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Abstract: Recent research has provided strong evidence that neurodegeneration may develop from
an imbalance between synaptic structural components in the brain. Lately, inhibitory synapses
communicating via the neurotransmitters GABA or glycine have come to the center of attention.
Increasing evidence suggests that imbalance in the structural composition of inhibitory synapses
affect deeply the ability of neurons to communicate effectively over synaptic connections. Progressive
failure of synaptic plasticity and memory are thus hallmarks of neurodegenerative diseases. In order
to prove that structural changes at synapses contribute to neurodegeneration, we need to visualize
single-molecule interactions at synaptic sites in an exact spatial and time frame. This visualization has
been restricted in terms of spatial and temporal resolution. New developments in electron microscopy
and super-resolution microscopy have improved spatial and time resolution tremendously, opening
up numerous possibilities. Here we critically review current and recently developed methods for
high-resolution visualization of inhibitory synapses in the context of neurodegenerative diseases. We
present advantages, strengths, weaknesses, and current limitations for selected methods in research,
as well as present a future perspective. A range of new options has become available that will soon
help understand the involvement of inhibitory synapses in neurodegenerative disorders.

Keywords: neurodegeneration; inhibitory synapse; synaptic plasticity; Alzheimer’s disease; EM;
STORM; STED; SIM

1. Introduction

Neurodegenerative diseases (ND) are a heterogeneous group of disorders that primar-
ily damage the structure and function of neurons, thereby causing synaptic dysfunction.
The presence of a range of clinical symptoms along with characteristic protein aggregates
defines major NDs, such as Alzheimer’s disease (AD), Parkinson’s disease, Huntington’s
disease, multiple sclerosis, and amyotrophic lateral sclerosis. The clinical symptoms of
patients with ND include but are not limited to: memory loss (dementia); movement
and cognitive impairment; disorientation; and changes in personality characteristics that
ultimately harm life expectancy and quality of life [1]. Strong research evidence correlates
the majority of these clinical symptoms with slippage in synaptic plasticity in ND [2,3].
Synaptic plasticity refers to the structural changes that occur at pre and postsynaptic sites to
facilitate effective communication between two new or existing neurons [4]. Recent studies
reveal the involvement of plasticity of inhibitory synapses (GABAergic and glycinergic) in
synaptic dysfunction and disease progression in ND [5]. Evolving methods of visualization
have enabled researchers to contribute greatly to understanding synaptic plasticity in
NDs. Hence, in our review, we focus mainly on inhibitory synaptic plasticity in ND, with
emphasis on Alzheimer’s disease, and discuss the established and evolving methods of
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visualization that have contributed to our knowledge of changes in inhibitory synapse
plasticity so far.

Alzheimer’s disease, similar to the majority of NDs, is either familial or sporadic, or
both combined, but there is no defined start point for the origin of the disease. AD is patho-
logically defined by the presence of aggregated amyloid-beta oligomers (AβOs, peptides of
36–43 amino acids), aggregated tau protein, neurodegeneration, and neuronal injury [6,7].
Figure 1 shows a schematic representation of the effects of AβOs, tau phosphorylation, and
neurofibrillary tangles (NFT) on synaptic plasticity. Pathomechanics of AD are shown as
an example to illustrate the overview of protein aggregates and biomarkers involved in
ND and its direct and indirect role in inhibitory synaptic plasticity. Often, there is a long
asymptomatic phase before the onset of the early stages of the disease. Inhibitory neurons
are important to maintain synaptic balance for healthy neuronal functioning in the brain.
In the adult brain, GABAergic neurons are the major inhibitory neurons that are critical
to maintaining synaptic balance [5]. Any loophole in inhibitory synaptic plasticity can
trigger accidents in neuronal communication, leading to progressive neurodegenerative
diseases [8,9].
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(NMDAR) are glutamate receptors present on the postsynaptic membrane. GABAAR—γ-aminobu-
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tive oxygen species; ATP—adenosine triphosphate; cyt c—cytochrome c; VAMP 2—Vesicle-associ-
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Figure 1. Schematic representation of the direct and indirect influence of amyloid-beta oligomers
(AβO), hyperphosphorylated tau (hTau), and neurofibrillary tangles (NFT) on synaptic components
in the context of Alzheimer’s disease (AD). The figure represents an example of the influence of
protein aggregates and biomarkers on synaptic plasticity at functional and molecular levels in
neurodegenerative diseases, which affects the cognitive functions of the brain. α-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid receptor (AMPAR) and N-methyl D-aspartate Receptors (NMDAR)
are glutamate receptors present on the postsynaptic membrane. GABAAR—γ-aminobutyric acid
type-B receptors; APP—amyloid-beta precursor protein; Ca2+—calcium ion; ROS—reactive oxygen
species; ATP—adenosine triphosphate; cyt c—cytochrome c; VAMP 2—Vesicle-associated membrane
protein 2; NT—neurotransmitter [3,10–21].



