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Abstract
The vasculature plays an essential role in the development and maintenance of blood-tissue interface homeostasis. Knowl-
edge on the morphological and functional nature of the blood vessels in every single tissue is, however, very poor, but it is 
becoming clear that each organ is characterized by the presence of endothelial barriers with different properties fundamental 
for the maintenance of tissue resident immune homeostasis and for the recruitment of blood-trafficking immune cells. The 
tissue specificity of the vascular unit is dependent on the presence of differentiated endothelial cells that form continues, 
fenestrated, or sinusoidal vessels with different grades of permeability and different immune receptors, according to how that 
particular tissue needs to be protected. The gut-brain axis highlights the prominent role that the vasculature plays in allowing 
a direct and prompt exchange of molecules between the gut, across the gut vascular barrier (GVB), and the brain. Recently, 
we identified a new choroid plexus vascular barrier (PVB) which receives and integrates information coming from the gut and 
is fundamental in the modulation of the gut-brain axis. Several pathologies are linked to functional dysregulation of either 
the gut or the choroid plexus vascular barriers. In this review, we unveil the structural and functional analogies between the 
GVB and PVB, comparing their peculiar features and highlighting the functional role of pitcher and catcher of the gut-brain 
axis, including their role in the establishment of immune homeostasis and response upon systemic stimuli. We propose 
that when the gut vascular barrier—the main protecting system of the body from the external world—is compromised, the 
choroid plexus gatekeeper becomes a second barrier that protects the central nervous system from systemic inflammation.

Keywords Gut vascular barrier · Choroid plexus vascular barrier · Gut-brain axis · Endothelium · Inflammatory bowel 
disease

Introduction

The gut-brain axis is characterized by molecular and func-
tional connections between the gut and the brain. In particu-
lar, the best documented network is formed by the signaling 

occurring between the central nervous system (CNS), 
the enteric nervous systems, and the hypothalamic–pitui-
tary–adrenal axis [1]. The enteric nervous system, resid-
ing in the intestinal wall, can communicate with the CNS 
through the neuroimmune and neuroendocrine signaling 
mediated by the vagus nerve [1]. However, the CNS has 
also to maintain tissue homeostatic signaling and nutrient 
exchange and, at the same time, protect itself from infectious 
agents, toxins, and inflammation, thus requiring to rapidly 
sense changes of milieu in the bloodstream. This evidence 
is changing the paradigm in which the CNS is described as 
an “immune-privileged” site. Nowadays, a number of stud-
ies highlight the dynamic process that intervenes between 
immune sentinels within the CNS and the periphery [2]. 
Indeed, the brain continuously receives signals from the 
periphery [3–12] presumably also from the microbiota, as 
germ-free animals have impaired brain functions [13]. In 
agreement, a hyper-ramified morphology of microglia, the 
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major antigen-presenting cells in the brain, is detected in 
germ-free mice [14].

During enteric microbial dysbiosis and alteration of 
mucosal barrier permeability, the translocation of bacterial 
metabolites, microbes, inflammatory molecules, toxins, and 
immune cells across the gut vascular barrier (GVB) into the 
blood circulation may lead to neuroinflammation. Indeed, we 
recently reported that alterations of the GVB lead to leakage 
of bioactive systemic molecules modulating choroid plexus 
vascular barrier (PVB) accessibility and causing an impair-
ment of brain immune homeostasis, thus leading to struc-
tural and functional alterations in the CNS [5].

When immunosurveillance of the brain is compromised, 
pathology may arise [15–19]. Thus, an organ often thought 
to be isolated from the rest of the organism receives and 
sends signals to the periphery. The nature of these signals is 
under intense investigation, and there is mounting evidence 
on a deregulation of the gut-brain-microbiota-immune-medi-
ated network in the development of gastrointestinal disor-
ders [20–24] and systemic [25–28] and neurological [10, 
24, 29, 30] pathologies. Understanding the blood circulatory 
signaling which connects the gut and the brain will offer an 
insight into novel therapeutic approaches that may improve 
the outcome of different pathologies such as intestinal bowel 
diseases (IBDs) [31], Parkinson’s and Alzheimer’s diseases 
[31–34], multiple sclerosis [35], autism spectrum disorders 
[30, 36], and brain metastatic processes [37].

In this review, we will discuss the gut and choroid plexus 
vascular barriers and their communications through the sys-
temic circulation as gatekeepers in maintaining immune cell 
homeostasis and surveillance, and cell trafficking into the CNS.

