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Proteogenomic discovery of sORF-encoded
peptides associated with bacterial virulence in
Yersinia pestis
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Weimin Zhu 2✉, Zongmin Du 1✉ & Chenxi Jia 2✉

Plague caused by Yersinia pestis is one of the deadliest diseases. However, many molecular

mechanisms of bacterial virulence remain unclear. This study engaged in the discovery of

small open reading frame (sORF)-encoded peptides (SEPs) in Y. pestis. An integrated pro-

teogenomic pipeline was established, and an atlas containing 76 SEPs was described.

Bioinformatic analysis indicated that 20% of these SEPs were secreted or localized to the

transmembrane and that 33% contained functional domains. Two SEPs, named SEPs-yp1 and

-yp2 and encoded in noncoding regions, were selected by comparative peptidomics analysis

under host-specific environments and high-salinity stress. They displayed important roles in

the regulation of antiphagocytic capability in a thorough functional assay. Remarkable

attenuation of virulence in mice was observed in the SEP-deleted mutants. Further global

proteomic analysis indicated that SEPs-yp1 and -yp2 affected the bacterial metabolic path-

ways, and SEP-yp1 was associated with the bacterial virulence by modulating the expression

of key virulence factors of the Yersinia type III secretion system. Our study provides a rich

resource for research on Y. pestis and plague, and the findings on SEP-yp1 and SEP-yp2 shed

light on the molecular mechanism of bacterial virulence.
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P lague represents one of the most lethal diseases ravaging
humans throughout history, for example, in the three his-
torical pandemics: Justinian Plague, the Black Death and the

Modern Plague1–3. The gram-negative bacterium Yersinia pestis is
the plague pathogen mainly transmitted by fleas in rodents and
humans as well as many other animal hosts4. Yersinia pestis shows
excellent resilience and survival against the host immune system
due to its unique genome and biological features, causing a fulmi-
nant disease. In the modern world, the bacterium survives in syl-
vatic animal reservoirs, often resulting in endemic plague outbreaks,
which are still a potential threat to biosafety and public health2.
However, many underlying mechanisms of bacterial infection and
spread are still unclear. One of the reasons is the lack of accurate
knowledge of the functional molecules in bacteria. Understanding
these molecular mechanisms will help to develop more efficient
strategies for plague treatment and prevention measures.

Emerging evidence indicates that small open-reading frame
(sORF)-encoded peptides (SEPs) play important roles in the
biological processes of bacteria5–8, which either act as signaling
factors by binding to receptors or assist other regulatory proteins
or complexes in exerting functions9. These SEPs were reported to
be involved in various biological processes of bacteria, including
stress sensing (Prli42), spore formation (SpoVM and CmpA), cell
division (MciZ, SidA and Blr), transport of ions and macro-
molecules (KdpF, AcrZ and SgrT), kinases and signal transduc-
tion (MgrB and Sda), and also act as membrane-bound enzymes
(CydX, PmrR and MgtR) and chaperones (MntS, FbpB and
FbpC)5,6. In addition to these nonsecreted SEPs, some SEPs were
reported to be secreted from bacteria, regulating the quorum-
sensing (AgrD) and phage lysis/lysogeny decisions (AimPs)6.
However, these intriguing molecules were previously overlooked
due to biased annotation and limited discovery approaches.
Usually, ORFs containing fewer than 100 codons are excluded by
most conventional genome annotation tools. For instance, the
submission system of GenBank filters out sequences with lengths
<200 nucleotides5. Additionally, because of their small size and
unique molecular features, SEPs are easily lost during sample
preparation and analysis in the traditional proteomic workflows.
Recently, Miravet-Verde et al. developed the bioinformatics tool
RanSEPs and predicted 109 bacterial small ORFomes10.
Sberro et al. conducted a comparative genomics study on 1773
human-associated metagenomes and predicted more than
4000 small protein families11. Inspired by these findings from
large-scale bacterial genomic analysis, we hypothesize that there
are many hidden SEPs in Y. pestis playing regulatory roles.

In this study, we established a proteogenomic pipeline for the
identification and functional characterization of SEPs in Y. pestis.
Three modules were integrated into this pipeline, including parallel
SEP prediction from RNA-sequencing (RNA-seq) data, discovery by
refined peptidomics approaches, and curation based on homolog
search and spectrum inspection, resulting in an atlas of 76 Y. pestis
SEPs. Among them, two virulence-regulatory SEPs, SEP-yp1 and
SEP-yp2, were identified by thorough functional characterization
and encoded by sequences previously known as noncoding regions.
They play important roles in the regulation of the antiphagocytic
capability and virulence of Y. pestis. Remarkably, SEP-yp1 modu-
lated the expression of the key components in the Yersinia type III
secretion system (T3SS). Collectively, the description of the SEP atlas
opens new avenues for research on Y. pestis and plague, and char-
acterization of the two virulence-regulatory SEPs provides insights
into the underlying mechanism of the bacterial pathogenicity.

Results
An integrated proteogenomic pipeline enables the discovery of
SEPs in Y. pestis. A human-avirulent Y. pestis strain biovar

Microtus 201 isolated from the rodent Brandt’s vole (Microtus
brandti)12, which is lethal to rodents, was used in this study. The
genome of this strain consists of one chromosome and four
plasmids, pPCP1, pCD1, pMT1, and pCRY12. Our integrated
pipeline for the discovery of the bacterial SEPs includes three
modules: prediction, discovery, and curation (Fig. 1).

In the prediction module, we conducted RNA-seq analysis of
Y. pestis strain 201 grown under various stress conditions to
achieve the greatest diversity of transcripts. The transcript
templates were obtained by the conventional sequential proces-
sing of the RNA-seq reads, i.e., quality control by using FastaQC
and Trimmomatic as well as alignment and assembly by using
Bowtie13 and Cufflinks14. Next, a three-reading-frame translation
was performed with Y. pestis transcripts from the upstream stop
codon to the immediate downstream stop codon, as reported13,14,
by using getorf from EMBOSS, resulting in a SEP database of
257,797 sequences at lengths ranging from 8 to 150 amino acids.
This approach allows retaining the longest sequence for
translation and avoids misidentification of upstream start codons.

