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Abstract

Background: Clustering is a key step in the processing of Expressed Sequence Tags (ESTs). The primary goal of clustering is
to put ESTs from the same transcript of a single gene into a unique cluster. Recent EST clustering algorithms mostly adopt
the alignment-free distance measures, where they tend to yield acceptable clustering accuracies with reasonable
computational time. Despite the fact that these clustering methods work satisfactorily on a majority of the EST datasets,
they have a common weakness. They are prone to deliver unsatisfactory clustering results when dealing with ESTs from the
genes derived from the same family. The root cause is the distance measures applied on them are not sensitive enough to
separate these closely related genes.

Methodology/Principal Findings: We propose a hybrid distance measure that combines the global and local features
extracted from ESTs, with the aim to address the clustering problem faced by ESTs derived from the same gene family. The
clustering process is implemented using the DBSCAN algorithm. We test the hybrid distance measure on the ten EST
datasets, and the clustering results are compared with the two alignment-free EST clustering tools, i.e. wcd and PEACE. The
clustering results indicate that the proposed hybrid distance measure performs relatively better (in terms of clustering
accuracy) than both EST clustering tools.

Conclusions/Significance: The clustering results provide support for the effectiveness of the proposed hybrid distance
measure in solving the clustering problem for ESTs that originate from the same gene family. The improvement of
clustering accuracies on the experimental datasets has supported the claim that the sensitivity of the hybrid distance
measure is sufficient to solve the clustering problem.
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Introduction

Sequencing techniques have progressed rapidly in recent years,

thus various types of sequence data have been produced and they

are publicly available for research purpose. Despite many genome

assemblies are available at present, research on expressed

sequence tag (EST) is still on-going, due to it is a cost-effective

resource for expression data analysis [1], [2], functional analysis

[3], and single-nucleotide polymorphisms [4]. In addition, [5]

claimed in their research work that conceptually translated ESTs

can be used to predict subcellular location of protein. In general,

ESTs are short single pass sequence reads derived from

complimentary DNA (cDNA) libraries, and they can be produced

in large quantities with inexpensive cost. Sanger-derived ESTs

have typical lengths between 200–800 bases [6].

Since ESTs are short, they are unlikely to provide any useful

gene information if they are unprocessed. One of the key steps in

the EST processing pipeline is clustering. The objective of this step

is to collect overlapping ESTs that originate from the same gene

into a unique cluster. ESTs in the same cluster are then assembled

to form a consensus sequence, which is important for gene

identification. Several publicly available EST databases include

Unigene [7], TIGR Gene Indices [8], STACK [9], and UCSC

Genome Browser [10]. These databases have become the major

sources of information for many academic research and labora-

tories.

For EST clustering algorithms, they can be broadly grouped

into two classes, i.e. alignment-based clustering and alignment-free

clustering. The first class relies on pair-wise alignment, and this

alignment can either be transcript-based (EST-EST) or genome-

based (EST-Genome). Transcript-based alignment compares

similarities among ESTs, where BLAST [11] or its variant can

be used to accomplish the task. PaCE [12], GMAP [13],

ESTMapper [14], ECgene [15], and EasyCluster [16] are

attached to genome-based alignment. These clustering tools

generate better clustering quality as compared to the transcript-

based, but these tools are only operational if the required genome

assemblies exist. Therefore, it is not applicable for an organism

whose genome has yet to be sequenced, especially for the new

species.

In alignment-free clustering, d2_cluster [17] is an established

algorithm for clustering ESTs and cDNAs. Pair-wise comparisons

of ESTs are not dependent on alignment, but depend on the word
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occurrences between the sequences. This method implements a

windowing strategy for subsequence comparisons between two

ESTs. This strategy is based on the principle idea that two ESTs

are clustered together if they have subsequences that are similar. It

implies that ESTs that are overlapping with each other to a certain

extent (subsequence length in this case), can be grouped into the

same cluster. Hazelhurst et al. [18] introduced the wcd tool to

cluster ESTs. It is a clustering method similar to d2_cluster. In fact,

both methods apply the same distance measure and also

implement the windowing strategy. The key differences between

them include the efficient implementation of the basic quadratic

algorithm, and the use of heuristics in wcd tool. Both of them are

meant to speed up the computation time.

Recently, Rao et al. [19] proposed a tool called PEACE, to

cluster ESTs. This tool also adopts the same distance measure and

windowing like wcd and d2_cluster, but it uses the concept of

minimum spanning tree to perform clustering. In terms of

clustering quality, these alignment-free EST clustering methods

are claimed to be competitive with each other. When they are

compared with the alignment-based method, it is in fact a trade-off

between speed and sensitivity. The alignment-free methods tend to

deliver faster computation time with acceptable quality degrada-

tion. Another shortcoming of alignment-free methods is they are

prone to produce unsatisfactory clustering results when they deal

with ESTs originating from the same gene family. For instance,

ESTs from different genes in the family might be clustered

together by the alignment-free method and this will directly drag

down the clustering accuracy.

In this paper, we have extended the EST clustering work using

the alignment-free approach, with the aim to resolve the problem

stated in the drawback. We propose an improved distance

measure for EST clustering, where it has higher sensitivity than

existing methods. The distance measure can be considered as a

hybrid, since it is derived from the combination of local and global

statistical metrics. Density-based clustering is selected for the

clustering process. The experimental study involves ten datasets

and they are evaluated with performance metrics. The results

reveal that the proposed distance measure is capable to deliver

competitive clustering accuracies for all tested datasets.

Problem Statement

With the rapid growth in bioinformatics, there have been quite

a number of published works focusing on the alignment-free

distance measures for biological sequences. These distance

measures can be generalized into several classes, and they are

distance based on counting word frequencies [17], [18], [19], [20],

[21], [22], distance based on compression [23], [24], and distance

based on information theory [25], [26], [27]. Since EST is also

classified as short biological sequence, therefore the above distance

measures can be considered to be applied on ESTs. In fact, most

of the alignment-free distance measures are actually extended

from the word frequencies counting class.

In the previous section, we have briefly introduced several

alignment-free EST clustering tools (d2_cluster, wcd, and PEACE).

These highlighted clustering tools have the common distance

measure named d2, and it originates from the word frequencies

counting class. The key difference is the distance is measured

within a fragment or subsequence of EST. The d2 distance that

incorporates the windowing approach has been claimed to

perform reasonably well as compared to other alignment-free

distance measures for ESTs. Hence this distance measure has been

widely accepted in recent years. Furthermore, it has been

embedded in the STACK tool [20], which is a platform to

provide a complete analysis on express transcripts.

Even though the d2 is a widely used distance measure in

alignment-free EST clustering, it does have a drawback. In our

research, we often use these tools to perform clustering on many

EST datasets. Generally they perform quite well on majority of the

datasets, but we found out that they tend to deliver unsatisfactory

clustering results when they are dealing with ESTs that come from

the same gene family. A Gene family is a set of homologous genes

that are likely to have similar biochemical function [28].

According to [28–29], there are more than 10,000 gene families

in the human genome, and the number of gene families that has

been identified so far in the animals genomes has surpassed

14,000. Thus, it is very important to have a reliable method that

can perform clustering accurately for ESTs that come from the

same gene family. An example is the HOXA gene family that has

12 genes in the family. The possible reason behind the lower than

expected clustering results might be due to the high similarities

among the genes in the family, and the d2 distance is not sensitive

enough to differentiate them. In EST clustering, the aim is to

assign EST to its original gene, but not to other gene (even though

they come from the same gene family). Thus there is a need to

enhance the current methods’ sensitivities in order to resolve the

problem.

Materials and Methods

The section discusses our research method and experimental

data, and an overview of the research work is shown in Figure 1. It

begins with the extraction and collection of EST datasets using the

UCSC genome browser, followed by the computation of our

proposed distance measure for ESTs. The subsequent step

involves clustering, which uses the generated EST distances as

measure, and it is implemented using the density-based algorithm.