Int. J. Mol. Sci. 2021, 22, 12470 3 of 15

AD is characterized by memory loss and cognitive impairment, which is linked to
the loss of inhibitory synapses in the brain [22]. Due to the post-mitotic character of most
neurons in the brain, the ND is irreversible. Today there is no approved cure for ND.
The current treatment strategy is to implement drugs that temporarily halt the symptoms
and progression of ND (see Table 1 for an overview). However, several pathways and
mechanisms are emerging that may become the basis for new drugs in the future. In recent
years, accumulating evidence from various novel visualization techniques has begun to
confirm the involvement of Aβ oligomers and tau protein in the loss of inhibitory neurons’
plasticity [3,5,19–21,23,24].

Table 1. The most common neurodegenerative diseases and their specific effect on inhibitory synapses (IS). The current
treatment options and drugs mentioned here are used only to alleviate the symptoms in order to halt the progression of
the disease.

Type Profile Major
Symptoms Impact on IS Treatment Drug Target Site Reference

Alzheimer’s
disease

MRI
AβO
hTau
NFT

Dementia
cognitive

impairment

Loss of
GABAergic

neurons
Memantine

NMDAR
antagonist—
postsynapse

of EN

[6,7,20,22,25,26]

Parkinson’s
disease

MRI
α—Synuclein
Lewy neurites
Lewy bodies

Dementia
Bradykinesia
Rigidity Rest

tremors

Loss of
dopaminergic

neurons

Levodopa
combined with

dopamine agonists

Presynaptic nerve
terminals [27–32]

Multiple
Sclerosis

MRI
scarring of tissue

demyelination
oligoclonal bands
Neurofilaments

cognitive
impairment

defects in vision
muscle spasms

fatigue

loss of motor
neurons loss of

selective
inhibitory
neurons

Immunosuppressants
Cytokines

Myelin sheath
Axon fibers [27,33–37]

Amyotrophic
Lateral

Sclerosis
Neurofilaments

cognitive
impairment

frontotemporal
dementia muscle

spasms and
atrophy

loss of inhibitory
cortical

interneurons
Riluzole Baclofen

blocks NMDAR–
postsynapse

inhibits glutamate
release—pre-

synapse GABABR
agonist–

postsynapse

[28–32,38–40]

Huntington’s
disease

MRI
mHTT protein
Neurofilament

light protein

cognitive
impairment

dementia chorea
loss of GABAAR Tetrabenazine

Antipsychotics
inhibits VMAT-2—

presynapse [41–45]

Abbreviations: EN—excitatory neurons; IN—inhibitory neurons; MRI—Magnetic Resonance Imaging; NFT—Neurofibrillary tangles,
hTau—hyperphosphorylated tau; GABA—Gamma Amino Butyric Acid; NMDAR—N-methyl D-aspartate Receptors; GABAAR—γ-
aminobutyric acid type-A receptors; GABABR—γ-aminobutyric acid type-B receptors; mHTT—mutant Huntington’s protein; VMAT—vesicular
monoamine transporter.