The gut vascular barrier

The exposure to trillions of microorganisms in the gut poses 
a tremendous pressure to our organism to maintain immune 
homeostasis. The major challenge is to preserve sealing of 
the intestinal barrier to avoid bacterial translocation [38]. 
This is achieved via three physical structures, which have 
different grades of accessibility to bacteria and their metabo-
lites, food antigens, and toxins [39].

The first element is the mucus layer, which generates a 
size exclusion matrix containing antibacterial molecules 
such as IgA, defensins, and lysozyme [40, 41] and sepa-
rates the microbiota from the second element composed of 
epithelial cells, which sealed one to the other by tight junc-
tions [42]. We described the existence of a third element 
just below the epithelium, the gut vascular barrier [43–45], 
which is organized in a vascular unit resembling that of the 
blood–brain barrier (BBB). The tissue-specific structural 
morphology of the blood vessels is due to the presence of 
differentiated endothelial cells [46] and other specialized 

cells surrounding the endothelium such as pericytes and 
epithelial cells. The complex network established between 
different structural tissue layers match with specific needs of 
signaling and protection peculiar for each blood-tissue inter-
face. In particular, the gut vascular barrier is a more permis-
sive barrier allowing the passage of molecules as large as 
4 kDa while the BBB allows molecules smaller than 500 Da 
[47–49]. Thus, most of the interaction with the microbiota is 
not physical but is dependent on microbial metabolites (post-
biotics) or products, including short- and long-chain fatty 
acids, small peptides, neurotransmitters (e.g., acetylcholine, 
serotonin, dopamine, gamma-aminobutyric acid), and vita-
mins [50–53]. These microbial metabolites are important 
regulators of the immune system [21], and some of them 
can cross the BBB [54], while others may translocate via the 
newly identified choroid plexus vascular barrier [5].

The gut vascular barrier is composed of a layer of 
endothelial cells surrounded by pericytes and enteric glial 
cells, the equivalent of astrocytes in the brain. Endothe-
lial cells are sealed one to the other by tight junctions and 
are fenestrated; however, the fenestrae are closed by the 
endothelial cell–specific plasmalemma vesicle–associated 
protein (PV-1) [43–45, 55–58]. PV-1 is a crucial molecule 
in several membrane structures for the development of dia-
phragms, including caveolae, trans-endothelial channels, 
and fenestrae [59–61]. PV-1 is detected by the MECA-
32 and PAL-E antibodies, for murine and human antigen 
detection, respectively [62, 63]. An increase in PV-1 detec-
tion highlights an enhancement of vascular permeability, 
probably because the epitope of the molecule becomes 
more accessible to the antibody through a conformational 
change [64].

Furthermore, PV-1 is described as a crucial protein 
involved in the trans-endothelial migration of leukocytes 
from the blood circulation to the tissue [65, 66]. Thus, the 
blockade of PV-1 reduces the transcellular migration of leu-
kocytes through the endothelium [65].

The impairment of the gut vascular barrier, linked to 
the upregulation of PV-1, triggers the upregulation of the 
expression of adhesion molecules on the endothelium, stim-
ulating the recruitment of blood-trafficking leukocytes and 
the activation of the intestinal immune response [67].

The gut immune barrier

The gut is constantly exposed to a plethora of different 
antigens coming from commensal bacteria, pathogens, and 
foods. To maintain intestinal homeostasis, the defense lay-
ers of mucus, epithelium, and endothelium control antigen 
exposure to the immune system [68]. Human intestinal 
resident immune cells are heterogeneously distributed for 



Seminars in Immunopathology 

1 3

frequency and localization along the intestinal tract and are 
changing their dynamics during life [69].

The epithelial layer is populated by intraepithelial lym-
phocytes, mostly gamma delta (γδ) and unconventional T 
cells, while the lamina propria is home to innate myeloid 
and lymphoid cells [69, 70]. Intraepithelial T cells mainly 
consist of  CD8+ T cells expressing the CD103 ligand for 
E-cadherin, which facilitate the adhesion of these cells to the 
epithelium.  CD8+ intraepithelial lymphocytes are involved 
in the preservation of intestinal epithelial barrier integrity by 
executing effector functions against pathogens and cooperate 
to tissue renewal [71, 72]. However, the major fraction of 
intestinal resident T cells is localized in the intestinal lamina 
propria and includes  CD4+ T regulatory cells, which act as 
important regulators of the immune response to food and 
microbial antigens and mediators of tissue homeostasis via 
the secretion of IL-10 and TGF-β and the inhibition of Th1/
Th2/Th17 immune cells [73].

