studies by using 
optimization algorithms in order to reduce the time taken for the training phase. The proposed method outper-
formed structural measurements for the characterization in both synthetic and real-world networks, demon-
strating to be a good choice for pattern recognition in networks. Therefore, potentially any pattern recognition 
application whose data is represented as a network can consider LLNA.

Materials and Methods
Generation of network models.  We used the igraph library, a network analysis package, to support the 
implementation of some of the network models we used in this paper64. Random, small-world and scale-free 
networks of the Barabási & Albert model were generated using this library. The Dorogovtsev & Mendes scale-free 
networks and the geographical networks were implemented according to the proposed models32,52. Specifically, 
the geographical networks consist of nodes with specific spatial positions in contrast to networks defined in 
abstract spaces. Therefore, the connection between two nodes is given by the distance or geographical boundaries 
between them. We generated geographical networks by first defining the distribution of N nodes randomly in a 
bi-dimensional space. Then, the connections between the links were defined according to the following probabil-
ity: → = λ−P i j e( ) sij, where sij is the distance between nodes i and j and λ is the scale factor. The datasets of syn-
thetic networks can be downloaded at: http://scg.ifsc.usp.br/LLNA.

Datasets.  In this section, we present the datasets used in order to evaluate our methodology, as well as the 
design of each experiment. We conducted experiments with two distinct types of networks. The first one consists 
of synthetic networks and the second one is composed by real-world networks. The first category of networks is 
organized into three datasets: synthetic-dataset, rule-selection-dataset and synthetic-scalefree-dataset. The second 
category is composed by the metabolic-dataset and the rule-selection-metabolic-dataset. Detailed information 
about these datasets is described next.

•	 Synthetic-dataset - composed of synthetic networks generated according to the following models: 1) random, 
with connection probability between two nodes of p =​ 〈​k〉​/n; 2) small-world, with rewiring probability of 
p =​ 0.1; 3) scale-free, with both linear and non-linear preferential attachments, and, 4) geographical. For each 
model, there are networks with the following values of 〈​k〉​: 4, 6, 8, 10, 12, 14, 16; and, the following values of 
N: 500, 1000, 1500 and 2000. We generated 100 networks for each of the 28 combinations of 〈​k〉​ −​ N. There-
fore, the total number of networks in this dataset is 11200, and there are 2800 of each model;

•	 Rule-selection-dataset - composed of synthetic networks of the same four theoretical models used in  
synthetic-dataset and with the same generation parameters. However, in contrast, this dataset contains only 
networks with N =​ 500 nodes and 50 networks for each of the 7 combinations of 〈​k〉​ −​ N. The instances of this 
dataset are totally different from the synthetic-dataset;

•	 Synthetic-scalefree-dataset - composed of scale-free networks generated according to the models proposed 
by Barabási & Albert51 and Dorogovtsev & Mendes52. For the first model, we generated networks with both 
linear and non-linear preferential attachments (α): 0.5, 1.0, 1.5 and 2.0. Therefore, we have five classes in this 
dataset. The dataset contains 100 networks for each of these five classes with N =​ 1000 nodes and 〈​k〉​ =​ 8;

•	 Metabolic-dataset - The dataset of metabolic networks contains 43 samples which provide a description of 
the metabolic pathways of three types of organisms: 6 archaea, 32 bacteria and 5 eukaryotes13,61. This dataset 
was divided into two sets: rule-selection and classification. The first contains 2 randomly selected samples of 
each class, which were used to find the set of the best Life-like rules regarding their accuracy in distinguishing 
among the evolutionary classes. The second set consists of the remaining networks;

•	 Social-dataset This dataset contains networks from the SNAP (Stanford Network Analysis Project) platform53. 
We randomly selected 65 network samples for both Google+​ and Twitter, which were divided into 15 samples 
of each one for the selection of the best Life-like rules and 50 for validation. All the social networks, also called 
“ego-networks” represents the social relationships or friends of a specific user (“ego”) that is not represented 
in the network;

