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Pharmacotherapy of Obstructive Sleep Apnea: Is Salvation Just
Around a Corner?

Obstructive sleep apnea (OSA) is recurrent upper airway
obstruction caused by a loss of upper airway muscle tone during
sleep, which leads to intermittent hypoxia and sleep fragmentation
(1). OSA is a common disorder affecting 25–30% of the adult
population, and more than 50% of obese individuals (2).
Continuous positive airway pressure (CPAP) relieves OSA, but
poor adherence severely limits its use (3). Mandibular advancement
devices have better compliance, but are not as effective as CPAP
(4). There is no effective pharmacotherapy.

Successful drug development is possible only when the
pathogenesis of the disease is fully understood. Four key
pathophysiological mechanisms of OSA have been identified:
anatomically compromised or collapsible upper airway, inadequate
compensatory responses of the upper airway dilator muscles during
sleep, a low arousal threshold, and an overly sensitive ventilatory
control drive (5). Anatomic predisposition plays a primary role in
OSA pathogenesis (6), whereas faulty neuromuscular mechanisms
during sleep fail to compensate adequately for compromised
pharyngeal patency (7).

The tongue plays a critical role in the pathogenesis of OSA and has
been targeted for therapy (8). The upper airway patency is regulated
by lingual protrudors, including the biggest upper airway dilator, the
genioglossus (GG) muscle. Hypoglossal nerve electrical stimulation
has been effective in activation of the GG muscle and relieving OSA in
a subpopulation of patients intolerant of CPAP, but it is invasive (8).
Until now, pharmacological approach did not reveal drug candidates,
which effectively restore pharyngeal patency and treat OSA (9, 10).

Multiple potential targets on hypoglossal motoneurons have
been identified, but until now translational studies either failed or
had limited success (9). Serotonin (5-hydroxytryptamine) exerts
excitatory effects on hypoglossal motoneurons, and withdrawal of
serotonergic mechanisms has been previously considered as the
main mechanism for loss of neuromuscular input during sleep (11).
However, “the serotonin hypothesis” has been downplayed,
because activation of serotonergic mechanisms had limited success
in preclinical models (12) and clinical trials (13).

Subsequent studies from Horner’s laboratory proposed distinct
mechanisms of hypoglossal motor pool activation during non-REM
(NREM) and REM sleep (14, 15). The investigators examined the
role of an endogenous noradrenergic drive in maintaining GG
muscle tone during sleep in rats. Microdialysis perfusion of the
a1 receptor antagonist terazosin into the hypoglossal nucleus
decreased GG activity, whereas the a1 receptor agonist
phenylephrine increased GG activity during wakefulness and
NREM sleep, but not REM sleep (14). The same group
demonstrated that GG muscle tone in REM sleep is regulated by
muscarinic receptors with a significant increase in GG muscle
tone by muscarinic blockers without pronounced effects during
wakefulness and NREM sleep (15).

This experimental work laid a foundation for a phase 1 clinical
trial of desipramine (9), a tricyclic antidepressant blocking
norepinephrine reuptake. Desipramine reduced pharyngeal
collapsibility (Pcrit), but it had a very limited effect on the main
marker of OSA severity, apnea–hypopnea index (AHI).

In this issue of the Journal, Taranto-Montemurro and
colleagues (pp. 1267–1276) (16) reasoned, based on this experimental
work, that a combination of norepinephrine reuptake inhibitor and
muscarinic blocker may optimally modulate the GG muscle tone
across sleep stages. The investigators performed a one-night
randomized placebo-controlled double-blind crossover trial of
a fixed dose of a norepinephrine reuptake inhibitor atomoxetine and
an antimuscarinic drug oxybutynin, which they named ato–oxy.
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The investigators studied 20 patients with predominantly mild to
moderate OSA and found that ato–oxy dramatically improved
OSA compared with the placebo night. As a result of treatment,
the AHI decreased from 28.5 to 7.5 events/h, and this decrease
was accompanied by an increase in the oxygen saturation nadir.
In a subset of patients with AHI> 10, AHI was lowered by
74%, and all patients exhibited >50% reduction of AHI with
significant improvement in sleep quality. This dramatic effect
was mechanistically investigated and attributed to improved GG
muscle response to the obstructive events. Notably, atomoxetine
or oxybutynin alone did not reduce AHI.

The striking results of the study represent the first significant
advancement in the pharmacotherapy of OSA. Another significant
advantage of ato–oxy is that both medications used in this
combination are thoroughly studied and approved by the U.S. Food
and Drug Administration for treating attention deficit hyperactivity
disorder (atomoxetine) and overactive bladder (oxybutynin) at the
doses used in the current study. Nevertheless, there are significant
limitations. First of all, although the effect of the drug combination
was remarkable on a single night, it remains to be tested whether
therapeutic benefits will be sustainable over time. Second, ato–oxy
did not reduce arousals, and the patients had low sleep efficiency
on a treatment night. The latter effect may be attributable to
atomoxetine. The low arousal threshold is a well-known adverse
effect of this drug. Nevertheless, in a subset of patients with
AHI> 10, ato–oxy improved sleep efficiency. The authors argue that
oxybutynin may counterbalance negative effects of atomoxetine
on sleep continuity. Third, another consequence of ato–oxy is
REM sleep suppression, which may be a consequence of the
antimuscarinic effects of oxybutynin. Fourth, both drugs are associated
with multiple adverse effects, and the safety of the combination is yet
to be determined. Atomoxetine is contraindicated in patients with
severe cardiovascular morbidity and can cause increases in blood
pressure and heart rate in susceptible individuals (17). Such adverse
effects as nausea, dry mouth, fatigue, decreased appetite, urinary
hesitation, and erectile dysfunction were also reported (18).
Oxybutynin is contraindicated in patients with urinary retention,
glaucoma, and gastric motility disorders (19). All of the above suggests
that several categories of patients with high prevalence of OSA, such as
patients with cardiovascular diseases, may not be candidates for
ato–oxy. Only a single dose of ato–oxy has been investigated, and the
dose response should be examined carefully. Future clinical trials
should determine the safety profile, specific indications, and
contraindications for the proposed combination in patients with OSA.

In conclusion, the article by Taranto-Monemurro and
colleagues represents a significant advancement in the field of
sleep medicine, opening a possibility for the first effective
pharmacotherapy of OSA. It may revolutionize treatment of
OSA, but more work needs to be done to assure the safety and
effectiveness of this pharmacotherapy. n
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