
����������
�������

Citation: Liang, C.; B. Gowda, S.G.;

Gowda, D.; Sakurai, T.; Sazaki,

I.; Chiba, H.; Hui, S.-P. Simple

and Sensitive Method for the

Quantitative Determination of

Lipid Hydroperoxides by

Liquid Chromatography/Mass

Spectrometry. Antioxidants 2022, 11,

229. https://doi.org/10.3390/

antiox11020229

Academic Editors: Giancarlo Aldini,

Alessandra Altomare, Giovanna

Baron and Alessandra Napolitano

Received: 29 November 2021

Accepted: 22 January 2022

Published: 25 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antioxidants

Article

Simple and Sensitive Method for the Quantitative
Determination of Lipid Hydroperoxides by Liquid
Chromatography/Mass Spectrometry
Chongsheng Liang 1,†, Siddabasave Gowda B. Gowda 2,3,† , Divyavani Gowda 2, Toshihiro Sakurai 2 ,
Iku Sazaki 1, Hitoshi Chiba 4 and Shu-Ping Hui 1,*

1 Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan;
chongsheng.liang.r2@elms.hokudai.ac.jp (C.L.); zaki-ry-0925@eis.hokudai.ac.jp (I.S.)

2 Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan;
siddabasavegowda.bommegowda@hs.hokudai.ac.jp (S.G.B.G.); divyavani@hs.hokudai.ac.jp (D.G.);
sakura@hs.hokudai.ac.jp (T.S.)

3 Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku,
Sapporo 060-0809, Japan

4 Department of Nutrition, Sapporo University of Health Sciences, Nakanuma, Nishi-4-3-1-15, Higashi-Ku,
Sapporo 007-0894, Japan; chiba-h@sapporo-hokeniryou-u.ac.jp

* Correspondence: keino@hs.hokudai.ac.jp
† These authors contributed equally to this work.

Abstract: Lipid hydroperoxides (LOOH) are the initial products of the peroxidation of unsaturated
lipids and play a crucial role in lipid oxidation due to their ability to decompose into free radicals
and cause adverse effects on human health. Thus, LOOHs are commonly considered biomarkers
of oxidative stress-associated pathological conditions. Despite their importance, the sensitive and
selective analytical method for determination is limited, due to their low abundance, poor stability,
and low ionizing efficiency. To overcome these limitations, in this study, we chemically synthesized
eight fatty acid hydroperoxides (FAOOH), including FA 18:1-OOH, FA 18:2-OOH, FA 18:3-OOH,
FA 20:4-OOH, FA 20:5-OOH, FA 22:1-OOH, FA 22:6-OOH as analytes, and FA 19:1-OOH as internal
standard. Then, they were chemically labeled with 2-methoxypropene (2-MxP) to obtain FAOOMxP
by one-step derivatization (for 10 min). A selected reaction monitoring assisted targeted analytical
method was developed using liquid chromatography/tandem mass spectrometry (LC-MS/MS).
The MxP-labelling improved the stability and enhanced the ionization efficiency in positive mode.
Application of reverse-phase chromatography allowed coelution of analytes and internal standards
with a short analysis time of 6 min. The limit of detection and quantification for FAOOH ranged from
0.1–1 pmol/µL and 1–2.5 pmol/µL, respectively. The method was applied to profile total FAOOHs
in chemically oxidized human serum samples (n = 5) and their fractions of low and high-density
lipoproteins (n = 4). The linoleic acid hydroperoxide (FA 18:2-OOH) and oleic acid hydroperoxide
(FA 18:1-OOH) were the most abundant FAOOHs in human serum and lipoproteins. Overall, our
validated LC-MS/MS methodology features enhanced detection and rapid separation that enables
facile quantitation of multiple FAOOHs, therefore providing a valuable tool for determining the level
of lipid peroxidation with potential diagnostic applications.