In the discovery module, we adopted a strategy reported by
Saghatelian and colleagues15,16 for enriching SEPs <30 kDa. To
improve the sequencing coverage of SEPs, we employed eight
enzymes (trypsin, LysC, LysN, GluC, AspN, ArgC, chymotrypsin,
and mirror trypsin) in eight independent experiments (two
biological replicates each) for ultradeep analysis of the bacterial
extract. In total, 16 liquid chromatography-mass spectrometry
(LC-MS) raw data, including nearly one million tandem mass
spectra, were collected and further subjected to a PEAKS search
against the predicted SEP database. Note that the fragments of
known proteins could also pass the 30 kDa molecular weight cut-
off filter and be coeluted with the SEPs during sample
preparation, causing false-positive identification. To exclude
them, we collected Y. pestis proteins from UniProt as the
background database for the PEAKS search. We obtained 818
SEP candidates with a false discovery rate (FDR) of 0.01
(Supplementary Data 1).

In the curation module, the exactly matched SEPs to known
proteins were first removed from the list through a BLASTP
search. The remaining SEPs were grouped into two categories:
one belongs to putative proteins for all bacterial species and the
other is specific for Y. pestis biovar Microtus 201. Following the
application of the rigorous criteria evaluated by Miravet-Verde
et al.10, the remaining SEP candidates with more than two unique
peptides were considered confident identifications. To expand the
identification list, the SEP candidates with one unique peptide
were further evaluated by inspecting the peptide-spectrum
matches of unique peptides under the four criteria: (i) amino
acid number ≥7, (ii) concessive by ions ≥4, (iii) parent ion <2
parts per million (p.p.m.), and (iv) PEAKS score >20. Only those
that passed the criteria were further subjected to a BLASTP search
against the Y. pestis 201 nr. database to filter out single amino
acid variants as well as fragments of known proteins. Finally, 76
SEPs were obtained (Supplementary Data 1 lists the SEPs at every
curation step). Among them, 55 SEPs were encoded by
chromosomes, and 4, 5, 10, and 2 SEPs were encoded in the
pCD1, pCRY, pMT1, and pPCP1 plasmids, respectively.

Because of heterogeneous translational initiation of bacterial
genes, we further sought to identify translation initiation sites and
possible alternative translation sites of these 76 SEPs by using an
approach reported by Wang et al.17 and a prokaryote-specific
algorithm, Prodigal18. The resulting SEP sequences with pre-
dicted translation initiation sites were compiled into a database
against which a further search of 16 LC-MS raw data was
conducted. In total, 56 unique N-terminal peptides corresponding
to 18 canonical translation initiation sites were identified. Among
them, 11 unique peptides for translation initiation sites were
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obtained corresponding to three downstream N termini of the
canonical translation initiation sites (Supplementary Data 2 lists
the N-terminus information of SEPs).

A large proportion of these Y. pestis SEPs are predicted to be
functional. To provide a bird’s-eye view of the identified SEPs, we
constructed a Circos plot (Fig. 2a and details shown in Supple-
mentary Data 1) that shows genomic origins, transcriptomic base
coverage, and unique peptide coverage resulting from different
protease digestions (from outside to inside rings of the Circos
plot). The benefit of using different protease digestions was
demonstrated by the improved identification frequency (Supple-
mentary Fig. 1a) and sequence coverage (Supplementary Fig. 1b)
of SEPs.

Generally, bacterial pathogens interact with host cells by direct
cell–cell contact or via small diffusible molecules secreted by cells.
We employed TMHMM19 and SignalP20 to investigate the two-
dimensional structure of these SEPs and found that 11 of them
were predicted to be transmembrane and 9 SEPs were secreted,
including 3 SEPs that were both transmembrane and secreted
(Fig. 2b and Supplementary Data 3). An alternative algorithm,
Phobius21, was used for prediction, and an additional seven-
transmembrane and five secreted SEPs were obtained (Supple-
mentary Data 3).

Protein domains provide valuable insights into the function,
and many distantly related organisms share evolutionally
conserved domains that have similar functions. We next
performed a domain search on the 76 identified SEPs against
the Pfam database22. Approximately 33% of them were matched
to Pfam domains, and seven SEPs contained more than two

domains in the sequences (Fig. 2c), suggesting that they were
probably functionally active.

Next, we performed functional annotation on these SEPs by
using a sequence homology search. Most recently, Miravet-Verde
et al.10 reported 109 bacterial sORFomes by combining RanSEPs
with omics approaches. Among them, 5175 SEPs were NCBI
annotated and associated with functions. We compiled the 5175
function-annotated SEPs into a database and ran a BLAST
homolog search against this database on our 76 identified SEPs.
Eleven of them were matched into the database with a functional
inference, including membrane, transport, nucleotide binding,
etc. (Fig. 2d and Supplementary Data 3). Interestingly, three SEPs
(SEP046899, SEP064341, and SEP132880) were annotated in the
membrane category and were also predicted to contain
transmembrane sequences (Supplementary Data 3).

Subsequently, we investigated whether these identified SEPs are
conserved in human-virulent Y. pestis strains, including Y. pestis
angola23, Y. pestis CO9224, Y. pestis KIM25, and Y. pseudotu-
berculosis strain NCTC10275. The results from the tblastn search
indicate that more than 79% of these 76 SEPs are conserved in the
three human-virulent Y. pestis strains, and 64% of them are
conserved in Y. pseudotuberculosis (Fig. 2e and Supplementary
Data 3). The high conservation rate indicates that investigation of
the functional roles of these SEPs is important for understanding
the pathogenicity of the plague to humans.