Visualization methods have evolved tremendously in recent years. What was once
the so-called resolution limit dogma, stating that both physical parameters of the lenses
and the wavelength of the light or electron beam impose a strict limit to the resolution
of any microscope [46], has been overcome several times independently by the creativ-
ity of a number of inventors and scientists. Several super-resolution (SR) microscopic
techniques have become available, each offering advantages and disadvantages. Electron
microscopy, the high-resolution visualization method available since the 1930s, has also
recently evolved tremendously, with the ability to localize molecules in a way that can be
quantified, and with cryo and 3D methods, and combinations of those, readily available
to the scientific community. This review targets the researchers trying to understand the
molecular interactions at nanoscale resolution with a special interest in learning the latest
information on the visualization methods. We give a brief explanation of modern ap-
proaches, discuss their advantages and disadvantages, and give an outlook into the future
steps necessary to elucidate the mechanism of changes in inhibitory synapse plasticity due
to NDs and to facilitate future drug discovery. However, this review is methodologically
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limited to modern visualization methods and does not include molecular biology and
electrophysiological approaches. Moreover, we focus on research on inhibitory synapses in
the period between 2016 and 2021.

2. Discovering Details of Synapses with Electron Microscopy

Although electron microscopy provides the oldest high-resolution visualization method
described here, it is not outdated. Recent developments enable localizing and quantifying
proteins, visualizing structures in 3D at nanometer resolution, or even determining the
structure of proteins at near-atomic resolution. Conventional transmission electron mi-
croscopy, for which tissue is fixed using aldehydes, embedded in resin, thin sectioned, and
visualized under an electron beam, is the oldest available method that achieves sufficient
optical resolution for visualizing synapses (reviewed in [47]). At least two cell processes
(one presynaptic, at least one postsynaptic) are in contact at the chemical synaptic site. The
synapses are characterized by an accumulation of vesicles that contain a neurotransmitter
within the presynaptic terminal and a defined synaptic cleft between the pre and post-
synaptic membrane, which exhibits an electron-dense area, termed postsynaptic density
(Figure 2A).
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visualizing iron-loaded ferritin. (A): Conventional electron micrograph of a synapse in a human cortex sample. Synaptic
vesicles (SV), postsynaptic density (PD). (B,C): Conventional electron micrograph (B), and corresponding iron L-map
(C) from a sample of the human globus pallidus. The bright spots in (C) correspond to ferritin particles within an
oligodendrocyte (O). AX—axon; MS—myelin sheath.

Conventional transmission electron microscopy allows the counting of profiles of synapses
on the sections, and this was recently used to show that potassium 2-(l-hydroxypentyl)-
benzoate has a protective effect on synapse numbers in APP/PS1 mice [48]. Moreover,
using a dissector as a counting frame on pairs of sections [49] allows unbiased quantification
of the numbers of structures in a certain volume without the need for 3D reconstructions
(reviewed in [50]), as has been performed for synapse numbers (e.g., [51–57]), or even
immunolabelled cell types [58] within the period covered by this review.

Synapses in which the postsynaptic density appears thicker on electron micrographs
than the presynaptic density are called Gray Type I, and synapses with an equal thickness
of pre and postsynaptic thickness, Gray Type II [59]. There are many hints that Gray Type
I synapses are usually excitatory, whereas Gray Type II synapses are usually inhibitory
(reviewed in [47]). However, the concept that the thickness of the postsynaptic density on
thin sections in EM suffices for distinguishing between excitatory and inhibitory synapses
was challenged because many exceptions have been found (reviewed in [47]). A reliable
marker for inhibitory synapses is the neurotransmitter receptors that are situated along
the postsynaptic membrane. Even if the morphology of a synapse does not suffice to
identify it as either excitatory or inhibitory, [60] there is evidence for consistent differences
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between GABAergic and glutamatergic synapses. Tao and co-workers [60] showed, by
correlating fluorescence microscopy with cryo-electron tomography, that γ-aminobutyric
acid type-A receptors (GABAAR) in primary cultures of the rat hippocampus are situated at
a postsynaptic density consisting of thin sheets, whereas PSD-95, which is connected with
excitatory glutamatergic receptors, exists in a thicker, mesh-like structure. This confirmed
the hypothesis that different synapse types have different ultrastructural appearances.