Keywords: lipid hydroperoxide; unsaturated fatty acids; 2-methoxypropene; chemical derivatization;
liquid chromatography; mass spectrometry; human serum; lipoprotein oxidation

1. Introduction

Lipid peroxidation has attracted much attention in determining the nutritional value
of foods and potentially influences pathophysiological processes, including sarcopenia,
aging, and inflammatory diseases [1–3]. Lipid hydroperoxides (LOOHs) are the primary
products of unsaturated lipid oxidation, with -OOH moiety is generally being allylic to
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double bond. Both clinical and animal studies have shown a positive association between
LOOHs and disease pathology [4,5]. Moreover, long-term fish oil consumption creates
a high risk for membrane phospholipid peroxidation and produces LOOHs, increasing
senescence [6]. Since lipids play a crucial role in food lipid quality management, their
oxidation affects the shelf-life of food. The formation of lipid oxidation products in food
depends on both internal (ex: fatty acid composition) and external factors (ex: tempera-
ture, light, moisture level). Further, lipid oxidation products are responsible for off-flavor
foods and cause diseases, such as inflammation, cancer, atherosclerosis, and aging in hu-
mans [7–9]. Therefore, the quantity and the actions of LOOHs in vivo should be known
to evaluate exactly their biological effect. Hence, accurate determination of LOOHs is
essential for finding and thereby control of the oxidation process in disease conditions.
Concentrations of LOOHs in human serum and lipoproteins have been ambiguous be-
cause of the difficulties in their measurements. Previous studies were focusing on the
determination of phospholipid, glycerolipid, and cholesterol hydroperoxides with the
aid of high-performance liquid chromatography (HPLC) with UV detection or with the
state of the art of mass spectrometry [10–12]. In addition to this, electron paramagnetic
resonance spin-trapping and nuclear magnetic resonance techniques are also applied for
measurements of hydroperoxides [13,14]. Nevertheless, these techniques are limited by
their sensitivity, requirement of a high amount of sample, and significant interference of
unoxidized lipids.

Furthermore, the chemical stability of LOOHs is a factor of concern. Because LOOHs
are the primary oxidation products that are easily transformed into secondary products
in an open environment. Despite the authentic standards stored at −30 ◦C the stability of
LOOHs was not last more than 3 months [15,16] Moreover, often biological samples were
analyzed in large numbers to obtain statistically significant results, and this increased the
sample waiting time in autosampler, which could cause the degradation of LOOHs and
affect the accuracy of the experiment results. Liquid-chromatography/mass spectrometry
(LC/MS) is a robust technology widely applied for lipidomic analysis because of its high
sensitivity over conventional techniques. The past studies demonstrated the application of
the LC/MS technique to LOOHs analysis [17–19]. They are limited by the poor ionization
efficiency of LOOHs, lack of detailed mass fragmentation specific to -OOH moiety, and
require large sample volume. An earlier study demonstrated the stability enhancement and
analysis of LOOHs by derivatizing with 2-methoxypropene [16]. However, the ionization
efficacy of 2-MxP derivatives and their mass behaviors were not evaluated in detail. In this
study, we have chemically synthesized eight fatty acid hydroperoxides (FAOOHs) and
their 2-MxP derivatives (FA-OOMxP) to develop a facile LC/MS method for quantitative
analysis. FA-OOMxP is comparatively more stable than FAOOHs and undergoes a strong
ionization in positive mode to give unsaturation specific mass fragment ions. The targeted
single reaction monitoring channels for each molecular species were established using a
triple quadrupole mass spectrometer and robust analytical method. After validating the
method, it was successfully applied to profile the total FAOOHs in oxidized human serum
and lipoproteins.

2. Materials and Experimental

Linoleic acid, pyridine, hematoporphyrin, dichloromethane, chloroform, and pyri-
dinium p-toluene sulfonate, were purchased from Wako Pure Chemical Industry, Ltd.,
(Tokyo, Japan). Oleic acid, γ-linolenic acid, arachidonic acid, all cis-5,8,11,14,17-
eicosapentaenoic acid, cis-4,7,10,13,16,19-docosahexaenoic acid, 2-methoxypropene were
purchased from Tokyo Chemical Industry Co., Ltd., (Tokyo, Japan). cis-10-Nonadecenoic
acid and human plasma (Cat. No. P9523) were purchased from Sigma Aldrich (St. Louis,
MO, USA). Erucic acid was purchased from Alfa Aesar (Tewksbury, MA, USA). Hexane,
ethyl acetate, acetonitrile, methanol, tert-Butyl Methyl Ether, and all other reagents of
solvent grade were obtained from Kanto Chemical Co. Ltd., (Tokyo, Japan).
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2.1. General Procedure for the Synthesis of FAOOH and FAOOMxP Standards