The clustering results are then evaluated and analyzed thoroughly.

The next step is the comparison of clustering results with the

existing EST clustering tools, to evaluate the performance of our

proposed distance measure. The last step involves the applicability

study of the proposed distance measure on another clustering

technique, which is hierarchical clustering. The following subsec-

tions describe the proposed hybrid distance measure, clustering

algorithm, cluster validity index and experimental datasets in

details.

The Proposed Hybrid Distance Measure, hbd_EST
In the previous section, we have highlighted several EST

clustering tools that are implemented using the alignment-free

approach. The aspects discussed cover not only their distance

measures and clustering methods, but also their advantages and

drawbacks. With the intention to resolve the problem encountered

in the clustering tools that implement the window-based d2

distance, we propose an improved distance measure (hbd_EST) to

cluster ESTs. This alignment-free distance measure combines two

features that are locally and globally extracted from ESTs. In this

case, the global features refer to the patterns or characteristics that

can be found in the entire sequence of EST. On the contrary,

patterns or characteristics that appear only in a portion/

subsequence of EST are considered as local features. The principle

idea is that the decision for grouping two ESTs into a single cluster

must not be solely based on the similarity comparison between

subsequences, but have to consider global feature as well.

To the best of our knowledge, there has yet to be any published

work that introduces an alignment-free distance measure, where it

is measured by combining the local and global features of EST.

Hybrid Distance Measure for Expressed Sequence Tag
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With the hbd_EST distance measure, we aim to improve the

clustering accuracy for datasets that contain ESTs from the same

gene family. At the same time, we would also like to find out to

what extent, both features affect the clustering quality. The first

thing to highlight is the local feature of EST. It can be derived

using statistical methods on any portions/fragments of EST. Word

counting in a defined window size is selected as the local feature of

hbd_EST distance measure. The basic idea is that two similar

sequences will have common words to a certain extent, or we can

say that there are some common patterns that appear in sequences

that are similar.

The similarity comparison based on word counting can be

quantified using the well-known distance measure called d2. It was

first proposed by [22], and later it is widely accepted and

embedded into the established EST clustering tools such as

d2_cluster [17], wcd [18] and PEACE [19]. We choose the same d2

as the distance metric for our local feature, due to its reliability and

acceptability. The use of this distance measure is also in-line with

our main goal, which is to enhance the current methods’

sensitivity, so that the problem faced in the gene family dataset

can be resolved.

d2(P,Q)~Min d2(p,q)~
X4k

(cp(wk,i){cq(wk,i))
2

2
4

3
5 ð1Þ

Equation (1) shows how the d2 distance between two ESTs, P

and Q is computed. Let d2(p, q) denotes the distance between p and

q, where p is a subsequence from P and q is a subsequence from Q.

wk,i is a word with length k, and the maximum number of distinct

words (with length k) is 4k. The number of occurrences of wk,i in p

and q are represented by cp (wk,i) and cq (wk,i). Since one EST can be

partitioned into many subsequences, therefore a lot of d2 distances

can be produced. As such, it will only pick the smallest d2 value as

the distance for P and Q. For word length and window size, we use

the default values (word length = 6, window size = 100 bases) set in

both clustering tools (wcd and PEACE). It is because we need to

make a fair and unbiased comparison of clustering accuracy

between our proposed distance measure (hbd_EST) and both of

them.

As we refer to the alignment-free distance measures available for

biological sequences, we are aware that a majority of them

measure the distances based on the whole sequence length. Thus

we believe that the feature that is extracted globally plays an

inevitable role in sequence comparison, and cannot be omitted

even in short sequences like ESTs. This motivated us to propose

an idea to combine the local and global features in our hbd_EST

distance measure. The global feature in our case is derived from

the measurement of sequence relative entropy, which is an

important concept in both statistical biology and information

theory. Earlier research works [27], [30], [31] proposed the

distance measures based on the relative entropy, and the authors

claimed that their results were comparable to the alignment-based

similarity distance measure.

We explore the global feature of ESTs by adopting the relative

entropy approach, and the similarity between ESTs is quantified

using the distance called generalized relative entropy, gred [25]. It

is a statistical measure based on the frequencies of words with

length k. The gred distance between two ESTs, P and Q can be

obtained using the formula shown in Equation (2). In the equation,

wk,i denotes the word i with size k, and the maximum possible

words is 4k. The frequencies of word i in sequence P and Q are

denoted in f P (wk,i) and f Q (wk,i). The use of word frequency is

considered to be more appropriate than the word count since

ESTs may have different lengths. Therefore, the impact of length

bias can be minimized. This range of the gred distance is between 0

and 1. The distance is 0 when two identical ESTs are compared,

and 1 for two completely different ESTs.

gred(P,Q)~
X4k

i~1

f p(wk,i)|log2

2|f p wk,ið Þ
f p wk,ið Þzf Q wk,ið Þ

� �
ð2Þ

Both distances that quantify the local and global features of

ESTs are to be combined to form a hybrid distance. Prior to this

Figure 1. An overview of our experimental study on the proposed hybrid distance measure.
doi:10.1371/journal.pone.0047216.g001

Figure 2. The algorithm for computing the hbd_EST distance
measure.
doi:10.1371/journal.pone.0047216.g002
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step, we have to ensure that both distance values fall into the [0,1]

range and data normalization will be performed when it is

required. We therefore perform min-max normalization on the d2

distance since its original value is out of this range. Min-max

normalization is a linear transformation that preserves the

relationships among the original data values [32]. Equation (3)

shows the transformation of d2 distance using the min-max

normalization. In the equation, d2 (P, Q) is the original distance for

the EST pair, P and Q. The maximum and minimum values of the

original data are denoted with d2
max and d2

min, while the new

maximum and minimum are represented by d2
new_max and d2

new_min.

In this case, it is 1 for the new maximum and 0 for the new

minimum.

d2} P,Qð Þ~ d2(P,Q){d2
min

d2
max{d2

min

| d2
new max{d2

new min

� �
zd2

new min ð3Þ

Once both values are in the same range, the hybrid distance

(hbd_EST) can then be computed. In this work, we conduct an in-

depth analysis to study the influence of the local and global

features towards the clustering accuracy, especially on the dataset

that contains ESTs from the same gene family. As such, the

hbd_EST distance is calculated by combining both distances with

different weight, with the condition that the sum of weights is 1.

For instance, the hbd_EST distance can be generated from the

combination of 0.95 local (d20) and 0.05 global (gred). The formula

to calculate the hbd_EST is shown in Equation (4). Let d20(P, Q) and

gred(P, Q) represent the normalized d2 distance and the gred distance

for the EST pair, P and Q. A and B are the weights with possible

values in {0, 0.05, 0.1,…, 0.9, 0.95, 1}. The value of hbd_EST is

between 0 and 1, where 0 indicates two identical ESTs and 1

means two ESTs have 0% similarity.

hbd EST(P,Q)~A(d2}(P,Q))zB(gred (P,Q)) ð4Þ

Figure 2 shows the algorithm for computing the hbd_EST

distance. The algorithm takes dataset containing n ESTs as input,

and the expected output is the hybrid distance matrix with n 6 n

size. The steps involved in this algorithm can be summarized in

the following: Step 1 is the computation of local distance for all

EST pairs, followed by generating global distance in step 2. The

subsequent step involves the normalization of local distance, while

the last step is the computation of hbd_EST distance by combining

both local and global distances at user-defined weight. The hybrid

distance matrix is then used for clustering, where the density-based

is the selected clustering algorithm.