•	 Stomata-dataset This dataset comprises digital binary images which represent the stomata distribution pat-
terns of Tradescantia zebrina under three different illumination conditions: (i) sunlight (Natural), in which 
the plant is exposed to the sun light, (ii) 4 hours (L4) of artificial light, in which the plant is exposed to 

http://scg.ifsc.usp.br/LLNA
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artificial light during 4 hours, and, (iii) 24 hours (L24) of artificial light, in which the plant is also exposed to 
artificial light, however during a larger period of 24 hours. The plants were expose to this conditions during 69 
days. There are a total of 6 images for each condition, from which 2 were used for the rule-selection procedure 
and the other 4 for validation.

Spatio-temporal measurements.  The Shannon entropy (μS)65 for node i is given by µ = − +p p( logS i i
0
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1 is the probability of ones in the time series. Word length 

(μW) distribution considers the length of each word in the spatio-temporal series. A “word”, in this context, is a 
sequence of ones limited by zeros, e.g., q =​ (0011101100), on which there is one word of length three and one 
word of length two. The Lempel-ziv complexity (μL)66 is based on the number of different blocks of a sequence. 
The leftmost bit of a binary sequence q is the first block from which all other sub-sequences are constructed. Each 
new block is added to the dictionary. For example, the following binary sequence q =​ (01010101010101010101) 
has length l =​ 20 and is decomposed in seven g =​ 7 blocks as follows: “0|1|01|010|10|101|0101”. The Lempel-Ziv 
complexity is given by µ = = .1 049L
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Feature vectors.  We selected a set of measurements in order to compose the feature vectors based on their 
discriminatory characteristics: µ��S, µ��W and µ��L. The first feature vector µ��S consist of the distribution of the Shannon 
entropy. The values of this measurement belong to the interval [0, 1]. In order to obtain µ��S, we calculated the 
Shannon entropy for each node, then, from these values we obtained a histogram by dividing the interval [0, 1] 
into 20 bins. Therefore, µ��S is composed by these 20 attributes, which represent the respective frequencies. The 
second feature vector µ��W  is composed by the word length distribution. In this context, a word is a sequence of 
ones limited by zeros, for instance, in the following sequence q =​ (0011101100), we have one word of length three 
and one word of length two. The maximum word length is bound by the number of evolution steps, but due to the 
fact that the frequency of words with a length larger than 40 is very low, we considered only words smaller than 
this value. The histogram bin has length 2, so we also have 20 features for µ��W. The last feature vector µ��L contains 
the Lempel-Ziv complexity distribution divided into 20 bins, this vector was normalized by the maximum value 
achieved among the group of samples. We also tested the average values for the same measures as attributes: aver-
age Shannon entropy, average word length and average Lempel-Ziv complexity: 〈​μS〉​, 〈​μW〉​, 〈​μL〉​.

Training and validation strategies.  We used n-fold cross-validation strategy in all the experiments. This 
validation is a statistical method which consists of a generalized way to evaluate the prediction capacity of a 
model. Specifically in our case, we used cross-validation to evaluate LLNA regarding the accuracy in the classifi-
cation performance for the pattern recognition applications. All datasets used were divided into a rule-selection 
dataset and a classification dataset. The cross-validation procedure was applied 100 times in both of them. 
Therefore, the standard deviation obtained is related to the variation in accuracy for each run of this procedure, 
since the assignment of the dataset instances to each fold is given randomly. k-NN (k - Nearest Neighbors) and 
SVM (Support Vector Machines) classifiers were used in the experiments. K-NN classifier is a simple voting algo-
rithm in which the classes of the k nearest neighbors of a given instance are considered67. Whereas, SVM uses 
hyperplanes as decision boundaries of a classifier. The optimal hyperplane provides the maximal separation of the 
boundaries between two classes and is obtained by the solution of a quadratic optimization problem68. When the 
datasets did not present a uniform distribution of the classes, we used a random sub-sample strategy as the case 
for the metabolic-dataset. Specifically, we performed the classification step under a resampling k-fold strategy, 
with k =​ 3-folds using 100 random configurations for every group.
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