Synthesis of fatty acid hydroperoxides (FAOOH): The synthesis of FAOOHs was
achieved by the photochemical oxidation method established earlier with minor modifica-
tions [20]. The reaction scheme and structures of fatty acid standards used are summarized
in Figure 1. Briefly, the respective unsaturated fatty acid was dissolved in pyridine along
with a pinch of hematoporphyrin (~0.005 eq). Then the reaction mixture is irradiated under
a 200 W tungsten lamp with continuous bubbling of O2 gas for 75–90 min at 15 ◦C. The
progress of the reaction was monitored by thin-layer chromatography (TLC). After com-
pletion, the reaction mixture was poured into ice-cold water, acidified with 2 M HCl, and
extracted supplwith dichloromethane. The combined organic layer was washed with brine
and dried over by anhydrous sodium sulfate. After evaporation, the crude product was
subjected to silica gel column chromatography (hexane/ethyl acetate (v/v) = 48/2 to 35/15)
for further purifications. The details on the synthesis of individual FAOOH standards were
provided in the supporting information (Supplementary material Pages S1–S3).

Figure 1. Synthesis of fatty acid hydroperoxides and their 2-MxP derivatives (A) Schematic represen-
tation of the synthesis of FAOOH and FAOOMxP. (B) Chemical structure of unsaturated fatty acids
used in the study.

Synthesis of 2-Methoxypropene (2-MxP) derivatized fatty acid hydroperoxides
(FAOOMxP): The purified FAOOHs were subjected to 2-MxP derivatization by the previ-
ously reported protocol with minor modifications [16]. In brief, the respective FAOOH was
dissolved in dichloromethane, and a catalytic amount of Pyridinium p-Toluene sulfonate
(PPTS) and an excess amount of 2-MxP were added. The reaction was stirred at room
temperature for 10 min under a nitrogen atmosphere, for completion. The reaction mixture
was poured into water and extracted with dichloromethane. The combined organic extracts
were washed with brine solution, dried over anhydrous sodium sulfate, and subjected to
column chromatography for purification. The experimental details of all the FAOOMxP
standards are provided in supporting information (Supplementary material Pages S3–S5).
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2.2. Analysis of FAOOMxPs by Targeted LC-MS/MS

The single reaction monitoring (SRM) channels for each FAOOMxP were established
using TSQ Quantum Access MAX Triple Quadrupole Mass Spectrometer (Thermo Fisher
Scientific, Inc., Waltham, MA, USA) in positive ionization mode. The optimized ion source
parameters were set as follows: spray voltage:3500 V, vaporizer temperature: 150 ◦C,
capillary temperature: 250 ◦C sheath gas (nitrogen): 40 psi, auxiliary gas (nitrogen): 25 psi,
and collision gas (argon): 1.5 mTorr respectively. The obtained SRM channels for each
FAOOMxP are provided in Table 1. Moreover, the separation was achieved using an
ultra-fast liquid chromatograph (UFLC) system (Shimadzu Corp., Kyoto, Japan) equipped
with a Hypersil GOLD C4 column (50 mm× 2.1 mm, 1.9 µm, Thermo Fisher Scientific
Inc., Waltham, MA, USA). The oven and sample tray temperature were maintained at
40 ◦C and 4 ◦C, respectively. The mobile phases were A: Acetonitrile: Milli-Q (1:3) with
0.1% Acetic acid B: Methanol. The gradient at flow rate of 0.3 mL/min was set as follows:
0–1 min (40% A, 60% B), 1–4.5 min (10% A, 90% B), 4.5–5.5 (100% B), 5.5–8 (100% B), and
re-equilibration for 2 min.

Table 1. Optimized SRM parameters for 2-methoxyprepene derivatized fatty acid hydroperoxides
(FA: Fatty acid; MxP: 2-methoxypropene).