Comparative peptidomics analysis under host-specific envir-
onments and high-salinity stress identifies functional SEP
candidates. Intrigued by the fact that a large proportion of these
SEPs were predicted to be functional, we performed label-free

FastaQC & Trimmomatic

Bowtie & Cufflinks

EMBOSS: getorf

 RNAseq data 

Predicted SEP database

Bacteria

MWCO <30 kDa

Multiple protease

.RAW

Blastp SEP
nr. all

LCMS

PEAKS

known Y.p. proteins
as background

nr. Y. pestis 201

SEP predictionSEP prediction DiscoveryDiscovery CurationCuration

SEPome

1 UP

x8 protease
x2 replicates 

> 1 UP

≥ 7 AA
≥ 4 b/y ion
< 2 ppm, Score > 20

Inspect PSM

Blastp UP

Curated SEPome

nr. Y. pestis 201

Identify start codons

x 16 files

257,797 SEPs 818 SEPs

146 SEPs

76 SEPs

76 SEPs

filter out SAAV

SEPome

Prodigal
PEAKS
 search

N-terminal UP

...

120 min/run x 16

lysis / protein extractlysis / RNA extract

~1 m. MS/MS spectra
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quantitative peptidomics experiments to screen the functional
SEP candidates that are potentially associated with the virulence
of the plague. Yersinia pestis is primarily transmitted among wild
rodents via flea bite2. The typical body temperatures of flea vec-
tors and rodents are 26 and 37 °C, respectively. By culturing the
bacteria under the two temperatures, we were able to mimic the
two typical niches of Y. pestis in vitro (the top panel of Fig. 3a) to
compare the expression levels of SEPs between the two tem-
peratures. Thirty-two SEPs were quantifiable by using the trypsin
digestion procedure, as summarized in a volcano plot (the bottom
panel of Fig. 3a, details are listed in Supplementary Data 4). The
expression level of SEP219854 (named SEP-yp1) was increased in
the bacteria cultured at 37 °C. These results suggest that the
expression of SEP-yp1 was much higher at the mammalian body

temperature and possibly plays a role in adaptation to the adverse
host environments during plague infection.

Yersinia pestis requires rapid and adaptive responses to salinity
stress during transmission and infection26,27. Therefore, we
explored the abundance changes of the 76 identified SEPs in
the high-salinity response. The results of comparative analysis
between the bacterial samples grown with and without 2.5% NaCl
were summarized into a volcano plot (Supplementary Fig. 2 and
Supplementary Data 4). SEP199116 (named as SEP-yp2) was
downregulated under high-salinity stress, suggesting a possible
role of SEP-yp2 in response to this adverse stimulus. The
accumulative intensities of transcripts of the 76 SEPs were
summarized into a ranked plot (Fig. 3b and Supplementary
Data 4), and the top five SEPs, including SEP-yp1 and SEP-yp2,
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occupied almost 50% of the total intensity. In addition, the two
SEPs are encoded by sequences previously known as noncoding
regions. SEP-yp1 is encoded by a downstream sequence of
YP_184112 and is expressed with the same orientation of the
gene. SEP-yp2 is encoded by an intergenic sequence between
genes pMT70 and pMT7112 and is expressed with the same
orientation as pMT71. In addition, the two SEPs showed 100% of
sequence identities in the three human-virulent strains, including
angola, CO92 and KIM. We thus chose SEP-yp1 and SEP-yp2 for
further functional analysis.

The presence of SEP-yp1 and SEP-yp2 was confirmed by syn-
thetic peptide standards and Western blotting. To validate the
correctness of the sequences of SEP-yp1 and SEP-yp2, their
tryptic peptides were chemically synthesized and analyzed by LC-
MS. The tandem mass spectra of synthetic and endogenous
peptides were compared and their fragment ions were exactly
matched (Fig. 3c). In addition, SEP-yp2 was determined to be
initiated from the first AUG codon (Supplementary Data 2),
while the start codon of SEP-yp1 was not successfully identified.
To further determine this, acidified methanol was used to directly
extract the endogenous peptides from bacteria followed by LC-
MS analysis without proteolytic cleavage. Three endogenous
peptide fragments were detected by confident sequence matches
(Supplementary Fig. 3), which rigorously determined the AUG
start codons of SEP-yp2 and SEP-yp1.

Subsequently, mouse monoclonal antibodies against SEP-yp1
and rabbit polyclonal antibodies against SEP-yp2 were prepared
and used for Western blotting on bacterial extracts. Two bands
with sizes of approximately 9 kDa and 5 kDa were detected by the
two antibodies (Fig. 3d). The two bands disappeared when the
two SEPs were deleted, demonstrating the presence of endogen-
ous SEP-yp1 and SEP-yp2. The expression levels of the two SEPs
were gradually elevated in the mutants complemented with the
plasmids expressing SEP-yp1 and SEP-yp2 when the bacterial
strains were grown at gradient concentrations of arabinose that
induced the expression of the corresponding genes. Taken
together, these MS and Western blotting results confirmed the
existence of SEP-yp1 and SEP-yp2 in Y. pestis.

Deletion of SEP-yp1 and SEP-yp2 attenuates the intracellular
survival capability of Y. pestis. During the early phase of infec-
tion, Y. pestis efficiently adapts itself to the host niche in the
macrophages and soon develops resistance to phagocytosis, fol-
lowed by an escape from the skin to lymph nodes (Fig. 4a). This
antiphagocytic ability is essential for Y. pestis to establish a sys-
temic infection4,28. Herein, we examined the phenotypic changes
in antiphagocytic capabilities after the deletion of SEP-yp1 and
SEP-yp2. First, successful survival in macrophages requires the
normal proliferation of pathogens to overcome the host elim-
ination. In an in vitro culture assay, we observed that deletion of
SEP-yp1 or SEP-yp2 resulted in a decreased growth rate and that
expression of SEP-yp1 or SEP-yp2 in the mutant strains restored
the phenotype of normal growth (Fig. 4b). Second, the pH values
of the macrophage compartment of mammalian hosts range from
4.5 to 6.2, which acts as a host defense to clear the engulfed
bacteria29. By measuring the bacterial survival at acidic pH values
in vitro, we observed that deletion of SEP-yp1 or SEP-yp2
reduced the acid survivals of bacteria, and a successful rescue was
then achieved (Fig. 4c). Third, the intracellular survival capability
of bacteria was examined. We found that deletion of SEP-yp1 or
SEP-yp2 caused almost no loss of bacterial survival in macro-
phages after 4 h of infection, and the intracellular survival cap-
ability was recovered to normal in the complemented strains
(Fig. 4d). Taken together, these results indicate that both SEP-yp1

and SEP-yp2 have important regulatory functions in the phy-
siological processes and the intracellular survival capability of Y.
pestis.