Many neurotransmitters have either inhibitory or excitatory receptors, so if a spe-
cific receptor type can be labeled at the postsynaptic membrane, then both the specific
neurotransmitter released at the synaptic site and the sign of the synapse (whether it is
excitatory or inhibitory) can be made clear. Immunogold methods for transmission electron
microscopy allow visualizing neurotransmitter receptors and at the same time identifying
synapses. For these, either the sample or a thin section containing the sample is bathed in
a specific antibody solution, and then a gold label is brought to bind close to this site by
applying a gold-coupled secondary antibody or its fragment.

If chemical fixation and dehydration at room temperature is replaced by high-pressure
freezing [61] and freeze substitution, the ultrastructure of the sample is preserved in a
near-native state (e.g., [62]). Moreover, high-pressure freezing allows much more rapid
fixation than chemical fixation. This has led to the development of flash-and-freeze
technology [63,64], in which optogenetics can be combined with immediate high-pressure
freezing after the tissue sample has been stimulated with light. This can give detailed 3D
information of synaptic vesicle trafficking in different activation states, especially when
combined with 3D methods, such as electron tomography [65–69].

SDS-digested freeze-fracture replica labeling (SDS-FRL, [70]) can be performed on
either chemically-fixed or high-pressure frozen tissue samples. It allows studying biomem-
branes in combination with immunogold labeling of membrane proteins. As the antigens
are exposed to the antibody, it has advantages in terms of sensitivity over pre and post-
embedding immunogold techniques [71] and allows a reliable quantification [72]. Thus,
this provided an elegant way of quantifying receptor numbers and was used to demon-
strate that the density of metabotropic γ-aminobutyric acid type-B receptors (GABABR) are
reduced in the dentate gyrus of an AD model mouse expressing mutated human amyloid
precursor protein and presenilin1 (APP/PS1) [73–75].

Immunogold methods have revealed data that are relevant to answering the question:
what induces the changes in synapses during the course of AD? Using immunogold
methods performed on thin sections, in conjunction with super-resolution microscopic
methods, Pickett et al., 2016, detected AβO accumulation at postsynaptic sites, although it
was also found in cell bodies, dendrites, and mitochondria [18].

Several recent advances in technology now allow the use of scanning electron micro-
scopes for studying large volumes in 3D at an electron microscope resolution (e.g., [76];
reviewed in [77]), and tilting the sections in the beam and later reconstructing the structures
from its projection at different tilt angles (electron tomography) enables detailed 3D infor-
mation of the subcellular structures situated within a cell or tissue section (reviewed in [78]).
Electron tomography of frozen, hydrated, or freeze substituted, resin-embedded samples
has begun to allow elucidation of the molecular buildup of the cytomatrix of the active
zone of the presynaptic site and of the postsynaptic site [79–82], reviewed in [83,84]. Corre-
lating immunofluorescence with SEM and electron tomography with immunogold, [85]
Orlando et al. showed that synaptic potentiation induces increased GABAAR clustering in
primary cultures of mouse hippocampal neurons.

Proteins can be frozen and then directly visualized in a cryo-transmission electron
microscope, allowing their 3D structure to be determined at a rapidly improving resolution
(reviewed in, [86]) from averaging the particles that share the same orientation. This
technique has become a major tool for structural biologists and has received a boost since it
led to Jaques Dubochet, Joachim Frank, and Richard Henderson being awarded the Nobel
Prize in Chemistry in 2017 [87]. Cryo-EM enables the determination of the 3D structure of
proteins and has the advantages that complexes, various conformations, or interaction sites
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with binding molecules can be determined at several nm resolutions in 3D. This will allow
the studying of the binding sites of potential drugs for neurodegenerative disorders in detail.
Thus, both the GABAAR [88–91]; reviewed in [92], and the GABABR [93–96], reviewed
in [97], were recently described using cryo-EM in full length in different conformations.
Of note, one isoform of the GABABR is found in axons as it contains an axon-sorting
signal [98] that has recently been found to bind to secreted APP, reducing vesicle release
when bound [99].