Lipids Parent Ion
[M + Na]+ (m/z)

Product Ion
(m/z)

Collision
Energy (V)

Tube Lens
(V)

FA 18:3-OOMxP 405.3 333.3 11 57
FA 18:2-OOMxP 407.3 335.3 13 57
FA 18:1-OOMxP 409.2 207.3 14 57

FA 19:1-OOMxP (IS) 423.4 221.3 14 62
FA 20:5-OOMxP 429.3 357.3 12 64
FA 20:4-OOMxP 431.4 359.4 13 64
FA 22:6-OOMxP 455.3 383.4 12 53
FA 22:1-OOMxP 465.4 263.3 15 65

2.3. Ethical Approval

The human serum samples were collected from healthy volunteers (n = 5) with prior
ethical approval from the ethics committee of the Faculty of Health Science, Hokkaido
University. The approval number is 19-107-2. Informed consent was obtained from all
subjects involved in the study.

2.4. Extraction and Derivatization of Sample

Human serum (50 µL) or lipoproteins (high-density lipoprotein (HDL): 1 mg/mL,
low-density lipoprotein (LDL): 0.2 mg/mL), samples were taken in a 1.5 mL Eppendorf and
10 µL of 100 µM internal standard FA19:1-OOH was added. The extraction was performed
by adding 200 µL methanol, 800 µL chloroform with vortex for 3 min at 3500 rpm at
room temperature by previously established method with modifications [21]. Additionally,
100 µL Milli-Q was added and vortexed for an additional 3 min. Then samples were
subjected to centrifugation for 5 min at 15,000 rpm and 4 ◦C. The organic layer was
transferred into a new vial and the aqueous layer was re-extracted with 800 µL tert-Butyl
Methyl Ether (TBME). The combined organic extracts are evaporated under a vacuum.
The lipid residue was re-dissolved in 100 µL acetonitrile and 50 µL PPTS (1 mM, in ACN),
50 µL 2-MxP were added with vortex for 10 min at room temperature. After that, it spiked
100 µL MilliQ to stop this reaction. The MxP labeled products were extracted with 400 µL
of TBME (x2) with vertexing for 3 min and centrifuged for 5 min. The TBME layer was
dried in a vacuum, re-dissolved in 50 µL MeOH. The alkali hydrolysis was conducted to
determine the total FAOOHs by the modified conditions described earlier [22]. Briefly, to
the redissolved 50 µL MeOH extract 10 µL 1 M methanolic KOH was added, vortexed for
3 min, and incubated at 37 ◦C for 60 min. Then the extracts are cool down and neutralized
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with 2 µL acetic acid, make up to 100 µL using methanol, and transferred to LC/MS vials.
Each injection was set to 10 µL.

2.5. Method Validation

To evaluate the linearity of this method, a series of diluted fatty acid hydroperoxides
(FA-OOHs) standard solutions were prepared at concentrations 0.01, 0.1, 1, 2.5, 5, 7.5, 10, 25,
50, and 100 pmol/µL with a constant amount of internal standard (FA19:1-OOH, 100 µM)
and derivatized with 2-MxP as described in the earlier section. The limit of quantification
(LOQ) and limit of detection (LOD) were evaluated as the signal-to-noise (S/N) ratios 10
and 3, respectively. The recovery, matrix effect, and accuracy of the method were evaluated
by spiking the known concentration of FAOOH standards (50 pmol/µL) to a 50 µL human
plasma and derivatized with 2-MxP. Recovery is calculated by the ratio of the area (spiked
sample) to the area (spiked extract) and the matrix effect by area (spiked extract) to the area
(standard). The details of these calculations are provided in our earlier report [17–19].

2.6. Chemical Oxidation of Native Human Serum and Lipoproteins

The oxidation experiments were performed based on the previously reported protocol
with minor modifications [11,12]. Briefly, total lipoprotein fraction (density < 1.225) was
separated by ultracentrifugation, and then low-density lipoprotein (LDL) and high-density
lipoprotein (HDL) were separated using gel-filtration HPLC based on the previously
established method with minor modifications [23]. 50 µL of native human serum was
mixed with 10 µL of 10 mM copper sulfate and 10 µL of 3.4% hydrogen peroxide. The
oxidation was carried out for 24 h at 4 ◦C. Similarly, to the 150 µL of HDL (1.0 mg/mL) and
LDL (0.2 mg/mL), 10 µL of 1 mM copper sulphate and 10 µL of 3.4% hydrogen peroxide
were added and oxidized for 2 h at 4 ◦C.