Deletion of SEP-yp1 and SEP-yp2 attenuates the virulence of Y.
pestis in mice. Yersinia pestis virulence to animals is the ultimate
phenotype for its pathogenicity. Therefore, we evaluated the effect
of SEP-yp1 and SEP-yp2 on the virulence of Y. pestis with a
mouse infection model. Our previous study shows that the LD50

value of the wild-type Y. pestis strain 201 is 3 colony-forming unit
(CFU)30. In this study, each animal was challenged by sub-
cutaneous infection with 100 CFU of either wild-type or mutant
Y. pestis (>30-fold LD50). The death of wild-type-infected animals
was observed on the fifth day, and all succumbed at 8 days post
infection (Fig. 4e and Supplementary Fig. 4). In strong contrast,
all the mice challenged with the SEP-yp2 mutants survived in the
2-week experiment. For those challenged with the SEP-yp1
mutant, the death of mice occurred on the eighth day post
infection, and 75% of mice survived after 2 weeks. The virulence
effect can be fully recovered in the complemented strains. These
results indicated that SEP-yp1 and SEP-yp2 are intrinsic peptides
that play critical roles in the pathogenicity of Y. pestis.

Quantitative proteomics reveals downregulation of virulence
factors after deletion of SEP-yp1. Intrigued by the remarkable
phenotypic changes of the SEP-yp1 and SEP-yp2 on bacterial
virulence in mice, we sought to collect evidence at the molecular
level to explore their potential virulence-regulatory roles. Label-
free quantitative analysis of the bacterial proteome under mam-
malian host-specific conditions (37 °C) was carried out (Fig. 5a;
note that the analysis procedures for SEP-yp1 and SEP-yp2 are
the same, and only that of SEP-yp1 is shown). Specifically, wild-
type Y. pestis (group named WT), together with SEP-yp1-deleted
mutants (ΔSEP-yp1) and its complemented strain (ΔSEP-yp1-
compl), was cultured under the mammalian host conditions at
37 °C. The bacterial pellets were collected and prepared by using a
standard proteomic analysis procedure for one-shot LC-MS
analysis with a 2-h gradient. PEAKS searching against a Y. pestis
protein database (containing 4136 entries) resulted in 1146
quantifiable proteins (Supplementary Data 5), which were sub-
jected to further bioinformatic analysis.

Principal component analysis (PCA) indicated that the nine
samples were clustered into three groups, and the ΔSEP-yp1
group was well separated from the WT and ΔSEP-yp1-compl
groups in the first component with 96.7% variability (Fig. 5b).
Additionally, Pearson’s correlation analysis (Supplementary
Fig. 5A) showed that the ΔSEP-yp1 group had relatively lower
correlation coefficients with the WT and ΔSEP-yp1-compl
groups. These results indicate that the proteome profile of the
WT group is close to that of ΔSEP-yp1-compl and different from
that of ΔSEP-yp1. Consistently, the ΔSEP-yp1 group displayed a
different phenotype from the WT, which was recovered in the
ΔSEP-yp1-compl group (Fig. 4b–e), suggesting an association
between the proteome profile and the physiological phenotype.

As shown in the cluster plot of Fig. 5a and the heatmap of
Supplementary Fig. 5B, the altered proteomic profile resulting
from SEP-yp1 deletion, which was rescued in the ΔSEP-yp1-
compl group, included 8 upregulated and 181 downregulated
proteins (Supplementary Data 5). Remarkably, four virulence
factors, LcrV, YscW, YscC, and YopE, were among the down-
regulated proteins in the ΔSEP-yp1 group, and their expression
was rescued in the ΔSEP-yp1-compl group (Fig. 5c). Two of them
were further orthogonally validated by Western blotting (Fig. 5d).
In the T3SS responsible for the virulence of Y. pestis31, YscC
belongs to a superfamily of bacterial outer membrane proteins
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existing as a stable oligomeric complex (Fig. 5e), essential for the
secretion of anti-host factors. YscW lipoprotein modulates
localization of YscC complex on outer membrane32. LcrV assists
in the insertion of the pore-forming proteins into the host cell.
Among the six Yersinia outer protein effector proteins, YopE is
one of the highly translocated effectors into host cells and is
essential for virulence32. The downregulation of these proteins in
the injectisome and effectors by SEP-yp1 deletion suggests that
SEP-yp1 plays a crucial regulatory role in the T3SS and bacterial
virulence. Another important global regulatory factor, RovA, was
downregulated (Fig. 5c).

Next, the 189 altered proteins in Fig. 5a were subjected to
Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene
ontology (GO) analysis. A large fraction of proteins was linked to
metabolic pathways (Fig. 5f) as well as metabolic processes
(Supplementary Fig. 5c). Further protein–protein interaction
analysis of the 189 altered proteins by the Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING) identified a
protein cluster involved in metabolic pathways (Fig. 5g),
consistent with the results of GO and KEGG analysis. The
altered metabolic pathways are possibly associated with pheno-
typic changes in intracellular survival.

The proteomics data for SEP-yp2 were subjected to a similar
analytical procedure as that of SEP-yp1 described above
(Supplementary Data 6). Pearson’s correlation analysis (Supple-
mentary Fig. 6a) and PCA (Supplementary Fig. 6b) suggested that
the ΔSEP-yp2 group had a different proteome profile than the
WT and ΔSEP-yp2-compl groups. The altered proteins were
selected (Supplementary Fig. 6c) and subjected to GO and KEGG
analysis, showing enrichment in metabolic processes (Supple-
mentary Fig. 6d) and metabolic pathways (Supplementary Fig. 6e),
respectively. Among the differentially expressed proteins resulting
from deletion of SEP-yp1 and SEP-yp2, only 16 proteins are
overlapped, with the remaining 93% were individually distributed
(Supplementary Fig. 7), suggesting that SEP-yp1 and SEP-yp2
possibly execute their functions through different molecular
mechanisms, which was also implied by the different expression
patterns of the two SEPs in the host-specific environment
(Fig. 3a) and high-salinity stress experiments (Supplementary
Fig. 2).