3. Super-Resolution Imaging

Synapse-associated proteins essential for neuronal transmission can be revealed by
molecular and cellular neuroscience techniques. Precise roles of those proteins are depen-
dent on their location, but synaptic structural components are highly compressed within
narrow areas that cannot be resolved by conventional light microscopy due to diffraction
limits (approximately 200 nm for conventional light microscopy) [100]. New SR methods
enable the diffraction limit of light microscopy to be overcome. Here, we present recent
imaging improvements due to structured illumination microscopy (SIM), stimulated emis-
sion depletion microscopy (STED), and photoactivated localization microscopy (PALM) or
stochastic optical reconstruction microscopy (STORM).

To achieve a super-resolved SIM image, the sample is illuminated with a series of
excitation light patterns and the image is reconstructed out of the interference moiré
patterns of the structured illumination and underlying labeled structure. This method is
suitable for live-cell imaging because it uses low laser power and high frame rates. The use
of typical fluorescent dyes and fluorescent proteins (up to four different colors) makes it
very convenient. However, it has a lower resolution than other SR methods [101,102].

Recently, Schürmann and colleagues [103] used SIM to study the late-onset Alzheimer’s
disease risk factor BIN1 and showed that this protein is abundant in postsynaptic com-
partments, including dendritic spines. In order to image key components of the inhibitory
postsynaptic domain and presynaptic terminal, 3D SIM was used in combination with
STED. Cosby and colleagues [104] revealed that inhibitory synapses are organized into
nanoscale sub-synaptic domains (SSDs) and that, in response to elevated activity, synapse
growth is mediated by an increase in the number of postsynaptic SSDs. Notably, they found
no difference in the number of SSDs per synaptic compartment, as identified by STED and
SIM, indicating that SIM provides sufficient resolution to identify inhibitory SSDs.

The STED microscope [105] works with two lasers and is basically built up as a
confocal laser scanning microscope: one regular laser is used to excite the sample and
the other one as a doughnut-shaped depletion laser. The role of the doughnut depletion
laser is to deactivate fluorophores selectively by forcing them to emit photons in a higher
wavelength, thus minimizing the effective area of illumination to a smaller focal point. The
method achieves a high resolution of <40 nm, making it the method of choice for correlative
microscopy. Dependent on the scanning area, high frame rates can be achieved, although
full-frame imaging is rather slow. The method cannot be used on living cells because its
laser power is too high [106].

Yu and coauthors [107] used STED to clarify the pre and postsynaptic subcellular
locations of fragments involved in the amyloidogenic pathway in primary neurons with
a focus on 42 amino acid-long amyloid-beta peptide (Aβ42) and its immediate substrate
AβPP C-terminal fragment (APP-CTF).

De Rossi and colleagues [108] investigated the role of BIN1 (late-onset Alzheimer dis-
ease risk factor) function in the brain using conditional knockout (cKO) models. dSTORM
and immuno-EM were used to elucidate BIN1 location, predominantly at presynaptic
sites in glutamatergic synapses. Confocal and STED microscope analysis of presynaptic
morphology in cKO mice revealed a decrease in the density of presynaptic sites and the
size of presynaptic protein clusters.

Aβ42 is a peptide, which forms neurotoxic oligomers and amyloid plaques and plays
a key role in the loss of synapses in AD. STED and dSTORM in combination were used
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to show that Aβ42 is present in small vesicles in presynaptic compartments but not in
postsynaptic compartments in the neurites of hippocampal neurons [109].

STORM exploits the photo-switchable nature of specific fluorophores for temporal
separation of fluorescent signals, which otherwise would overlap spatially. In each imaging
cycle, only a fraction of fluorophores are turned on, and fluorophore positions are obtained
by fitting a PSF or Gauss distribution from a series of imaging cycles. The x/y positions are
used to reconstruct a super-resolved image with a resolution <20 nm. STORM can reach
molecular-scale resolution; however, special dyes and protocols are required, and imaging
times can exceed more than 10 min per image [110].

dSTORM was used by Nanguneri et al. [111] to obtain nanoscale images. These images
were analyzed with especially adopted supervised learning methods to understand the
heterogeneity in the organization of F-actin in dendritic spines of primary neuronal cultures
from rodents. The results were validated using ultrastructural data obtained from platinum
replica electron microscopy [112].