2.7. Statistical Analysis

The data were plotted in Microsoft office Excel 365 and GraphPad Prism 8.0.1. Two-
way ANOVA with Tukey or Sidak multiple comparison tests were applied. The significance
levels were decided as follows: GraphPad (GP) value of 0.1234 (ns), 0.0332 (*), 0.0021 (**),
0.0002 (***), 0.0001 (****).

3. Results
3.1. Preparation and Characterization of FAOOH and FAOOMxP Standards

The FAOOH and their 2-MxP derivatives (FAOOMxP) were prepared and purified
as described in the experimental section. The authentic standards such as FA 18:1-OOH,
FA 18:2-OOH, FA 18:3-OOH, FA 19:1-OOH, FA 22:1-OOH, FA 20:4-OOH, FA 20:5-OOH,
and FA 22:6-OOH were obtained from their respective FAs as starting materials by the
hematoporphyrin catalyzed photochemical oxidation. The reactants and byproducts of
the reaction are removed by silica gel column chromatographic purification. The FAOOHs
were further derivatized with excess 2-MxP in the presence of the catalytic amount of
PPTS and purified the products (FA 18:1-OOMxP, FA 18:2-OOMxP, FA 18:3-OOMxP, FA
19:1-OOMxP, FA 22:1-OOMxP, FA 20:4-OOMxP, FA 20:5-OOMxP, and FA 22:6-OOMxP) by
column chromatography. FAOOH and FAOOMxP were obtained in milligram scale ranging
from 5–28 mg and 6–44 mg (of yield about 61%), respectively. Finally, their structures were
characterized by nuclear magnetic resonance (NMR) spectroscopy and high-resolution
electrospray ionization mass spectrometry (HR-ESI-MS). The linear ion trap quadrupole-
Orbitrap mass spectrometry was used to acquire HR-ESI-MS spectra by the conditions
mentioned in our earlier report [24].

The representative 1H NMR spectra for oleic acid-OOH (FA 18:1-OOH) and FA 18:1-
OOMxP are provided in Figure 2. The 1H NMR and accurate mass details are as follows:
1H-NMR of FA 18-OOH (400 MHz, CDCl3); δ 5.81–5.72 (m, 1H), 5.41–5.33 (m, 1H), 4.30–4.24
(q, 1H, J = 6.4 Hz, 14.6 Hz), 2.37–2.33 (m, 2H), 2.11–2.06 (m, 2H), 1.66–1.60 (m, 3H), 1.46–1.27
(m, 19H), 0.90–0.86 (m, 3H). The exact mass obtained for FA 18:1-OOH is m/z 313.2384
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(theoretical m/z calculated for C18H33O4 [M-H]− is 313.2384, mass error: 0 ppm). 1H-NMR
of FA18:1-OOMxP (400 MHz, CDCl3) δ 5.69–5.60 (m, 1H), 5.42–5.35 (m, 1H), 4.32–4.26 (q,
1H, J = 6.8 Hz, 14.2 Hz), 3.30 (s, 3H), 2.37–2.32 (m, 2H), 2.08–2.03 (m, 2H), 1.67–1.62 (m,
3H), 1.44–1.26 (m, 25H), 0.90–0.87 (m, 3H). The experimental exact mass obtained for FA
18:1-OOMxP is m/z 409.2917 (theoretical m/z calculated for C22H42NaO5 [M + Na]+ is
409.2924, mass error: (−1.71 ppm). The formation of -OOH and -OOMxP is confirmed by
the NMR peaks at δ 4.3 (-CH-OOH) and δ 3.3 (-OCH3), respectively.