To maintain the dynamic equilibrium between the estab-
lishment of oral tolerance and active response against micro-
bial pathogens, gut resident immune cells, also defined as 
intestinal barrier–associated immune cells, exploit their role 
of instructors and sentinels.

Within the resident immune cell population, dendritic 
cells (DCs) are fundamental for the establishment of both 
oral tolerance [74] and activation of immune response 
against pathogens [75, 76].

Subsets of functional distinct dendritic cells contribute 
to the maintenance of the divalent regulatory and effector 
functions of the gut immune system by extending dendrites 
through microfold cells and sampling intestinal antigens. 
 CD103+ DCs are involved in the establishment of tolerance 
and in the generation of primed gut regulatory T cells [74, 
77, 78]. To induce the differentiation of regulatory T cells, 
 CD103+ migratory DCs can receive luminal antigens from 
 CX3CR1+ mononuclear phagocytes [79] and migrate to 
mesenteric lymph node [80].

CX3CR1+ resident macrophages represent the most 
abundant immune resident population in the lamina pro-
pria. Subepithelial and perivascular resident macrophages 
are phagocytic cells which express TJ proteins to maintain 
barrier integrity while sampling of luminal antigens [79] and 
perform a quick clearance of invading microbes. Once acti-
vated,  CX3CR1+ cells can induce Th17-mediated responses 
against pathogens [76, 81]. However, they display a reduced 
capacity to mount the inflammatory response [82, 83]. Regu-
latory macrophages are constantly monitoring T cell differ-
entiation through IL-10- and stat3-mediated mechanisms in 
response to microbial load [84].

At the apical surface of the epithelial layer, adhesion mol-
ecules are expressed as intercellular adhesion molecule-1 
(ICAM-1). Upon inflammation, epithelial expression of 
ICAM-1 is increased and mediates the recruitment and retention 

of neutrophils at the luminal side of the colon. The signaling 
activated by ICAM-1 is necessary for neutrophil activity and for 
the activation of epithelial reparative response [85].

Thus, epithelial cells localized at the frontline between 
microbial luminal side and lamina propria are key players in 
the regulation of mucosal immune responses. The expression 
of different receptors allows the cooperation between the acti-
vation of pathogen-associated molecular patterns (PAMPs) 
and the regulatory and effective response of immune cells [86].

The function of the gut vascular barrier

The gut vascular barrier controls the entry of dietary antigens, 
the microbiota, and its products, into the portal circulation 
and, subsequently, the liver [43–45]. If a microbe accidentally 
or purposely crosses the epithelial barrier, it will not reach 
the systemic circulation unless it can dismantle the gut vas-
cular barrier. For instance, the enteric pathogen Salmonella 
Typhimurium has evolved strategies to elude the gut vascular 
barrier by interfering with the Wnt/β-catenin signaling path-
way [43, 44]. In addition, the GVB is also disrupted in some 
pathological non-infectious conditions such as in celiac disease 
[43], non-alcoholic steatohepatitis (NASH) [45], experimental 
cirrhosis [55], metastatic colorectal cancer [57], and ankylos-
ing spondylitis [58]. For NASH and colorectal cancer, the 
alteration of the gut vascular barrier is dependent on a dysbi-
otic microbiota [57]. We demonstrated that a change in micro-
biota composition can dismantle the GVB, resulting in the 
translocation of bacteria or bacterial endotoxins into the por-
tal circulation, which results in chronic inflammation of distal 
organs. Indeed, using a mouse model in which we stabilized 
the endothelium by maintaining β-catenin in an activated state 
only in endothelial cells (β-cateninlox(ex3)/lox(ex3)  CRE+ 
mice) or by pharmacological intervention with obeticholic 
acid, a bile acid analogue, we did not allow the derangement of 
the gut vascular barrier [43–45], the translocation of bacterial 
products, and the establishment of NASH and cirrhosis [45, 
55]. Hence, the vascular permeability of the GVB regulates 
the gut-liver axis and it can control systemic inflammation. 
As recently published, the gut vascular barrier seems to be 
crucial also in the maintenance of the gut-brain axis. Indeed, 
an intestinal inflammation could lead to the impairment of the 
choroid plexus vascular barrier and the modulation of brain 
permeability [5].