Density-based Clustering
Density-based clustering is a partitioning clustering algorithm,

and its general idea is the formation of clusters is based on the

density of objects in the data space. A region with a high density of

objects is regarded as a cluster, and the clusters are separated by

regions of low object density. Several established density-based

clustering algorithms include OPTICS [33], CLIQUE [34], and

DBSCAN [35]. These clustering algorithms have been demon-

strated to deliver consistent and accurate results, therefore the

work has been extended by many researchers and quite a number

of variants [36], [37], [38], [39] have been proposed.

In our work, the clustering of ESTs is performed using the

DBSCAN. This clustering algorithm is chosen due to two reasons.

Firstly, the cluster can be in arbitrary shape or size. Secondly, the

number of clusters is not required to be determined prior to

Figure 3. The pseudo codes for the DBSCAN function.
doi:10.1371/journal.pone.0047216.g003

Figure 4. The pseudo codes for the expandCluster function.
doi:10.1371/journal.pone.0047216.g004
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clustering. The two factors are justifiable in EST clustering. This is

because information such as cluster shape/size and cluster

quantity is unavailable for any EST dataset before the clustering

takes place. The basic idea of DBSCAN is that each point in a

cluster must contain at least a set of points within a given radius

(both can be user-specific). It implies that the neighborhood

density has to exceed a user-specified threshold. Generally, the

DBSCAN algorithm can be explained with two functions, i.e.,

DBSCAN and expandCluster.

In the DBSCAN function, it takes three parameters, i.e. distance

matrix, minimum neighbors, and neighborhood radius. The

cluster id (cid) is initially set to 0, and then it picks an unvisited

EST (E) and marks it as visited. The next step is to find the EST’s

neighbors (gN) within the user-specified radius. The EST is labeled

as a singleton (noise) if the number of neighbors is less than the

minimum neighbors (MinPoints). On the contrary, it forms a cluster

using a next cluster id, and proceeds to expand the cluster

(expandCluster function) when the number of neighbors exceeds the

minimum neighbors. The clustering process terminates when all

ESTs are visited. The details for the DBSCAN function are shown

in Figure 3.

In the expandCluster function, the expansion begins with the

neighbors (gN) of the EST found in the DBSCAN function. An

unvisited neighbor (E*) is then picked and marked as visited. It is

followed by searching the EST’s neighbors within the neighbor-

hood radius. The neighbors (gN*) of this EST will be merged with

gN if the quantity is greater or equal to the minimum neighbors

(MinPoints). This EST will be assigned with the current cluster id

(cid) if it is still unattached to any cluster. The above steps are

repeated until all ESTs in the gN have been visited. This clustering

algorithm assigns each EST with a cluster membership, and it

gives -1 to EST that does not belong to any cluster (singleton).

Figure 4 shows the pseudo codes for the expandCluster function.

Cluster Validity Index
In order to evaluate the performance of our proposed distance

measure, the validity of the clustering results obtained from the

experiments are assessed. We have chosen the Jaccard index [40]

as the cluster validity index. It is a statistical method based on

external criteria. It measures how good the clustering algorithm is,

by matching cluster labels with externally supplied class labels.

This validity index can also be used to measure the similarity of the

clustering results associated to two different methods. In EST

clustering, this index is quite commonly used and has appeared in

several papers [18], [19], [41]. The authors in these papers used it

Figure 5. The flow chart diagram for the extraction of EST datasets using the Genome Browser.
doi:10.1371/journal.pone.0047216.g005

Table 1. The details of the ten datasets extracted using the
tools in the genome browser.

Dataset with Total
Total
ESTs/ Largest Smallest

Gene Family Clusters mRNAs Cluster Size Cluster Size

Name (Genes) (ESTs) (ESTs)

CYP2 16 1848 256 3

APOBEC 10 846 226 34

T-box 13 842 320 7

WNT 18 1410 395 4

CYP4 12 970 203 7

HOXA 12 711 203 3

PLXN 9 2712 741 128

CHRN 16 1014 168 3

SPDY 10 529 229 8

EPH 14 2202 479 28

doi:10.1371/journal.pone.0047216.t001
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to make comparisons between their proposed algorithms with

other EST clustering tools.

Equation (5) shows how the Jaccard index can be measured

from the clustering result. Consider {C1, C2… Cm} is the clustering

result of method C on a dataset, and Pd is a defined partition of the

dataset. In our case, variable a refers to the number of pairs of

ESTs that belong to the same cluster in C and also to the same

group of partition Pd. While variable b denotes the number of pairs

of ESTs that belong to the same cluster of C, but to a different

group of Pd. Variable c is the number of pairs of ESTs that belong

to a different cluster of C, but to the same group of Pd. The index

has a value range of 0–1, which means that the index is 1 if both

clustering methods produce an identical clustering structure on a

dataset.

JI(C,Pd )~
a

azbzc
ð5Þ

Experimental Data
To evaluate the effectiveness of the proposed distance measure,

ten EST datasets were extracted from the UCSC genome browser

[10]. In brief, this genome browser is developed and maintained

by the Genome Bioinformatics group, and it is attached to the

University of California Santa Cruz. The reasons for selecting this

website for downloading our datasets are its available easy-to-use

tools, reliable data source, and complete annotations for various

types of sequences. Furthermore, the mapping of ESTs/mRNAs

to the specific gene can be visualized in a diagram. This feature

enables a user to verify the correctness of the downloaded data

easily.

Figure 5 shows the process flow of the data extraction. First, we

refer to the website maintained by the HUGO Gene Nomencla-

ture Committee [42] and browse through its gene family page. We

randomly select a gene family from the published list, followed by

checking the existence of the gene family in the genome browser.

The process continues if the gene family is available, with the

identification of a gene position in the human genome. On the

other hand, we have to randomly choose another gene family

again if it is not found in the genome browser. Once the gene

location is known, we proceed to extract ESTs and mRNAs that

are mapped to this gene location using the table browser [43]. The

table browser is one of the tools found in the UCSC genome

browser, and we utilize some controls available in this tool to filter

and extract the data that we require.

Filtering is vital since we need to collect high quality and reliable

ESTs and mRNAs. In our case, we download ESTs/mRNAs that

are not only mapped to the specified gene location, but also

intersecting with at least 80% of the RefSeq [44] genes. RefSeq

(Reference Sequence) is provided by the National Center for

Biotechnology Information (NCBI). It serves as a stable gene

reference for annotation, identification, mutation, polymorphism

analysis and expression studies.

We also mask the repeats found in the ESTs/mRNAs. This is to

avoid the repetitive elements found in the data, from affecting the

clustering outcome. For another gene in the family, we repeat the

same steps, and it terminates when all the genes data are

completely downloaded. In the final stage, we clean the data by

removing any ESTs/mRNAs with a length shorter than 100 bp,

and then form the dataset by merging the data from all genes. To

ensure the correctness of the data, we verify all ESTs/mRNAs

with their mapping locations using the genome browser. In our

work, we have extracted ten datasets for experimental study, and

their details are displayed in Table 1.

Results

In order to evaluate the effectiveness of our proposed hbd_EST

distance measure in solving the problem highlighted in problem

statement section, ten EST datasets have been used in the

experimental study. Each dataset contains ESTs derived from the

same gene family. We study the performance of the hbd_EST

distance measure with different combinations of the following

parameter values: Local feature weight, global feature weight and

neighborhood distance in DBSCAN. These key parameters play

crucial roles in this context. This is because an optimized weight

between the local and global features, or/and a good neighbor-

hood distance may improve the EST clustering outcome

significantly.

The correctness of our clustering result is evaluated based on the

EST libraries from the genome browser, where the libraries are

constructed based on the alignment of ESTs on the human

genome assembly [45]. This means that we are comparing our

clustering result with the alignment-based method, thus using

other alignment-based clustering method for comparison is not

essential in this case. On the other hand, the same datasets are

tested with two alignment-free EST clustering tools (wcd & PEACE)

and their clustering results are then compared and discussed in this

section.