Figure 2. The 1H-NMR spectrum of FA 18:1-OOH (A) and its 2-MxP derivative FA 18:1-OOMxP (B).
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The ionization pattern of mono and poly-unsaturated FAOOMxP derivatives was
evaluated. The representative MS/MS spectra of erucic acid hydroperoxide (FA 22:1-OOH),
arachidonic acid hydroperoxide (FA 20:4-OOH), and their 2-MxP labeled derivatives (FA
22:1-OOMxP, FA 20:4-OOMxP) are shown in Figure 3A. The previous studies were focused
on the identification of LOOHs by the characteristic loss of a neutral molecule of water,
nonetheless, this loss is common in lipids other than hydroperoxides like hydroxy fatty
acids causing a significant interference in their annotation [18]. In our method, 2-MxP
derivatized FAOOHs producing major fragment ions by the characteristic loss of m/z 179
and m/z 49 (Figure 3A) for mono- and poly-unsaturated FAOOMxP, respectively. These ions
are possibly produced by the successive loss or rearrangements of -MxP moiety attached
to the -OOH group. The formation of unsaturation-specific fragment ions certainly takes
advantage of the conventional method of identification of FAOOHs (by the neutral loss of
water). The spectral details of the rest of the available standards and their exact masses are
provided in supporting information (Supplementary material Pages S6–S11).
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(A) The MS/MS spectra of mono-unsaturated (FA 22:1) and poly-unsaturated (FA 20:4) fatty acid hy-
droperoxides (a,c) and their 2-MxP derivatives (b,d). (B) Extracted ion chromatograms of FAOOMxP
standards (in plasma matrix).

3.2. Linearity, Sensitivity, Separation, and Extraction of FAOOH

The results of linearity, the limit of detection (LOD), and the limit of quantification
(LOQ) are provided in Table 2. All the standards showed good linearity of R2 > 0.97. The
LOD and LOQ for FAOOH are range from 0.1–1 pmol/µL and 1–2.5 pmol/µL, respectively.
These results suggest sufficient sensitivity for the determination of FAOOHs at the low
picomolar level.
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Table 2. Determination of linearity, LOD, and LOQ of FAOOH standards (# LOD: limit of detection,
$ LOQ: limit of quantification).

Lipids Linearity R2 Range
(pmol/µL)

LOD
(pmol/µL) #

LOQ
(pmol/µL) $

FA 18:3-OOH 0.0003x + 0.0386 0.965 2.5–100 1 2.5
FA 18:2-OOH 0.0022x + 0.0141 0.998 2.5–100 1 2.5
FA 18:1-OOH 0.0026x + 0.2529 0.987 1–100 0.1 1
FA 20:5-OOH 0.0021x + 0.1837 0.979 2.5–100 1 2.5
FA 20:4-OOH 0.0017x + 0.018 0.988 2.5–100 1 2.5
FA 22:6-OOH 0.0008x − 0.003 0.994 1–100 0.1 1
FA 22:1-OOH 0.0022x + 0.0868 0.990 1–100 0.1 1

The separation was achieved within a period of 6 min using conditions as described in
the methods section. The representative extracted ion chromatograms of all the synthesized
FAOOMxP are shown in Figure 3B. The high sensitivity and rapid analysis suggest the
established method is robust with potential clinical applications. Though FAOOMxP
derivatives are successfully prepared from FAOOHs on a large scale, the major challenge
with us was the 2-MxP derivatization of FAOOHs at a minor scale as present in biological
samples. To achieve this various reaction parameters such as volume of 2-MxP, amount of
PPTS, reaction time, and temperature were evaluated by spiking internal standard FA19:1-
OOH in plasma matrix. The results are shown in supporting information (Supplementary
material page S12). These results demonstrated that the following conditions are ideal
for 2-MxP derivatization of FAOOHs in biological samples: 2-MxP (50 µL), 1 mM PPTS
(50 µL, in ACN), 10 min at room temperature. The analysis results of the recovery and
reproducibility test are listed in Table 3. The coefficients of variation (CV) of intra-day
and inter-day assays for all FAOOHs species are <15%. The recoveries of FAOOH after
2-MxP derivatization is range from 48 to 76%. The matrix effect of the internal standard is
observed to be 91%, suggesting a slight ion suppression in positive mode. The authentic
FAOOH standards (50 pmol/µL) are spiked to plasma and the matrix effect was evaluated.
The FA 18:1-OOH and FA 22:1-OOH showed ion enhancement (102% and 120%) whereas
all other species showed ion suppression (<100%) with plasma matrix.

Table 3. Recovery and reproducibility of FAOOH standards in plasma matrix (CV: coefficient of
variance) # The value corresponds to the variance among FAOOH standards derivatized and injected
directly without matrix.