Immunomodulatory functions of intestinal 
endothelial cells

The endothelium-forming blood vessels do not only rep-
resent the first barrier that peripheral immune cells have 
to overcome before accessing tissues and organs, but it 
can serve as an activator of the immune response. Single 
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cell–based analysis on endothelial cells reported a tissue-
specific transcriptional signature that reveals a differential 
expression of cytokines and chemokines, suggesting a strict 
connection with their immunomodulatory functions [87, 88].

In physiological conditions, the endothelial vascular bar-
rier preserves immune homeostasis by regulating its perme-
ability, trafficking of leukocytes, and maintaining immune 
cells in a silenced state in the colon. In pathological condi-
tions, vascular endothelial cells of the gut can sense invading 
pathogens and can activate PAMP-mediated innate immune 
responses, inducing the intestinal recruitment of leukocytes 
and macrophages [89]. In the preclinical model of DSS-
mediated ulcerative colitis, gut vascular barrier impairment, 
highlighted by the enhancement of PV-1 detection, is cor-
related to the recruitment of colonic lamina propria mono-
cytes, neutrophils, and macrophages [5]. In IBD patients, 
endothelial cells are described to upregulate cell adhesion 
molecules and release cytokines and chemokines followed 
by the recruitment of neutrophils, monocytes, and lympho-
cytes into the lamina propria [90, 91].

Endothelial cells constitutively express innate immune 
Toll-like receptors (TLRs) which favor the adhesion of 
immune cells [92] and the expression of pro-inflammatory 
cytokines [93]. In particular, LPS and flagellin–mediated 
activation of endothelial cells leads to the upregulation of 
ICAM-1 which binds leukocyte β2-integrins, promoting 
the leukocyte adhesion to endothelium and their extrava-
sation through the trans-endothelial route [94–96]. Thus, 
as reported in IBD patients, there is a correlation between 
the upregulation of the endothelial ICAM-1 expression and 
the amount of infiltrating lymphocytes that occurs near 
colonic crypt abscesses and ulcerated sites [97]. However, 
as endothelial cells express both MHC class I and II mol-
ecules, they could interact directly with cytotoxic  CD8+ and 
helper  CD4+ T lymphocytes, protecting the tissue from viral 
and bacterial infections but also potentially contributing to 
T cell–mediated autoimmunity [98, 99]. All these factors 
can contribute to the migration of immune cells within the 
intestinal lamina propria. Deeper analyses on the crosstalk 
between PV-1, ICAM-1, and the expression of MHCI/II 
by gut endothelial cells could bring forward on processes 
involved in the regulation of intestinal leukocyte recruitment 
and activation.

The blood‑cerebrospinal fluid barrier

The homeostasis of the central nervous system is main-
tained by the BBB, the meningeal barrier, and the blood-
cerebrospinal fluid barrier (BCSFB). Meninges, BBB, and 
BCSFB control the exchange of nutrients, metabolic sol-
utes, hormones, metabolites, infectious agents, toxins, and 
waste, from and to the brain interstitium, the cerebrospinal 

fluid, and the bloodstream [100, 101]. The intrinsic nature 
of cellular composition and permeability of the endothelium 
differs drastically between these three barriers, reflecting 
the different degrees of freedom necessary to balance the 
exchange and the protection needed to maintain the milieu 
of the CNS [102]. Here, we will describe only the blood-
cerebrospinal fluid barrier which is the barrier that seems 
to play a role in both immune surveillance and protection 
of the brain [18].

The vascular unit of the choroid plexus and its associated 
vascular barrier resides in the deepest layer of the pia mater 
and is formed by a complex network of fenestrated capillar-
ies, which allow the selective passage of bioactive molecules 
coming from the systemic blood circulation [103–105]. The 
choroid plexus represents the interface between the blood 
and the cerebrospinal fluid (CSF), and it can act as a gate-
keeper in the nutritional, metabolic, and hormonal balance, 
as well as in immune surveillance and trafficking [106]. 
The effectiveness of the blood-cerebrospinal fluid barrier is 
essential to protect against microbes and toxins [107], and 
its disruption is involved in neuroinflammation and brain 
injury [108–110].