Deletion of SEP-yp1 influences the translocation of the T3SS.
Subsequently, we examined whether the translocation efficiency
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Fig. 4 Phenotype screening of SEP-yp1 and SEP-yp2 by a comparative assessment of WT, ΔSEP, and ΔSEP-compl bacterial strains. a Schematic
showing the interaction of Y. pestis with macrophages. The bacteria enter macrophages and develop antiphagocytic capability, followed by escape and
transmission. b Plot of bacterial growth rate showing the influence of SEP deletion on bacterial proliferation and growth. N= 3 in each group. Mean ± SEM.
c Plot of bacterial survival percentage in acidic environment showing the capability of acidic resistance effected by SEP deletion. N= 3 in each group.
Unpaired t test. Mean ± SEM. d Plot of bacterial survival percentage in macrophages affected by SEP deletion. N= 3 in each group. Mean ± SEM. Unpaired t
test. The p values of ΔSEP vs. WT are shown in [] at each time point, and ΔSEP-compl vs. ΔSEP in (). For panels c and d, *p value < 0.05, **p value < 0.01,
and ***p value < 0.001. e Animal survival curve showing the bacterial virulence by subcutaneous injection to mice. WT, N= 10; ΔSEP, N= 20; and ΔSEP-
compl, N= 10. A log-rank test was used to calculate the statistical significance. Note that some error bars are too small to be visualized.
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of T3SS33 can be affected by SEP-yp1 and SEP-yp2. HeLa cells
were, respectively, infected with the wild-type Y. pestis, the SEP-
yp1-deleted mutant, or the SEP-yp2-deleted mutant. The yopB-
deleted mutant was used as a negative control, since YopB is an
essential protein for translocation without effecting the expres-
sion of T3SS34. After removing the culture medium, the buffer
containing Triton X-100 was used for the lysis of HeLa cells, since
it is unable to break the cell wall of bacteria. Subsequently, the
injected amounts of YopE and YopM in the cell lysates were
assayed (Fig. 6). YopM and YopE were detected in the cell debris
pellets since the residual bacteria were present. In the lysates of
the cells infected with the WT or SEP-yp2-deleted mutants,
YopM and YopE were found to be present at comparable levels,
indicating that T3SS translocation with deletion of SEP-yp2 was
normal. In contrast, the abundances of YopM and YopE were
decreased in the cells infected with the SEP-yp1-deleted mutant
and, as expected, were unable to be detected in the cells infected
with the yopB-deleted mutant, indicating that T3SS translocation

was strongly inhibited by deletion of SEP-yp1. Therefore, we
assumed that SEP-yp1 modulated the translocation efficiency of
the T3SS.

Discussion
Yersinia pestis is the pathogen of bubonic plague, among the
deadliest human infectious diseases in history. However, many
underlying mechanisms of bacterial infection and spreading
remain unclear. Emerging evidence shows that the SEPs are
important regulators in bacteria5,6. Here, we identified 76 Y. pestis
SEPs with high confidence by using our robust integrated pipe-
line, which featured: (i) the use of eight proteases to improve the
sequence coverage and identification confidence, (ii) a set of
rigorous filters to remove false-positive identifications, (iii) the
prediction of molecular structures and functions, and (iv) quan-
titative screening to identify functional candidates. This inte-
grated pipeline can also be applied to other prokaryotic species
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for the discovery of these intriguing molecules. In contrast to
previous works on prokaryotic SEPomes10,11, we carried out an
extensive MS-based peptidomic investigation to obtain evidence
at the protein level. Most of the 76 identified SEPs are conserved
in the human-virulent Y. pestis strains as well as Y. pseudotu-
berculosis. Our SEP atlas provides a valuable resource for in-depth
studies of Y. pestis.

The virulence-regulatory role of SEP-yp1 was strongly
demonstrated by the feature of host-specific expression as well as
the modulation of virulence in mice and T3SS. We observed that
SEP-yp1 modulated the T3SS by regulating the expression of
critical components, including YscW, LcrV, YscC, and YopE. The
former three proteins are components of the needle-like T3SS
injection isome, and the latter one is an effector. During infection
of host cells, Y. pestis translocates effector proteins from the
bacterial cytoplasm to the host cytosol by using the T3SS. Our
results show that SEP-yp1 modulates not only the translocation of
the T3SS but also the expression of effector proteins. In the
experiments involving subcutaneous injection of bacteria into
mice, deletion of SEP-yp1 elongated the survival time of animals.
One of the reasons could be the inhibited expression of these
virulence factors and altered function of T3SS by deletion of SEP-
yp1. In addition to this attenuated effect on the T3SS, deletion of
SEP-yp1 caused a slower growth rate, influenced metabolic
pathways, and caused a large number of downregulated proteins
in the bacteria, suggesting that some important functions in
physiological processes were impaired. All of these factors might
contribute to the phenotypic changes of the mutants in terms of
virulence in mice as well as on acid resistance and intracellular
survival. Another important feature of SEP-yp1 is its elevated
expression under in vitro mammalian host conditions at 37 °C,
suggesting that SEP-yp1 might act as a regulator during mam-
malian infection. The mechanism underlying how SEP-yp1
modulates virulence is worth further investigation.