Lipids Recovery (%) Standard
(CV%) #

Intra-Day
(CV%)

Inter-Day
(CV%)

FA 18:1-OOH 69.7 ± 4.5 2.9 3.1 4.4
FA 18:2-OOH 53.9 ± 4.3 1.2 6.4 8.8
FA 18:3-OOH 54.8 ± 6.0 8.8 9.3 3.9
FA 19:1-OOH 70.9 ± 11.4 8.9 13.6 7.1
FA 20:4-OOH 48.1 ± 5.7 9.7 3.1 5.5
FA 20:5-OOH 50.0 ± 7.5 12.3 7.3 5.2
FA 22:1-OOH 76.0 ± 5.95. 5.1 3.7 3.6
FA 22:6-OOH 49.5 ± 5.6 9.2 4.9 10.9

3.3. Application to Profile FAOOHs in Chemically Oxidized Human Serum and Lipoproteins

After validating the method, it was applied to determine the total FAOOHs in chemi-
cally oxidized human serum and lipoprotein (HDL and LDL) samples. The chromatograms
of detected species and their quantitative results are shown in Figure 4. In human serum,
the detected lipid species were FA 18:1-OOH, FA 18:2-OOH, FA 20:4-OOH, and FA 22:1-
OOH, with FA 18:2-OOH being the most predominant. Compared to native serum, the
oxidized serum had significantly higher amounts of these oxidized lipids. Further in both
HDL and LDL, FA 18:1-OOH, FA 18:2-OOH, and FA 22:1-OOH were the key detected lipid
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species, with FA 18:1-OOH being most predominant. Compared to native HDL and LDL,
the oxidized forms (oxHDL and oxLDL) had significantly higher FAOOHs.

Figure 4. Quantitation of total FAOOHs in human serum and lipoproteins. (A) Extracted ion
chromatograms of standard and those detected in samples. (B) Detected FAOOHs in native and
oxidized human serum (n = 5). (C) Amount of FAOOHs detected in native LDL (nLDL) and oxidized
LDL (oxLDL) (n = 4). (D) Amount of FAOOHs detected in native HDL (nHDL) and oxidized HDL
(oxHDL) (n = 4). Two-way ANOVA with Tukey multiple comparison tests were applied and p < 0.05
was considered to be statistically significant (ND: not detected, p= 0.0332 (*), 0.0002 (***), 0.0001 (****)).