Till now, choroid plexus vascular units, matching with 
the high detection of PV-1, were considered as an “always 
permissive” endothelial layer from which the exchange of 
blood-derived molecules occurs. In the structure of the cho-
roid plexus, the epithelial layer surrounding the vessels was 
described as the unique selective interface area between the 
choroid plexus and the CSF. Thus, the epithelium of the 
choroid plexus was described as the unique defense layer, 
constituting the BCSFB. Nevertheless, we recently described 
a different role of the choroid plexus vascular unit, indicating 
that during an intestinal inflammation, the endothelial cells 
decrease PV-1 detection mirroring the closure of fenestrated 
vessels and becoming a selective and effective barrier which 
modulates CSF composition and immune cell translocation. 
These data shed light on a new anatomical and functional 
feature of the choroid plexus vascular barrier which can 
modify its permeability affecting the homeostasis of the 
gut-brain interaction [5].

The complex structure of the blood-cerebrospinal fluid 
barrier makes the PVB the principal barrier involved in the 
interface between the blood and the brain [106].

The choroid plexus vascular barrier

Conversely to the BBB and the gut vascular barrier, the 
choroid plexus microvasculature is fenestrated and perme-
able. The fenestrae are connected by diaphragms permissive 
to 70 kDa molecules [5], solutes, and water. The access of 
blood-derived molecules could happen through diffusion 
across endothelial fenestrae or by vesicular transport [111]. 
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Choroid plexus blood vessels are positive for PV-1 detection 
at steady state; however, the vascular accessibility can be 
modified during systemic inflammation [5].

Our recent report demonstrates that, upon intestinal 
inflammation and systemic infection triggered by lipopoly-
saccharide injection, the endothelium of the choroid plexus 
acts properly as a barrier by modulating its accessibility. In 
particular, we showed that during intestinal inflammation, 
the gut vascular barrier is disrupted allowing the passage of 
unwanted molecules from the gut into the systemic circula-
tion and this leads first to a strong decrease in PV-1 detection 
paralleled by a reduction of 70 kDa access and accumulation 
in the stroma of the choroid plexus. Consistently, inflam-
matory monocytes, macrophages, and neutrophils seed the 
brain quickly after intestinal inflammation and gut vascular 
barrier impairment [5].

The immunoregulatory function 
of the choroid plexus

The anatomical position of the choroid plexus as a front-
line with the blood circulation makes this site a gateway for 
blood molecules and circulating immune cells trafficking 
from the periphery, and it is essential for the maintenance 
of CNS immune homeostasis [16–19, 112–116]. Choroid 
plexus endothelial cells and resident immune cells are read-
ily positioned to defend against systemic microbial antigens 
and to sense pro-inflammatory molecules [117, 118].

Within the choroid plexus, resident immune cells, mac-
rophages, and dendritic cells are the most abundant and they 
can act as immune sentinels performing immune surveillance 
and activation through the release of pro- and anti-inflamma-
tory cytokines and chemokines [119]. However, by single cell 
RNA sequencing across all ages (embryonic, adult, and aged 
mice), the presence of resident neutrophils, plasma cells, and 
lymphoid B and T cells was also shown [120].

Resident macrophages of the choroid plexus (CP) are 
defined as either stromal macrophages or CNS border-asso-
ciated macrophages (BAMs), based on distinct localization, 
transcriptional signature, and functions [120, 121]. Stromal 
macrophages are highly associated with the choroid plexus 
vascular barrier and perform sampling from the blood. 
BAMs localized on the apical surface of the epithelial layer 
of the choroid plexus present with immunomodulatory activ-
ity in response to peripheral stimuli and migrate along its 
surface to present antigens to T cells [121]. The crosstalk 
of BAMs and DCs with lymphocytes is fundamental for the 
protection, maintenance, and repair of the CNS [19, 121].

Different from the CSF which is characterize by  CD4+ 
central memory T cells [122, 123], the choroid plexus con-
tains  CD4+ effector memory T cells localized within the 

epithelium near to MHCII cells and with a pattern of recep-
tors (TCR) peculiar and specific to CNS antigens [19, 124].