Influence of Key Parameters on Clustering Results
The study on the weight covers the range of 0.05–0.30 for the

global feature, and 0.70–0.95 for the local feature. The weight for

the local feature is always greater than the global feature in all

combinations. This is because the local feature plays a more

significant role in EST clustering [46], [47], and the global feature

is incorporated to enhance its sensitivity for solving the gene family

problem. Table 2 describes the weight between both features in

detail, and there are six combinations (CB1–CB6) with various

weights used in the experiments. For the neighborhood distance

used in the DBSCAN, we have tested the range from 0.05 to 0.3.

The experimental results of the EST datasets with various settings

are plotted in Figure 6 and 7 with ten graphs. Each graph

represents the clustering results obtained from a single EST

dataset. We will first observe and comment on the clustering

results for each dataset, and then we will summarize and discuss

the findings based on the overall clustering results from all the

experimental datasets.

Table 2. Six combinations with different weights between
the local and global features.

Combination Local Global

No. Feature Feature

Weight Weight

CB1 0.95 0.05

CB2 0.90 0.10

CB3 0.85 0.15

CB4 0.80 0.20

CB5 0.75 0.25

CB6 0.70 0.30

doi:10.1371/journal.pone.0047216.t002
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The clustering result for the first dataset (CYP2 gene family)

is displayed in Figure 6A. Based on the graph, the highest

clustering accuracy (in Jaccard index) is 0.8577, and the second

best delivers a marginally lower accuracy than the highest,

which is 0.8546. Combination CB2 (0.1-global, 0.9-local) with

the neighborhood distance (Eps) 0.1 is the setting that yields the

best accuracy in this dataset. Meanwhile, combination CB1

(0.05–global, 0.95–local) with the same Eps is the setting that

produces the second highest accuracy. For APOBEC gene

family dataset (Figure 6B), the best accuracy (0.8256) is

recorded by the combination CB2 with Eps of 0.1. The second

best accuracy comes from the combination CB1 with Eps of

Figure 6. The clustering results (Jaccard Index) for the six experimental EST datasets. Graph (A) represents the clustering result for the
CYP2 dataset. The best performer is the test with combination CB2 and neighborhood distance (Eps) 0.1. (B) is the clustering result for the APOBEC
dataset, and the highest clustering accuracy is also achieved by the test with CB2 and Eps 0.1. The clustering result for the T-box dataset is plotted in
(C). The test with CB1 and Eps 0.15 scores the highest clustering accuracy in this dataset. (D)–(F) show the clustering results for the WNT, CYP4 and
HOXA datasets. Three tests (CB1–CB3, all with Eps 0.15) yield clustering accuracy above 0.98 in the WNT dataset. In the CYP4 dataset, the test with
CB1 and Eps 0.1 records the highest clustering accuracy. The test with CB3 and Eps 0.15 outperforms other tests in the HOXA dataset.
doi:10.1371/journal.pone.0047216.g006

Figure 7. The clustering results (Jaccard Index) for the other four experimental EST datasets. (A) shows the plotted clustering result for
the PLXN. The test with combination CB1 and neighborhood distance (Eps) 0.1 is the best performer in this dataset. The second highest clustering
accuracy is recorded by the test with CB2 and Eps 0.1. The clustering result for the CHRN dataset is displayed in (B). The test with CB1 and Eps 0.1 sets
the highest clustering accuracy (0.8527) in this dataset, while the test with CB2 and Eps 0.1 delivers the second best clustering accuracy. (C)–(D)
denotes the clustering results for the SPDY and EPH datasets. In SPDY dataset, the highest clustering accuracy is achieved by the test with CB3 and
Eps 0.1. It is followed by the test with CB2 and Eps 0.1. For the EPH dataset, the best clustering accuracy is done by the test with CB2 and Eps 0.1. The
test with CB1 and Eps 0.05 produces the second best clustering accuracy.
doi:10.1371/journal.pone.0047216.g007
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0.05, and its accuracy (0.7483) is moderately lower than the

best one. In the T-box dataset (Figure 6C), there are three

settings that deliver clustering accuracy above 0.98. They are

the combination CB1–CB3, and all with Eps of 0.15. The best

accuracy (0.9972) is obtained by the combination CB1, and

subsequently the second best accuracy (0.9933) is achieved by

the combination CB2. The combination CB3 gives 0.9842 for

clustering accuracy, which is marginally above 0.98.

The WNT gene family (Figure 6D) is the fourth experimental

dataset, and we observed that there are also three tests with

accuracies exceeding 0.98. The parameter settings in these three

tests are in fact identical with the best three clustering accuracies

obtained by the tests on the T-box dataset. The three settings

(combination CB1–CB3, all with Eps of 0.15) yield 0.9935, 0.9931

and 0.981 accuracy respectively. For the CYP4 dataset (Figure 6E),

the best clustering accuracy (0.8793) is obtained by the combina-

tion CB1, with Eps of 0.1. It is followed by the combination CB2,

with Eps of 0.1. This combination is able to score 0.8721 for the

accuracy, which is slightly lower than the best clustering result in

this dataset. The clustering result for the HOXA dataset is plotted

in Figure 6F, and the best accuracy (0.9764) belongs to the

combination CB3, with Eps of 0.15. The combination CB1, with

Eps of 0.1 delivers the second best accuracy (0.9448) in this

dataset.

The clustering results for the PLXN and CHRN datasets are

plotted in Figure 7A and 7B.The hbd_EST performs the best

with combination CB1 and Eps of 0.1 in the PLXN dataset.

The recorded clustering accuracy is 0.9721. The second best

clustering accuracy (0.9568) is set by combination CB2 with Eps

of 0.1. In the CHRN dataset, the highest clustering accuracy is

0.8527 and it is scored by the test with combination CB1 and

Eps of 0.1. The test with combination CB2 and Eps of 0.1 also

shows encouraging result. It yields 0.8314 for the clustering

accuracy, which is marginally lower than the best performer.

Figure 7C and 7D display the clustering results for the

remaining two experimental datasets, i.e. SPDY and EPH.

The highest clustering accuracy (0.7756) in the SPDY dataset is

obtained by the test with combination CB3 and Eps of 0.1. It is

followed by the test with combination CB2 and Eps of 0.1,

where it achieves 0.7538 for the clustering accuracy. In the

EPH dataset, the best two clustering accuracies are 0.9314 and

0.8654 respectively. The highest clustering accuracy is recorded

by the test with combination CB2 and Eps of 0.1, while the test

with combination CB1 and Eps of 0.05 produces the second

best clustering accuracy.

We can generalize some outcomes or findings based on the

clustering results from all these datasets. Firstly, all datasets seems

to perform satisfactorily when the weight is set at the range of

0.05–0.15 for the global feature, and 0.85–0.95 for the local

feature. The clustering performance degrades when we increase

the weight for the global feature. As a result, the experiment is not

extended to higher weight (0.3 and above) for the global feature.

This finding explicitly indicates that the local feature plays a more

significant role than the global feature. Nevertheless the role of the

global feature cannot be neglected even though its contribution is

not substantial. This is because we have conducted tests using only

the local feature, but none of them shows comparable clustering

result with the combination of local and global features at the

specified weight.

Another finding is the neighborhood distance used in the

DBSCAN. We discovered that the optimized neighborhood

distance is 0.160.05 for all datasets. It is because the best

clustering result for each dataset is recorded within this range. The

clustering results with higher neighborhood distances (0.2, 0.25 or

0.3) generally underperform the clustering results of the optimized

range. We analyze this scenario and found that ESTs from

different genes are merged together into a single cluster if the

neighborhood distance is set to 0.2 or higher. The optimized

neighborhood range (0.160.05) is an ideal range to be used in the

DBSCAN for solving this clustering problem.

Table 3. The parameters values used by the hbd_EST in
comparative study.