Dual-color direct STORM was used to image glycine receptors (GlyRs) and GABAARs
at mixed inhibitory synapses in spinal cord neurons to examine how different inhibitory
receptors are regulated. This study revealed that SSDs are aligned in trans-synaptic
nanocolumns at inhibitory synapses while being differentially spatially organized at mixed
inhibitory synapses [113].

A powerful combination of STORM and STED microscopy was used to show that
γ-secretase is present in both the pre and postsynaptic compartments. This enzyme is
enriched very close to the synaptic cleft in the postsynaptic membrane, as well as to NMDA
receptors, demonstrating that γ-secretase is present in the postsynaptic plasma membrane.
A correlation between γ-secretase activity and synapse maturation was suggested [111].

Paasila et al. [114] visualized the interactions between presynaptic terminals and
microglia in situ, using dSTORM. The procedure they described opens the spectrum
of molecular imaging using antibodies and SR microscopy to the analysis of routine
formalin-fixed paraffin sections of the archival human brain. Especially interesting is the
investigation of microglia-synapse interactions in dementia [115].

A newly developed combination of STED and STORM (MINFLUX, Abberior, company
founded by Stefan Hell, https://abberior-instruments.com/knowledge/publications/,
accessed on 17 November 2021) combines single-molecule activation with imaging using
a super-fast STED-microscope to triangulate the exact position of the fluorophore. These
results are in very high resolution (2 nm) and the imaging speed is faster compared with
STORM [114,116].

PALM works on a similar principle as STORM, but unlike STORM, which is used
for fixed cells, PALM is used to image living, transfected cells. Particle tracking can be
performed on this device as well (sptPALM) [117].

SEQUIN (Synaptic Evaluation and Quantification by Imaging Nanostructure) is a new
method that combines special tissue processing with Airyscan image scanning microscopy
and special automated software. First, the tissue is immunolabeled with fluorescent
antibodies for pre and postsynaptic sites, then it is cleared and finally put under the
microscope. Automated software is used for image processing and functional synapse
identification by matching closely apposed pre and postsynaptic markers. The resolution
is 140 nm, and 97% of synapses are identified. In a study of a murine model of AD by
Sauerbeck et al. [118], synaptopathic alterations were revealed in the vicinity of amyloid
plaques. Sequin revealed a proximity-dependent loss of synapses in such regions [118].

SR methods are an option when higher resolution is needed than can be obtained
using confocal microscopy. Although EM provides the highest resolution and immunogold
for EM has the advantage that unlabeled structures are visible in addition to gold-labeled
ones, there are limitations in labeling density, as well as in the number of proteins that can
be labeled and imaged simultaneously. Immuno-gold particles are distinguished from each
other by their size, and there has to be a noticeable size difference in gold particles used to
label different proteins of interest. Other limitations are that living cells or tissues cannot

https://abberior-instruments.com/knowledge/publications/
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be imaged with conventional EM and that 3D-EM methods are time-consuming. The high
resolution provided by EM may not be necessary to answer a particular question.

How do we choose a particular super-resolution method? A compromise must be
made between resolution, speed, and the number of available color channels. For example,
if living cells are imaged, a method with low laser power is required. If there is no need
for a resolution higher than 60 nm and there are more than two proteins to visualize, SIM
would be the best choice. Otherwise, if the aim is to visualize only two proteins with very
high resolution, and cells can be fixed, the method of choice would be STED (see Table 2
and Figure 3).

Table 2. Comparison of technical performances of most commonly used super-resolution methods.