We found that SEP-yp1 and SEP-yp2 share three common
features. First, prediction of signal peptides and transmembrane
sequences revealed that SEP-yp1 and SEP-yp2 do not contain any
of these molecular features, suggesting their nonsecreted roles.
Second, quantitative proteomics results indicate that deletion of
SEPs inhibits metabolic pathways. Third, they exhibit wide effects
on bacterial physiologies, including acid tolerance, growth rate,
and virulence to mice. To elucidate the associations among these
findings, we can find some clues from a review article by Duval
and Cossart6, in which bacterial SEPs were sorted into two

categories: secreted and nonsecreted. The secreted SEPs act as
factors for communication or competition. In contrast, non-
secreted or cytoplasmic SEPs are involved in the cellular meta-
bolism, or in sensing and responding to environmental changes.
One example is the SgrT peptide translated from a small RNA
that regulates the glucose–phosphate stress response35. These
previous reports are consistent with our findings: SEP-yp1 and
SEP-yp2 are nonsecreted and affect cellular metabolism, possibly
further resulting in these bacterial phenotypes regarding acidic
tolerance, growth, and virulence. To the best of our knowledge,
SEP-yp1 and SEP-yp2 are the first reported SEPs with virulence-
regulatory functions in Y. pestis thus far.

In conclusion, SEP-yp1 and SEP-yp2 are important regulators
of bacterial virulence and metabolism and are associated with
various bacterial physiologies. The data resource of the discovered
Y. pestis SEPome is information-rich and demonstrates the power
of our proteogenomic pipeline, painting a picture of these valu-
able molecules at the genome, transcriptome, and proteome
levels. Further investigation of the nature of these previously
overlooked molecules will shed light on many fundamental
questions of Y. pestis and bubonic plague.

Methods
Bacterial strains and cell culture. The plasmids and bacterial strains used in this
study were listed in Supplementary Table 1. Yersinia pestis biovar Microtus strain
201 is avirulent to humans, but highly virulent to mice36. Yersinia pestis strain 201
was cultured in Luria-Bertani broth at 26 °C or in a chemically defined TMH
medium (with or without 2.5 mM calcium) at 26 °C or 37 °C37 and then 100mg/mL
ampicillin and 50mg/mL kanamycin were added to the medium. RAW264.7 was
maintained in Dulbecco’s modified Eagle’s medium (HyClone, Little Chalfont, UK)
containing 10% fetal bovine serum at 37 °C in a 5% CO2 incubator.

RNA-seq of Y. pestis. Yersinia pestis strain 201 were cultivated under various
conditions to achieve the greatest diversity of messenger RNA transcripts,
including 26 °C in TMH, 37 °C in TMH without CaCl2, 37 °C in TMH without
CaCl2 (pH 6.0), 37 °C in TMH with 2.5% NaCl, 4 °C in TMH, and 42 °C in TMH in
an incubator shaking at 200 r.p.m. overnight. An equal amount of bacterial cells
(2.65 × 107 CFU/mL) grown under the aforementioned conditions were mixed
together, and the total RNA was then isolated for RNA-seq analysis. Libraries were
prepared using the Illumina TruSeq Stranded Total RNA Kit according to the
manufacturer’s protocol starting with 1 µg of total RNA. Sequencing with paired-
end adaptors was performed on an Illumina HiSeq 2500 instrument by Novogene
Co. Two biological replicates were performed with three technical replicates each.

Prediction of SEPs from RNA-seq dataset and construction of the SEP data-
base. The raw RNA-seq data were processed with FASTQC (v0.11.9) for quality
check and then processed with Trimmomatic (v0.39)38 to remove the adapters and
low-quality sequences. Bowtie2 (v2.2.0) software13 was used to align the high-
quality clean reads against the genome of Y. pestis, which was downloaded in
FASTA formats from the NCBI RefSeq website. The resulting binary sequencing
files (*.bam) were processed by Cufflinks14 using FPKM normalization. The
resulting assembly transcripts were translated in three frames to identify ORFs
using the program getorf from the EMBOSS package (v6.4.0.0)39. We applied two
filter criteria to keep protein-coding sORFs for SEP database construction for
spectra identification: (i) set SEP of 8–150 amino acids in length and (ii) remove
duplicate sequences.

Sample preparation for identification of SEPs. For identification of SEPs in Y.
pestis, the samples were prepared following the protocol reported by Slavoff et al.16.
The bacteria were heated in boiling water for 10 min to denature the protease and
then transferred on ice for sonication for 2 min with a 30% duty cycle. The bacteria
lysis was centrifuged at 12,000 × g for 10 min at 4 °C. The supernatant was pro-
cessed by a 30 kDa molecular weight cut-off filter. The flow-through samples were
measured by bicinchoninic acid assay to evaluate the protein concentration and
then tried down at low temperature in a SpeedVac vacuum concentrator. The
pellets were resuspended in 8 M urea/50 mM Tris-HCl (pH 8) and reduced with
10 mM dithiothreitol at 56 °C for 30 min and alkylated with 10 mM iodoacetamide
in the dark at room temperature for 30 min. After four times dilution with 50 mM
Tris-HCl (pH 8), the solution was added with one of the eight enzymes at an
enzyme to substrate ratio of 1:50, including trypsin, LysN, LysC, GluC, chymo-
trypsin, AspN, ArgC (Promega, USA), and mirror trypsin (Beijing Hua LiShi
Scientific Co., China) in sequencing grade, as previously reported17,40,41. The
digestion was performed overnight at 37 °C and quenched by adding 2 µL of formic
acid. The digested peptides were then loaded on a C18 tip. After washing with
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Fig. 6 Deletion of SEP-yp1 influences the translocation of T3SS. HeLa
cells were infected with Y. pestis strains for 2 h. After removing the media
and thoroughly washing the wells, the infected cells were lysed by Triton
X-100 buffer, since it is unable to break the cell wall of bacteria. The
mixture was centrifuged to separate the lysate and the cell debris pellet.
The samples were immunoblotted. Each assay has three biological
replicates.
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water containing 0.1% formic acid, the peptide mixture was eluted by 50% acet-
onitrile containing 0.1% formic acid and then dried down for storage at a −80 °C
refrigerator. Each enzyme experiment has two biological replicates.