Word Window Global Local Eps in

Size Length Feature Feature DBSCAN

(bases) Weight Weight

6 100 0.1 0.9 0.1

doi:10.1371/journal.pone.0047216.t003

Table 4. The comparative evaluation of our proposed hybrid
distance measure (hbd_EST), with the wcd and PEACE
clustering tools.

Dataset Jaccard Index/Number of Generated Clusters

hbd_EST wcd PEACE

CYP2 0.8577 0.7166 0.6908

(16 clusters) 15 11 10

APOBEC 0.8256 0.4030 0.4030

(10 clusters) 10 6 6

T-box 0.8125 0.9895 0.5235

(13 clusters) 18 13 13

WNT 0.9426 0.9869 0.5604

(18 clusters) 20 18 11

CYP4 0.8721 0.5927 0.5059

(12 clusters) 15 7 5

HOXA 0.9329 0.7133 0.5343

(12 clusters) 14 10 8

PLXN 0.9568 0.8451 0.3558

(9 clusters) 14 8 5

CHRN 0.8314 0.7295 0.4516

(16 clusters) 20 15 14

SPDY 0.7538 0.5752 0.5538

(10 clusters) 7 6 5

EPH 0.9214 0.8257 0.8262

(14 clusters) 19 16 16

doi:10.1371/journal.pone.0047216.t004

Table 5. The p-values of the t-test.

p-value (t-test)

wcd PEACE

hbd_EST 0.0314 0.000055

Both p-values (0.0314 and 0.000055) are below the alpha of 0.05. These p-values
indicate significant differences between the clustering results of hbd_EST, with
wcd and PEACE.
doi:10.1371/journal.pone.0047216.t005
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Comparison of Clustering Results with Alignment-free
EST Clustering Tools (wcd and PEACE)

We use the two widely accepted alignment-free EST clustering

tools, i.e. wcd and PEACE to perform clustering on the same

experimental datasets. Both of them are run using the default

parameters set in the clustering tools (word size = 6, window

length = 100 bases). These default parameters are used because

they are the optimized and recommended values in both tools

[19], [46]. To ensure the comparison is done in a fair and

unbiased manner, we use the same word size and window length

for the hbd_EST distance measure. Furthermore, we also use the

same values for the global-local weight and the neighborhood

distance (Eps) across all the ten datasets. Based on the results

presented in the previous subsection, the following parameters

values (Table 3) will be used for this comparative study.

Whenever we compare hbd_EST to wcd or PEACE, we are

actually making comparison to the d2 distance measure used by

wcd and PEACE. Table 4 displays the comparison results for the

ten EST datasets. In terms of clustering accuracy, the performance

of hbd_EST is relatively better than wcd, with higher clustering

accuracies achieved in eight out of ten experimental datasets.

However, the clustering quality delivered by the hbd_EST in WNT

dataset is slightly lower than wcd, and the clustering accuracy

achieved by wcd is higher in the T-box dataset. When the

comparison is made between the hbd_EST and PEACE, it indicates

that the former yields higher clustering accuracies than the latter

in all experimental datasets. From the comparison table, it can be

observed that wcd also performs better than PEACE in most of the

datasets (except the APOBEC and EPH datasets).

In the CYP2 dataset, our clustering accuracy is 0.8577 and it is

higher than wcd (0.7166) and PEACE (0.6908). Besides that, the

number of clusters generated by the hbd_EST is 15, and it is very

close to the reference library (16 clusters). For both EST clustering

tools, they generate 11 and 10 clusters respectively. For the

APOBEC dataset, the hbd_EST has improved the accuracy rate

substantially. It manages to score 0.8256, as compared to 0.4030

recorded in both clustering tools. In fact, the number of clusters

formed by the hbd_EST is also the same with the reference library.

The hbd_EST also scores higher clustering accuracies than the two

clustering tools in the CYP4 and HOXA datasets.

In the CYP4 dataset, the clustering accuracy recorded by the

hbd_EST is 0.8721. This clustering result is very encouraging when

compares to 0.5927 in wcd and 0.5059 in PEACE. The formation

of clusters is 15 in the hbd_EST, and it is higher than the reference

library (12 clusters). This situation happens when two larger

clusters are divided into two or three smaller clusters. In this

dataset, both EST clustering tools produce less than expected

number of clusters. The preliminary finding has indicated that

some ESTs from different genes are grouped together to form

larger clusters. For the HOXA dataset, the clustering accuracy

achieved by the hbd_EST is 0.9329 with formation of 14 clusters,

and it performs better than the wcd and PEACE. The recorded

clustering accuracies for both clustering tools are 0.7133 and

0.5343 respectively.

For the WNT dataset, the clustering accuracy obtained by the

hbd_EST is satisfactory (0.9426) but slightly lower than wcd, where

the latter scores the highest clustering accuracy (0.9869) among the

three methods. The number of clusters generated by wcd is also

identical to the reference library (18 clusters). The formation of

clusters is 20 in the hbd_EST, and the investigation has found out

that the extra clusters are actually caused by the division of clusters

into smaller clusters. In the T-box dataset, wcd outperforms other

two methods with clustering accuracy of 0.9895. At the same time,

it also generates the same number of clusters with the reference

library (13 clusters). The clustering accuracy (0.8125) obtained by

the hbd_EST in this dataset is considered satisfactory, even though

it is lower than wcd.

The performance (in terms of clustering accuracy) of the

hbd_EST is quite consistent for the remaining four experimental

datasets. The comparison of clustering results between the

hbd_EST, wcd and PEACE on these four datasets has indicated

that the hbd_EST performs better than the two EST clustering

tools. Based on the clustering results, the hbd_EST manages to

yield the clustering accuracy above 0.90 for the PLXN and EPH

datasets. In the PLXN dataset, the recorded clustering accuracy by

the hbd_EST is 0.9568. It scores the clustering accuracy of 0.9214

in the EPH dataset. The clustering results generated by the wcd on

these two datasets are 0.8451 and 0.8257 respectively. For the

CHRN dataset, the highest clustering accuracy (0.8314) is

obtained by the hbd_EST, and both EST clustering tools yield

0.7295 and 0.4516 for the clustering accuracies. In the SPDY

dataset, the clustering accuracy generated by the hbd_EST is

0.7538, and similar clustering accuracies are observed in wcd

(0.5752) and PEACE (0.5538).

Generally, it is observed that the number of clusters generated

by the hbd_EST distance measure is higher than the number of

clusters found in the original data. Therefore, we analyzed each

clustering result for the hbd_EST in detail. Investigation into the

memberships of these extra clusters reveals that the higher than

expected number of clusters is caused by the subdivision of a

cluster into two or three smaller clusters. These smaller clusters

contain only its own ESTs and they do not merge with ESTs from

other clusters. Thus, they only have minimal effect on the

clustering accuracy. In clustering, a subdivision of a cluster into

several smaller clusters could happen when the clustering criteria

become more stringent [48], [49]. The hbd_EST is considered

more stringent in this case, since it compares the global and local

features of EST sequences (wcd and PEACE only compare the local

feature). As a result, the hbd_EST tends to subdivide a cluster into

smaller clusters if it manages to detect the difference between

ESTs in a gene.

Table 6. The hybrid distance measure (with the same
parameters in Table 3) is tested with another clustering
algorithm, the hierarchical clustering.

Dataset Jaccard Index

DBSCAN Hierarchical

Clustering Clustering

CYP2 0.8577 0.8590

APOBEC 0.8256 0.8256

T-box 0.8125 0.9010

WNT 0.9426 0.9426

CYP4 0.8721 0.8652

HOXA 0.9329 0.9262

PLXN 0.9568 0.9622

CHRN 0.8314 0.8427

SPDY 0.7538 0.7448

EPH 0.9214 0.9229

Almost all experimental EST datasets (except T-box dataset) show similar
clustering accuracies between the DBSCAN and the hierarchical clustering
methods.
doi:10.1371/journal.pone.0047216.t006
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We are aware that the performance of the hbd_EST is worse

than the wcd in the T-box dataset. In view of this, we are interested

to find out the possible reasons. Thus, we conduct an investigation

into this matter. The main focus of the investigation is to study and

analyze sequence (or subsequence) similarity among ESTs. In our

case, we perform multiple sequence alignments on the ESTs in the

T-box dataset using the ClustalW [50] tool. This is an analysis tool

that is frequently used in the study of evolutionary and sequence

homology [51]. The use of ClustalW tool enables us to compare

and analyze sequence similarity among ESTs simultaneously.