4. Discussion

Lipid oxidation by enzymatic and non-enzymatic biological processes generates lipid
hydroperoxides (LOOHs), which are major initial products of free-radical-initiated perox-
idation of unsaturated fatty acids. LOOHs are reported to play a crucial role in human
disease progression [1–3]. Thus, their determination in biological samples is of great in-
terest. Several methods of determination of LOOHs are developed, but because of poor
stability of -OOH moiety, most are indirect or general methods rather than the analysis
that are sensitive and specific for intact LOOHs [25–27]. Although the identification of
specific LOOHs is achieved by high-performance liquid chromatography coupled to UV
detection [28] this method detection is limited to low nanogram levels, and interference of
unoxidized lipids causes difficulty in identification. An effort to measure hydroperoxides
by gas-chromatography mass spectrometry, derivatization reaction resulted in decompo-
sition of -OOH moiety [29]. Recently, LC/MS analysis has been attracted great concern
because of its sensitivity and direct measurements of LOOHs [16,30,31]. Most of these
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reported techniques are semi-quantitative and not focused on the measurement of the
fatty acid hydroperoxides (FAOOHs). To know the significance of FAOOHs, absolute
quantitation methods are necessary, however, they are limited due to a lack of authentic
standards, instability, and poor mass ionization. To overcome this problem in this study,
we synthesized eight authentic standards including, FA19:1-OOH molecular species as an
internal standard. Simple photochemical oxidation was employed to prepare FAOOHs
followed by 2-MxP derivatization to give FAOOMxP by the method reported earlier with
minor modifications [16]. As for our knowledge, this is the first report on the synthesis and
characterization of FAOOH and stable FAOOMxP derivatives which are used for quan-
titative. Previous reports had demonstrated the stability enhancement and separation of
LOOHs by 2-MxP derivatization [16,32] The MS/MS analysis confirmed the unsaturation
specific fragment ions by the loss of 179 Da and 49 Da for mono- and poly-unsaturated
FAOOMxPs, suggesting enhanced detection by positive ionization. The data of LOD ranges
from 0.1–1 pmol/µL, and LOQ from 1–2.5 pmol/µL showed that our method is sensitive
for FAOOH determination. This sensitivity enables us to detect a small amount of FAOOHs
in the human samples. However, the LOD and LOQ are still higher compared to the previ-
ous report on the determination of cholesterol ester and phosphatidylcholine hydroperox-
ides [16,32]. The developed method is still advantageous over the previous method because
multiple fatty acyls can be measured with simple extraction and derivatization technique.
Furthermore, the detailed method validation was performed, as demonstrated in Table 3,
showing that the recoveries are up to 76% with a low coefficient variance, suggesting the
high precision of our method. The possible reason for least recoveries of some standards
could be a reduction of spiked FAOOHs to FAOH in plasma by the action of endogenous
peroxidases [12]. Furthermore, LOOHs are very unstable to alkali hydrolysis as they are
reduced to hydroxides [33]. To liberate the FAOOHs from complex lipids, first, the -OOH
group was masked with 2-MxP derivatization, and then alkali hydrolysis was conducted.
The alkaline stability of FAOOMxPs was evaluated under similar experimental conditions
as that of samples and the results were provided in supporting information (Supplemen-
tary material Page S13) suggested strong stability of 2-MxP derivatives to alkali. FAOOHs
are reported to be increased in oxidatively modified plasma with the increasing course
of oxidation [12], and the results are consistent with our study. The chromatograms of
samples before and after derivatization demonstrated 2-MxP derivatization enhanced the
detection of FAOOHs (Supplementary material Page S14). Compared to native serum or
lipoproteins, oxidized serum or oxidized lipoproteins have a higher amount of FAOOHs. A
previous study determined the human plasma concentrations of phosphatidylcholines (PC)
and found the higher concentrations of PC (16:0/18:2-OOH) (PC 18:0.18:2-OOH) [10]. That
could account for the predominance of FA 18:2-OOH species in serum and our analysis
results are consistent with this report. The intact LOOHs such as cholesterol hydroperoxide
(CE-OOH) and phospholipid (PL-OOH) were characterized in intact as well as oxidized
HDL and LDL [30,34,35] However, there are no reports on total FAOOH levels in HDL and
LDL. Our results demonstrated the occurrence of a large amount of FA18:1-OOH and FA
22:1-OOH in both oxHDL and oxLDL respectively. The limitation of this study is isomeric
species of each standard are not addressed, as it is very difficult to prepare and separate
each hydroperoxide regio-isomers [1]. The specific labeled internal standard of each species
was not used for absolute quantitation due to lack of commercial availability or difficulty
in the preparation process. Hence, the study limits the guidelines of the Food and Drug Ad-
ministration (FDA) for absolute quantitation of analytes. The derivatization was performed
after extraction not before extraction due to solvent compatibility for derivatization which
limits this technical application in unextracted samples. Further, the proposed method
can determine only fatty acyls having one -OOH group but fatty acyls with oxidation at
multiple sites are not uncovered. There is a great possibility of the formation of by-products
during the alkali hydrolysis of 2-MxP derivatized total lipids which are not explored in this
study. Further, experiments are necessary such as the use of specific enzymatic hydrolysis
to eliminate the byproducts of chemical hydrolysis.
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5. Conclusions

Lipid hydroperoxides may be useful as clinical markers of lipid peroxidation and
oxidative stress in the circulation system. Herein, we developed a facile method for
determining FAOOHs by 2-MxP derivatization and targeted analysis using state-of-art of
mass spectrometry. The simple extraction, rapid separation, and high sensitivity to low
picomolar levels suggest our robust technology for FAOOHs measurements. Furthermore,
application to the profile of FAOOHs in native human serum, HDL and LDL indicate the
predominance of FA 18:2-OOH and FA 18:1-OOH, respectively. In addition, the chemical
oxidation of serum and lipoproteins enhanced the FAOOH levels. Hence, the proposed
methodology could be a valuable tool for determining lipid peroxidation, evaluating
antioxidant potential, and future clinical diagnostic applications.
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