LC-MS analysis of SEP digests. The LC-MS experiments were performed on an
Orbitrap Q-Exactive HF mass spectrometer (Thermo Scientific) coupled with an
online Easy-nLC 1200 nano-HPLC system (Thermo Scientific). Five microliters of
a sample containing 500 ng peptide mixture were loaded on a reversed-phase C18
trapping column (3 μm, 2 cm × 100 μm ID) and then separated on a nano-HPLC
C18 column (1.9 μm, 12 cm × 150 μm ID) at a flow rate of 600 nL/min with a 120-
min gradient: 4–8% solvent B for 10 min, 8–28% for 95 min, 28–40% for 11 min,
40–95% for 1 min, and 95% for 3 min (Solvent A, water; Solvent B, acetonitrile;
0.1% formic acid). The electrospray voltage was 2.2 kV. Peptides were analyzed by
data-dependent tandem mass (MS/MS) acquisition mode with a resolution of
120,000 at full scan mode and 15,000 at MS/MS mode. The full scan was processed
in the Orbitrap from m/z 250 to 1800; the top 20 most intense ions in each scan
were automatically selected for higher-energy collisional dissociation (HCD)
fragmentation with a normalized collision energy of 29% and measured in an
Orbitrap. Typical mass spectrometric conditions were: automatic gain control
targets were 3 × e6 ions for full scans and 5 × e2 for MS/MS scans; the maximum
injection time was 80 ms for full scans and 80 ms for MS/MS scans; and dynamic
exclusion was employed for 13 s.

MS data processing and bioinformatic analysis of SEPs. The MS raw data were
analyzed by PEAKS Studio v8.5 against the home-made Y. pestis SEPome database.
A UniProt FASTA database containing 4605 proteins of Y. pestis (downloaded on
August 21, 2017) was used as the contaminant database to filter out any peptide
fragments of known proteins during searching. Mass tolerance was set to a max-
imum of 10 p.p.m. for peptide masses and 0.02 Da for HCD fragment ion masses.
The enzyme was set to one of the proteases used for sample preparation, including
trypsin, mirror trypsin, LysN, LysC, GluC, chymotrypsin, AspN, or ArgC. The
oxidation (M) and acetylation (N-term) were set as variable modifications and
carbamidomethylation (C) as fixed modifications. Up to three missed cleavages
were allowed. The unique peptides were filtered by FDR < 1% at the peptide level.
The label-free quantitation based on extracted ion chromatograms was performed
using the PEAKS Q module. Only peptides with valid quantitative values ≥75% in
at least one group were kept. The missing values were imputed with 10% of the
minimum quantifiable intensities of the SEP. The peptide intensities were nor-
malized by the total ion chromatogram. The quantitative information was exported
as.csv files for further bioinformatics processing. The R scripts were used for sta-
tistical analysis and data visualization, including Circos plot, volcano plot, hier-
archical clustering, PCA, etc.

Functional prediction of SEPs using SignalP, TMHMM, Phobius, and Pfam.
SingalP 5.0 was used to predict the signaling peptide of the identified 76 SEPs with
gram-negative mode and default parameters20. TMHMM was used to predict the
transmembrane sequence of SEPs with default parameters19. Phobius was also run
with gram-negative mode and default parameters21. The online version of the
hmmscan program42 was used to test the presence of conserved protein domains
with the Pfam parameters22. We used BLASTP search against the database of 5175
bacterial SEPs previously reported10 to find homologs domain targets region using
cut-off of e value <1e−05.

Construction of the Y. pestis mutants and complemented strains. ΔSEP-yp1
and ΔSEP-yp2 were generated by replacing the coding sequences of SEP-yp1 and
SEP-yp2 (1–186 bases) with the kanamycin resistance cassette via the λRed
recombination system43. Only 1–186 bases of SEP-yp1 was replaced in order not to
affect the function of SEP-yp1 downstream genes. To construct complemented
strains, a PCR-generated DNA fragment containing the SEP-yp1 or SEP-yp2
coding sequences was cloned into plasmid pBAD24. Then, the recombinant
plasmids were introduced into the mutants.

SEP-yp1 and SEP-yp2 gene expression in Y. pestis. Wide-type Y. pestis, ΔSEP-
yp1, ΔSEP-yp2, 201-pBAD24-SEP-yp1, and 201-pBAD24-SEP-yp2 were grown at
26 °C in TMH medium to OD620 nm= 1.0. Equal amounts of proteins in pellets
were analyzed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-
PAGE) gel and immunoblotting with anti-SEP-yp2, YopE, and LcrV rabbit poly-
clonal antibodies and anti-SEP-yp1 mouse monoclonal antibody at a concentration
of 1 µg/mL44. Among them, Mini-PROTEAN Tris-Tricine precast gels were used
for the analysis of SEP-yp1 and SEP-yp2. Images of the immunoblotting results
were acquired with the Odyssey SA imaging system (LI-CRO).

Assessment of growth rate of Y. pestis. Wide-type Y. pestis, mutants, and
complemented strains were grown in TMH medium at 26 °C overnight. Then,
bacterial cultures were diluted 1:20 in a fresh TMH medium and incubated at 26 °C
with shaking at 220 r.p.m. The bacterial growth was monitored every 2 h by
measuring the absorbance of OD620

45.

Assessment of acid resistance of Y. pestis. Wide-type Y. pestis, mutants and
complemented strains were grown in the TMH medium at 26 °C until OD620= 1.0.
Then, the bacterial cells were harvested and resuspended in Y. pestis 20 mM glucose
minimal medium46. A 1:100 dilution of bacterial resuspension was added to pH
3.5 minimal medium as the experimental group or added to pH 6.5 minimal
medium as a control. After incubation at room temperature for 30 min (and 60 min
in a separate group), the bacterial suspensions were diluted and plated on a Hot-
tinger’s agar to determine the number of viable bacteria in triplicate47.