In our case, the multiple sequence alignment is done in two

settings. The first involves multiple sequence alignment of ESTs

that are from the same gene (intra-gene) in the T-box family. The

other setting is to perform multiple sequence alignment on ESTs

that are from different genes (inter-gene) in the T-box family. The

primary objective is to investigate the degree of similarity for intra-

gene and inter-gene ESTs. Based on the multiple sequence

alignment results delivered by the ClustalW tool, we found out that

there is one or more highly similar subsequences appearing in

ESTs that belong to the same gene. Besides that, highly similar

subsequences can also be identified between ESTs from different

genes in the T-box family. However, the key difference between

them is the length of highly similar subsequences. The multiple

sequence alignment results show that the subsequence length in

the first setting is longer than the second setting.

The highlighted key difference justifies the better performance

of wcd in T-box dataset. This is because wcd performs clustering

based on the similarity of subsequences between ESTs. It will

Figure 8. The BLAT scores for (A) three ESTs from CYP4A11 gene and (B) three ESTs from CYP4A22 gene. (A) indicates all three ESTs
(AI078080, CB163562, EL735375) obtain highest BLAT scores (235, 481, 630) in their own gene, and record their second highest BLAT scores in the
CYP4A22 gene. (B) shows the BLAT scores obtained by the three ESTs (AA913522, DB187797, DR004079) from the CYP4A22 gene. These three ESTs
also yield the highest BLAT scores in their own gene, and their second highest BLAT scores can be traced in the CYP4A11 gene.
doi:10.1371/journal.pone.0047216.g008

Hybrid Distance Measure for Expressed Sequence Tag

PLOS ONE | www.plosone.org 11 October 2012 | Volume 7 | Issue 10 | e47216



group ESTs to the same cluster if the length of highly similar

subsequences between ESTs is at least the window size (100 bp) of

the tool. In fact, we found out that most of the highly similar

subsequences between ESTs in the same gene have lengths greater

than 100 bp. As a result, wcd is able to cluster ESTs in the T-box

family according to the genes they belong. On the contrary, wcd

will not group ESTs from different genes in the T-box family into

one cluster, even though they share similar subsequences. The

result from multiple sequence alignment between ESTs from

different genes in the T-box family has indicated that the lengths of

similar subsequences between ESTs are shorter than the window

length of wcd, and these similarities are not significant to wcd. As a

result, wcd is able to cluster these ESTs correctly.

We further analyze the clustering result of hbd_EST in the T-box

dataset, it shows that the hbd_EST is capable to cluster ESTs to

their corresponding genes, but it further partitions the ESTs in the

same gene into two or three smaller clusters. It means that the

clustering performed by hbd_EST is stringent until it can subdivide

the members in a gene/cluster into smaller clusters. This could

occur when stringent criteria or rules are applied in clustering.

Consequently, the clustering accuracy of hbd_EST in T-box

dataset is lower than wcd.

In order to verify the effectiveness of hbd_EST on solving the

gene family problem in EST clustering, additional statistical tests

were conducted. In this case, we performed t-test on the clustering

results between hbd_EST with wcd and PEACE. The p-values of the

statistical test are displayed in Table 5. The p-value obtained

between the hbd_EST and wcd is 0.0314 (below the alpha of 0.05),

and it indicates that both methods have significant difference in

terms of clustering accuracy. Another p-value (0.000055) in the

table also shows that there is a significant difference between the

clustering results of hbd_EST and PEACE. As such, the statistical

test has confirmed that the hbd_EST is effective to resolve the

stated problem.

This comparative evaluation and statistical test results show that

the hbd_EST performs quite favorably in the experimental

datasets. These results have supported the claim that the hbd_EST

is effective (in terms of clustering accuracy) for the clustering of

ESTs originate from the same gene family. However, it may not

perform excellently in all EST datasets. Based on the evaluation

results reported in [12], [18], [19], in fact it is very unlikely a

clustering method can outperform other methods in all experi-

mental datasets. This is acceptable because there is no unifying

theory in clustering [52], [53]. In this case, it means that there is

no single distance measure, algorithm or approach for clustering

that can be regarded as suitable for most situations [54]. Many

techniques or algorithms are designed mainly for solving

individual problems.

Evaluation of the Hybrid Distance Measure Using
Hierarchical Clustering

We also study the applicability and performance of hbd_EST on

other clustering techniques. To this end, we select the hierarchical

clustering. This is because it is quite a commonly used

agglomerative clustering algorithm in EST [17], [18], [47]. The

setting of global-local weight in the hybrid distance measure is

exactly the same as in previous subsection, they are 0.1 for global

and 0.9 for local respectively. Table 6 shows the comparison of

clustering accuracies between the DBSCAN and the hierarchical

clustering methods.

From the table, nearly equivalent clustering accuracies are

observed for the nine datasets, and the only exception is the T-box

dataset. The clustering accuracy recorded by hierarchical cluster-

ing on T-box dataset is higher than the DBSCAN, where the

clustering accuracy is vary by about 0.09. We further conduct the

t-test to verify whether or not the two clustering methods have any

significant difference in terms of clustering accuracy for the ten

datasets. The obtained p-value is 0.37, which is above the alpha of

0.05. This result supports that the two clustering methods have no

significant difference in terms of clustering accuracy. Based on the

supports from the clustering and t-test results, we can claim that

the hybrid distance measure can work quite impressively using the

DBSCAN or hierarchical clustering algorithm.

Discussion

We analyze the cluster membership assignments of the three

methods thoroughly, we found out that the lower clustering results

obtained by the EST clustering tools are mainly due to the

incorrect merging of genes in the datasets. It means that ESTs

from two or more genes that are supposed to be clustered

separately are now grouped into a single cluster by the clustering

tools. For PEACE tool, the clustering accuracies for all the datasets

are in the range of 0.35–0.70. We investigate its cluster

membership assignments properly, and we notice that the

incorrect merging incidents occur in every experimental dataset.

The occurrences of these incidents have caused the number of

clusters generated by the clustering tool are less than expected.

This phenomenon (fewer than expected number of clusters) can be

observed in Table 4.

The main reason for causing the incorrect merging incidents in

the datasets is the high similarity between ESTs from different

genes in the family. This is justified because genes are classified

into the same family if they share important characteristics or

similar functions, and normally they exhibit high degree of

sequence homologies [28]. More specifically, they are in fact

having similar exon-intron structure and are subsequently

differentiated through splicing or evolutionary events [55], [56],

[57], [58]. In this case, it means that ESTs from different genes in

the same family might share exons among them. As a result, it is

difficult to separate these ESTs to the clusters where they belong

by using the EST clustering tools that implementing the window-

based distance measure. These clustering tools tend to put them to

the same cluster even when they share only a single exon region (a

subsequence).

For verification, we use the BLAT search for comparing

similarities among the ESTs. The BLAT [45] is an alignment

search algorithm that is similar to BLAST and it is available in the

Genome Browser. The comparisons only focus on ESTs that

belong to the incorrect merging incidents. The BLAT search

results have confirmed that the incorrect merging incidents are

caused likely by the high similarities between ESTs, to an extent

where the EST clustering tools are not sensitive enough to separate

them. Figure 8 shows an example from the CYP4 dataset. Three

ESTs (AI078080, CB163562 and EL735375) from the CYP4A11

gene (position: 47, 394, 848–47, 407, 156, at chromosome 1) are

compared against the human genome using the BLAT search.