SIM STED PALM/STORM

Resolution x/y = 60–140 nm
z = 120–250 nm

x/y = 2–40 nm
z > 4300 nm

MINFLUX has 2 nm resolution;
others have resolution of 20–80 nm;
very much dependent on the device

x/y = 1–40 nm
z = 20–50 nm

strongly dependent on chemical
method of on/off switching

Live imaging 240 fr/s Lattice SIM, Zeiss 10–20 fr/s depending on area 0.2 fr/s

Laser power 1–10 W/cm2 100 MW/cm2 1–25 kW/cm2

Colours 4 Max 2 2–4

Dyes typical fluorescent dyes Atto647N, Chromeo 494 AF647, mEos2
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4. How to Visualize Iron in Neurodegenerative Disorders

The connection between iron and neurodegenerative diseases has been extensively
reviewed during the survey period for this review [119–121]. Iron deposits are found in
the brain of people suffering from ND [122–125], overlapping with both amyloid deposits
and tau neurofibrillary tangles [125]. Excessive iron load is a major contributor to AD, but
it is still unclear if it is a cause [121]. The action of iron in AD is threefold. First, iron is
known to be able to upregulate APP transcription and aggregation [126,127]. Because APP
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has been shown to increase iron export from neurons [128], there is potentially a vicious
circle of ever-increasing APP and iron accumulation. Second, the presence of Ab oligomers
has been shown to reduce ferritin iron chemically [129], increasing the amount of iron in a
ferrous form that can cause radical production in the cell and thus damage the cell and its
compartments (e.g., [130]). Third, recent findings indicate ferroptosis—a necrotic process
involving iron and lipid oxidation—is responsible for the neuron loss that occurs during
Alzheimer’s disease [131].

Visualization methods of iron accumulation exist both at low and high resolution. At
low resolution, Magnetic Resonance Imaging (MRI) allows not only to visualize plaques [26]
but also iron mapping [26,122,132,133]. At electron microscope resolutions, analytical electron
microscopy allows localizing chemical elements within the samples.(Figure 2B,C; [125,134]).
Similarly, X-ray spectromicroscopy can show the chemical elements and their oxidation
state within the sample [129].

5. Discussion and Conclusions

Microscopy is an extremely rapidly advancing field, and, as we have shown, several of
the newly available techniques have already been applied for studying synaptic plasticity
in Alzheimer’s disease. In the past, microscopists were limited by two perceived physical
limits in microscopy: first, the diffraction limit [46], which stated that the wavelength of
the light or electron beam, along with physical parameters of the lenses, sets a limit to
the resolution of any microscopes. The resolution of conventional light microscopes is
limited to approximately 200 nm. This physical limitation has been overcome with the
invention of super-resolution microscopes, which work around it in several different ways
and offer spatial resolutions similar to that of electron microscopes [100]. The second limit
is that high spatial resolution can only be achieved at a low temporal resolution and vice
versa, meaning live processes can only be visualized at a low spatial resolution, and only
dead tissue or cells can be used for high-resolution studies [15]. As we have shown here,
this second limit still requires some compromise in terms of spatial resolution if the high
temporal resolution is required and vice versa (Figure 3) but is also becoming resolved
with the availability of super-resolution microscopes for live cells (Figure 3).

The visualization method of choice depends on the specific questions to answer. As
Figure 3 and Table 2 show, there are a wealth of options. If the tissue or cells are dead (fixed
and embedded) and ultrastructural features of the compartments are important, EM will
be the method of choice, and if proteins need to be labeled, super-resolution methods, such
as STORM or STED, can be applied as an alternative to immunogold methods for EM.

Furthermore, iron, which plays a role in neurodegenerative disorders (reviewed
in [119,121,135]), can be directly visualized using analytical microscopy (Figure 2B,C). Last
but not least, optogenetics can be combined with modern visualization methods, such as
super-resolution microscopy or high-pressure freezing and EM [63,64]. This will enable
dissecting major steps in the etiology of neurodegenerative disorders.

In summary, microscopy has recently advanced tremendously, and major improve-
ments can be expected in the research of neurodegenerative disorders if new visualization
methods are used.

6. Materials and Methods

For EM iron visualization, tissue was taken from deceased humans from a routine
autopsy. After the pathologist had released the tissue, it was embedded in resin, thin
sectioned, contrasted using lead citrate and platinum blue, and visualized using a Tecnai
G2 transmission electron microscope operated at 200 kV. The iron L elemental map was
made with a Gatan Quantum GIF energy filter, using the settings suggested by Gatan. All
the figures were created with BioRender.com.
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