Assessment of survival capability of Y. pestis in macrophages. Wide-type Y.
pestis, mutants, and complemented strains were grown in the TMH medium at
26 °C until OD620 nm= 1.0. RAW264.7 were seeded into 24-well plates and incu-
bated to reach about 90% confluency before infection. RAW264.7 were infected
with wide-type Y. pestis, mutants, and complemented strains at a multiplicity of
infection (MOI) of 20. At 0.5 h.p.i. (hour post infection), 100 μg/mL gentamicin
was added to each well to kill extracellular bacteria. At 0.5, 2, 4, and 8 h.p.i., the
cells were lysed with sterile H2O containing 0.1% Triton X-100 for 15 min at room
temperature. The diluted bacterial suspensions were plated onto a Hottinger’s agar
to determine the number of viable bacteria as described above32,48.

Assessment of virulence of Y. pestis to mice. Wide-type Y. pestis strain, mutants
and complemented strains were grown separately in Luria-Bertani medium at
26 °C. For each group, 10–20 female BALB/c mice (8 weeks old) were infected
subcutaneously at the dose of 100 CFU bacteria per mouse. The mice were
observed for 14 days and the survival rates of each group were calculated as
previously reported46. The survival rate of mice is equal to the remaining number
of live animals divided by the initial number of animals in the group. The animal
care was in accordance with institutional guidelines and ethical regulations of the
Beijing Institute of Microbiology and Epidemiology.

T3SS translocation assays. Yersinia pestis strains WT, ΔSEP-yp1, ΔSEP-yp2, and
ΔyopB were grown at 26 °C in the TMH medium without calcium to an
OD620nm= 1.0, and then cultured for an additional 3 h at 37 °C to induce T3SS
expression. HeLa cells (ATCC) were seeded into 24-well plates and grown to
80–90% confluence. HeLa cells were then infected with Y. pestis strains at an MOI
of 10. After 2-h infection, HeLa cells were washed once in phosphate-buffered
saline (PBS) and lysed for 15 min in lysis buffer containing 25 mM Tris-HCl (pH
7.6), 150 mM NaCl, 0.5% Triton X-100, and the protease inhibitor mixture. Cell
lysates and pellets were separated by centrifugation. Equal amounts of lysates and
pellets were separated by SDS-PAGE and transferred onto an Immobilon-P
transfer membrane. Proteins were visualized using rabbit antibodies specific for
recombinant YopE and YopM at a concentration of 1 µg/mL44,49,50.

Quantitative analysis of the global proteome of Y. pestis. After Y. pestis strain,
mutants and complemented strains were cultured, the bacteria obtained by cen-
trifugation were resuspended and washed three times with cold PBS, and the
resuspension was centrifuged again to obtain the bacteria pellets. Each group of
samples was resuspended by adding four times the sample volume of lysis buffer
containing 8M urea, then sonicated on ice, and finally centrifuged at 20,000 × g for
10 min at 4 °C to remove residual cell debris. Protein concentration in lysates was
measured using bicinchoninic acid protein assay. Proteins were reduced with 5 mM
dithiothreitol at 56 °C for 30 min and alkylated with 10 mM iodoacetamide in the
dark at room temperature for 30 min. After 4-fold dilution by 25 mM ammonium
bicarbonate, proteins were digested by sequencing grade trypsin (1:50, w/w). The
digestion was terminated by adding formic acid to pH 2. The solution was cen-
trifuged to remove precipitates. Peptide mixtures were loaded on the Sep-Pak C18
cartridges (Waters) and eluted off by 50% acetonitrile with 0.1% formic acid,
followed by drying down in a SpeedVac concentrator. The peptide samples were
resuspended in water containing 0.1% formic acid and subjected to LC-MS ana-
lysis. All the parameters of LC-MS are the same as those for analysis of SEP
digestion described above, except for the 120-min gradient: 4–8% solvent B for
5 min, 8–29% for 100 min, 29–43% for 11 min, 43–95% for 1 min, and 95% for
3 min (Solvent A, water; Solvent B, acetonitrile; 0.1% formic acid). The MS raw
data were analyzed by PEAKS Studio v8.5 against a home-made Y. pestis protein
database containing 4136 entries. Trypsin was set as an enzyme. Other search
parameters are the same as those used for SEP described above. The procedures for
label-free quantitative analysis and bioinformatic analysis are also the same.

The protein expression data were filtered to have at least 75% valid abundance
values in all data. The missing values were imputed with 10% of the minimum
values of the proteins. Standard statistical methods based on Student’s t test were
used. Multiple hypothesis testing was controlled by using a Benjamini–Hochberg
FDR threshold of 5%. Fold changes >2 or <0.5 and p value <0.05 in two comparable
groups were considered to be significant. The unsupervised PCA model of
proteome data was used in this study.

The Blast2GO (version 3.3.5) program13 was used to obtain GO annotations51.
KEGG pathway52 online service tools KAAS were used to annotate protein’s KEGG
database description. The STRING database (http://string-db.org)53 was used for
predicting protein networks. All STRING network analyses were performed with
Experimental and Databases evidence at a medium (0.4) confidence level. The
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networks were downloaded as tab-delimited text files and visualized and
reorganized using the Cytoscape (3.2.1) software54.

Statistics and reproducibility. For Fig. 4b–d, p values were calculated by unpaired
t test. Three biological replicates were performed in each group. For Figs. 3a, 5c,
and Supplementary Fig. 2. The p values were calculated by unpaired t test and
adjusted with Benjamini–Hochberg procedure with FDR < 0.05. Three biological
replicates were performed in each group. For Fig. 4e and Supplementary Fig. 4, log-
rank test was used to calculate the p values. The N number is shown in the figure
legends.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium (http://proteomecentral.proteomexchange.org) through the iProX partner
repository with the dataset identifier PXD028891. The RNA-seq data have been
deposited in the National Center for Biotechnology Information (NCBI) database with
accession code PRJNA662194. The Source data for graphs and charts is available as
Supplementary Data 7. The uncropped immunoblot images of Figs. 3d, 5d, and 6 are
shown in Supplementary Figs. 8, 9, and 10. Any remaining information can be obtained
from the corresponding author upon reasonable request.

Code availability
No custom algorithms or software were used in this work.
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