The search result is displayed in Figure 8A. It shows that the

three ESTs obtain the highest matching scores in its own gene, but

at the same time they also get the second highest scores with the

CYP4A22 gene (position: 47, 603, 107–47, 614, 526, at

chromosome 1). Both scores (1st and 2nd highest) only differ

slightly, as compared to other scores. This information indicates

that both genes are in fact quite similar. Later three ESTs

(AA913522, DB187797 and DR004079) from the CYP4A22 gene

are also used to conduct the same search, and the result is shown

in Figure 8B. We can observe that the result is similar to the

Hybrid Distance Measure for Expressed Sequence Tag

PLOS ONE | www.plosone.org 12 October 2012 | Volume 7 | Issue 10 | e47216



previous one, where each EST sets the highest score in its own

gene and records the second highest in the CYP4A11 gene.

We further examine the genes using the gene sorter function in

the Genome Browser, and they are sorted based on the protein

homology. We discover that the genes that tend to be clustered

together are relatively similar in terms of protein expression.

Figure 9 illustrates the protein homology between the APOBEC

genes in the second dataset, and they are measured using the

BLASTP E-value (Smaller E-value indicates higher protein

similarity between them). The highlighted area (red rectangle)

shows that APOBEC3B is quite similar to APOBEC3F,

APOBEC3G and APOBEC3C. Therefore, these genes appear

as one cluster in the clustering results of both EST clustering tools.

Our proposed hybrid distance measure is able to improve the

EST clustering accuracy by separating the genes into different

clusters even though they are highly similar. We investigate this

matter thoroughly by looking at the proposed hybrid distance

measure and the clustering algorithm. We can say that the major

contribution is in fact coming from the hybrid distance measure,

where it incorporates global and local features into the distance

measure. The contribution of the selected clustering algorithm is

not as significant as the former, since we have verified that the

same distance measure can also produces nearly equivalent

clustering results with hierarchical clustering.

The hybrid distance measure is claimed to be quite effective in

resolving the gene family problem, and it can be justified with the

following explanations. (1) The global feature of EST is measured

statistically based on the entire sequence length, therefore it is

representing the characteristics of an EST sequence. As a matter of

fact, many alignment-free biological sequence comparisons are

implemented using the global features [26], [27], [31], [59], [60],

[61], [62], thus it is considered influential in sequence comparison.

With the incorporation of this global feature into the proposed

distance measure, the comparison between two ESTs can be done

in a comprehensive manner (global and local scales). As a result,

the hybrid distance measure can work satisfactorily on ESTs with

high local similarities.

(2) In EST clustering, it only groups ESTs from the same gene

and overlap (with specific length) with each other into the same

cluster [6], [17]. Hence, the local feature is still the main priority in

clustering and the global feature is meant to increase its sensitivity

for resolving the gene family problem. In this case, the weight for

the local feature is always higher than the global feature. (3)

Working on only global or local feature is unable to solve the gene

family problem effectively. It has to combine the local feature (to

detect similar exon/subsequence between ESTs) and global

feature (to differentiate ESTs that share a subsequence but not

from the same gene) for accomplishing the clustering task.

In conclusion, we have proposed a hybrid distance measure,

hbd_EST to improve the clustering accuracy for ESTs that come

from the same gene family. This distance measure combines the

global and local features extracted from the EST, and the

clustering is implemented using the DBSCAN algorithm. The

optimized weight for the combined features are obtained from the

experimental results, and the best performances are achieved using

0.05–0.15 for the global feature, and 0.85–0.95 for the local

feature. The clustering results show that the hybrid distance

measure is effective to resolve the problem stated earlier in the

paper, where it managed to separate genes from the same family to

different clusters. We have demonstrated that this hybrid distance

measure is appropriate to be implemented on EST datasets that

originating from the same gene family.

Another potential application for hbd_EST is for cluster

refinement. In this case, a clustering tool can be used to perform

coarse clustering for ESTs in a dataset. As a result, ‘super-clusters’

are produced and they can be broken to separate clusters by re-

clustering using the hbd_EST. Future work includes evaluating the

performances (clustering accuracy and speed) of the hybrid

distance measure using large EST datasets that contain few

millions ESTs. We might also consider implementing it in a

parallel environment when it is working with large EST datasets.
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Figure 9. Comparison of protein homology between the APOBEC3B gene and the other genes.
doi:10.1371/journal.pone.0047216.g009

Hybrid Distance Measure for Expressed Sequence Tag

PLOS ONE | www.plosone.org 13 October 2012 | Volume 7 | Issue 10 | e47216



References

1. He W, Rao Z, Zhou D, Zheng S, Xu W, et al. (2012) Analysis of expressed

sequence tags and characterization of a novel gene, Slmg7, in the midgut of the
common cutworm, Spodoptera litura. PLoS ONE 7(3): e33621.

2. Hazelhurst S, Liptak Z (2011) KABOOM! A new suffix array based algorithm
for clustering expression data. Bioinformatics 27(24): 3348–3355.

3. Manickavelu A, Kawaura K, Oishi K, Shin-I T, Kohara Y, et al. (2012)

Comprehensive functional analyses of expressed sequence tags in common
wheat (Triticum aestivum). DNA Research 19(2): 165–177.

4. Orsini L, Jansen M, Souche E, Geldof S, Meester LD (2011) Single nucleotide
polymorphism discovery from expressed sequence tags in the water flea Daphnia

magna. BMC Genomics 12: 309.

5. Shen Y, Burger G (2010) TestLoc: protein subcellular localization prediction
from EST data. BMC Bioinformatics 11: 563.

6. Nagaraj SH, Gasser RB, Ranganathan S (2006) A hitchhiker’s guide to
expressed sequence tag (EST) analysis. Brief in Bioinformatics 8: 6–21.

7. Boguski MS, Schuler GD (1995) ESTablishing a human transcript map. Nature
Genet 10: 369–371.

8. Quackenbush J, Cho J, Lee D, Liang F, Holt I, et al. (2001) The TIGR gene

indices: analysis of gene transcript sequences in highly sampled eukaryotic
species. Nucleic Acids Res 29: 159–164.

9. Miller RT, Christoffels AG, Gopalakrishnan C, Burke J, Ptitsyn AA, et al. (1999)
A comprehensive approach to clustering of expressed human gene sequence: the

sequence tag alignment and consensus knowledge base. Genome Res 9: 1143–

1155.
10. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, et al. (2002) The

human genome browser at UCSC. Genome Res 12: 996–1006.
11. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local

alignment search tool. J Mol Biol 215: 403–410.
12. Kalyanaraman A, Aluru S, Kothari S, Brendel V (2003) Efficient clustering of

large EST data sets on parallel computers. Nucleic Acids Res 31: 2963–2974.

13. Wu TD, Watanabe CK (2005) GMAP: a genomic mapping and alignment
program for mRNA and EST sequences. Bioinformatics 21: 1859–1875.

14. Wu X, Lee W, Gupta D, Tseng C (2005) ESTMapper: efficiently clustering EST
sequences using genome maps. Proc of the 19th IEEE Int. Parallel and

Distributed Processing Symposium: 196a.

15. Kim N, Shin S, Lee S (2005) ECgene: genome-based EST clustering and gene
modeling for alternative splicing. Genome Res 15: 566–576.

16. Picardi E, Mignone F, Pesole G (2009) EasyCluster: a fast and efficient gene-
oriented clustering tool for large-scale transcriptome data. BMC Bioinformatics

10: S10.
17. Burke J, Davidson D, Hide W (1999) d2_cluster: a validated method for

clustering EST and full-length cDNA sequences. Genome Res 9: 1135–1142.

18. Hazelhurst S, Hide W, Liptak Z, Nogueira R, Starfield R (2008) An overview of
the wcd EST clustering tool. Bioinformatics 24: 1542–1546.

19. Rao DM, Moler JC, Ozden M, Zhang Y, Liang C, et al. (2010) PEACE: parallel
environment for assembly and clustering of gene expression. Nucleic Acids Res

38: 737–742.

20. Christoffels A, Gelder A, Greyling G, Miller R, Hide T, et al. (2001) STACK:
sequence tag alignment and consensus knowledgebase. Nucleic Acids Res 29:

234–238.
21. Pevzner PA (1992) Statistical distance between texts and filtration methods in

sequence comparison. Comp Appl Biosci 8: 121–127.
22. Blasdell BE (1986) A measure of similarity of sets of sequences not requiring

sequence alignment. Proc Natl Acad Sci 83: 5155–5159.

23. Mantaci S, Restivo A, Rosone G, Sciortino M (2008) A new combinatorial
approach to sequence comparison. Theory of Computing Systems 42: 411–429.

24. Otu HH, Sayood K (2003) A new sequence distance measure for phylogenetic
tree construction. Bioinformatics 19: 2122–2130.

25. Dai Q, Wang T (2008) Comparison study on k-word statistical measures for

protein: From sequence to sequence space. BMC Bioinformatics 9: 394.
26. Almeida JS, Vinga S (2002) Universal sequence map (USM) of arbitrary discrete

sequences. BMC Bioinformatics 3: 6.
27. Wu TJ, Hsieh YC, Li LA (2001) Statistical measures of DNA sequence

dissimilarity under Markov chain models of base composition. Biometrics 57:

441–443.
28. Demuth JP, Bie TD, Stajich JE, Cristianini N, Hahn MW (2006) The evolution

of mammalian gene families. PLoS ONE 1: e85.
29. Ruan J, Li H, Chen Z, Coghlan A, Coin LJ, et al. (2008) TreeFam: 2008 update.

Nucleic Acids Res 36: D735–D740.
30. Pham TD, Zuegg J (2004) A probabilistic measure for alignment-free sequence

comparison. Bioinformatics 20: 3455–3461.

31. Wu TJ, Burke JP, Davidson DB (1997) A measure of DNA sequence dissimilarity
based on Mahalanobis distance between frequencies of words. Biometrics 53:

1431–1439.
32. Han J, Kamber M (2006) Data preprocessing, in: Data mining: concepts and

techniques. San Francisco: Morgan Kaufmann. 47–97.

33. Ankerst M, Breunig MM, Kriegel H, Sander J (1999) OPTICS: ordering points

to identify the clustering structure. Proc ACM SIGMOD ’99 Int Conf on

Management of Data: 49–60.

34. Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace

clustering of high dimensional data for data mining applications. Proc ACM

SIGMOD ’98 Int Conf on Management of Data: 94–105.

35. Ester M, Kriegel H, Sander J, Xu X (1996) A density-based algorithm for

discovering clusters in large spatial databases with noise. Proc of 2nd Int Conf on

Knowledge Discovery and data mining: 226–231.

36. Ruiz C, Spiliopoulou M, Menasalvas E (2010) Density-based semi-supervised

clustering. Data mining and knowledge discovery 21: 345–370.

37. Nasibov E, Ulutagay G (2009) Robustness of density-based clustering methods

with various neighborhood relations. Fuzzy Sets and Systems 160: 3601–3615.

38. Gorawski M, Malczok R (2006) AEC algorithm: a heuristic approach to

calculating density-based clustering Eps parameter. Advances in Information

Systems LNCS 4243: 90–99.

39. Chen Y, Relly KD, Sprague AP, Guan Z (2006) SEQOPTICS: a protein

sequence clustering system. BMC Bioinformatics 7: S10.

40. Halkidi M, Batistakis Y, Vazirgiannis M (2002) Cluster validity methods: Part I.

SIGMOD Rec 31: 40–45.

41. Malde K, Coward E, Jonassen I (2003) Fast sequence clustering using a suffix

array algorithm. Bioinformatics 19: 1221–1226.

42. Seal RL, Gordon SM, Lush MJ, Wright MV, Bruford EA (2011) Genename-

s.org: the HGNC resources in 2011. Nucleic Acids Res 39: 514–519.

43. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, et al. (2004) The

UCSC table browser data retrieval tool. Nucleic Acids Res 32: 493–496.

44. Pruitt KD, Tatusova T, Klimke W, Maglott DR (2009) NCBI reference

sequences: current status, policy, and new initiatives. Nucleic Acids Res 37: 32–

36.

45. Kent WJ (2002) BLAT–the Blast-like alignment tool. Genome Res 12: 656–664.

46. Hazelhurst S (2008) Algorithms for clustering expressed sequence tags: the wcd

tool. South African Computer Journal 40: 51–62.

47. Ptitsyn A, Hide W (2005) CLU: a new algorithm for EST clustering. BMC

Bioinformatics 6(2): S3.

48. Mellas DC, Schouls L, Francois P, Herzig S, Verbrugh HA, et al. (2009) High-

throughput typing of Staphylococcus aureus by amplified fragment length

polymorphism (AFLP) or multi-locus variable number of tandem repeat analysis

(MLVA) reveals consistent strain relatedness. Eur J Clin Microbiol Infect Dis 28:

39–45.

49. Curtis AJ (2008) Three-dimensional visualization of cultural clusters in the 1878

yellow fever epidemic of New Orleans. International Journal of Health

Geographics 7: 47.

50. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007)

ClustalW and ClustalX version 2. Bioinformatics 23: 2947–2948.

51. Edgar RC, Batzoglou S (2006) Multiple sequence alignment. Current Opinion

in Structural Biology 16: 368–373.

52. Yang Q, Wu X (2006) 10 challenging problems in data mining research.

International Journal of Information Technology & Decision Making 5(4): 597–

604.

53. Gokcay E, Principe JC (2002) Information Theoretic Clustering. IEEE

Transactions on Pattern Analysis and Machine Intelligence 24: 158–171.

54. Milligan GW (1996) Clustering validation: Results and implications for applied

analysis. In: Arabie P, Hubert LJ, De Soete G, editors. Clustering and

Classification. River Edge NJ: World Scientific Publ. 341–375.

55. Peremyslov VV, Mockler TC, Filichkin SA, Fox SE, Jaiswal P, et al. (2011)

Expression, splicing and evolution of the myosin gene family in plants. Plant

Physiology 155: 1191–1204.

56. Itoh N, Ornitz DM (2008) Functional evolutionary history of the mouse Fgf gene

family. Development Dynamics 237(1): 18–27.

57. Rogozin IB, Sverdlov AV, Babenko VN, Koonin EV (2005) Analysis of

evolution of exon-intron structure of eukaryotic genes. Briefings in Bioinfor-

matics 6: 118–134.

58. Sanchez D, Ganfornina MD, Gutierrez G, Marin A (2003) Exon-intron

structure and evolution of the Lipocalin gene family. Molecular Biology and

Evolution 20(5): 775–783.

59. Afreixo V, Bastos CA, Pinho AJ, Garcia SP, Ferreira PJ (2009) Genome analysis

with inter-nucleotide distances. Bioinformatics 25(23): 3064–3070.

60. Li M, Chen X, Li X, Ma B, Vitanyi P (2004) The similarity metric. IEEE

Transactions on Information Theory 50(12): 3250–3264.

61. Stuart GW, Moffett K, Baker S (2002) Integrated gene and species phylogenies

from unaligned whole genome protein sequences. Bioinformatics 18: 100–108.

62. Li M, Badger JH, Chen X, Kwong S, Kearney P, et al. (2001) An information-

based sequence distance and its application to whole mitochondrial genome

phylogeny. Bioinformatics 17: 149–154.

Hybrid Distance Measure for Expressed Sequence Tag

PLOS ONE | www.plosone.org 14 October 2012 | Volume 7 | Issue 10 | e47216