In physiological conditions, the CNS-specific  CD4+ 
effector memory T cells are regulated by the secretion of 
IL-10 from resident choroid plexus DCs. During inflamma-
tion, resident DCs and BAMs present antigens and activate 
 CD4+ effector memory T cells [125]. The activation of T 
cells leads to their migration through the ependymal layer 
into the CSF [126]. This process is mediated by the adhe-
sion of T cells to the apical surface of the choroid plexus 
epithelium by IFN-γ signaling and through the upregulation 
of the adhesion molecule ICAM-1 [113]. As in the gut, the 
epithelial layer of the CP homes γδ T cells that are described 
as contributors to the first phases of immune regulation and 
response early in life [127]. These data suggests that choroid 
plexus could be an essential site of priming, activation, and 
check of CNS T cells.

[127]. An important role for the immunomodulatory 
functions of the choroid plexus is carried out by a plethora 
of adhesion molecules on the luminal side of the epithe-
lium [128]. ICAM-1 and vascular cell adhesion molecule-1 
(VCAM-1) are constitutively expressed by the epithelial 
cells lining the choroid plexus and are upregulated upon 
immune stimulation in different onset patterns of CNS 
pathologies [17, 113], including EAE [129] and spinal cord 
injury [114]. The localization of ICAM-1 and VCAM-1 on 
the apical side of the epithelial cells of the choroid plexus 
suggests their involvement in the bidirectional recruitment 
of immune cells from the stroma to the CSF and back from 
the CSF to the systemic blood torrent. In both cases, the role 
of the choroid plexus seems to be fundamental in shaping 
leukocyte trafficking and immune regulation of the CNS. 
The choroid plexus epithelial localization of these two adhe-
sion molecules could explain why ICAM-1 and VCAM-1 
are found in the CSF of patients with bacterial meningitis, 
viral encephalitis, multiple sclerosis [130, 131], basal gan-
glia hemorrhages [132], schizophrenia spectrum disorders 
[124], and depression [133, 134].

In a previous work, ICAM-1 and VCAM-1 were described 
to be expressed exclusively in epithelial cells of the choroid 
plexus [129]. However, recent single cell analysis reported 
the expression of ICAM-1 and VCAM-1 transcripts in sub-
clustered choroid plexus endothelial cells [120, 135]. The 
presence of ICAM-1 and VCAM-1 adhesion molecules in 
the endothelium of the choroid plexus suggests a new role of 
the PVB in the immune modulation of the CNS. Corroborat-
ing this hypothesis, multiple sclerosis and viral encephalitis 
patients show increased expression of endothelial VCAM-1 
in concomitance with increased numbers of memory/effector 
T and B cells in the stroma of the choroid plexus [123, 136, 
137] and increased numbers of antibody-producing  CD138+ 
plasma cells in the CSF [138].
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These data, together with our finding of the dynamic 
nature of choroid plexus permeability, support the hypoth-
esis that this site plays a major role in leukocyte trafficking 
in and out of the brain.

Structural, functional, and immunological 
analogies between the gut and the choroid 
plexus vascular barriers

The central nervous system is a sensitive and effective com-
plex network in constant communication with itself and the 
distal organs via the afferent and efferent nerves.

We are here adding an additional way of the immune com-
munication between the CNS and the rest of the body which 
occurs via the vascular network, and that is controlled by a 
series of modifiable vascular barriers. In particular, we made 
a parallelism between the primary defense vascular barrier in 
the gut, which is the GVB, and the secondary barrier in the 
choroid plexus, which is the PVB. The first acts as a major 
determinant of body homeostasis as it controls what enters 
into the systemic circulation. When the gut vascular barrier 
is functional, the choroid plexus vascular barrier is open and 
allows the maximal exchange of molecules and immune cells 
between the brain and the rest of the body as whatever is 
in the circulation is considered as “safe.” During intestinal 
inflammation, the GVB is disrupted and cannot control any 
longer the intruders (Fig. 1). Thus, the PVB is called into 
question and is asked to close down to avoid unwanted mol-
ecules and inflammatory cells to reach the brain. It is like 
having two gates for protecting the house: the central door of 
the building and the doors of the apartments. When the cen-
tral door works properly, the doors of the apartments can also 
remain open as the environment is considered as harmless.

The GVB-PVB axis represents a key tissue-blood gate-
keeper in the maintenance of signaling between the intestine 
and the brain and to preserve immune homeostasis (Fig. 1).

The gut and choroid plexus vascular barriers share impor-
tant morphological similarities even though they show different 
degrees of permeability. Structurally, they are both surrounded 
by a monolayer of epithelial cells; however, these face the exter-
nal world in the GVB while they face the internal part of the 
brain in the choroid plexus. The epithelial barrier in the gut is 
highly impermeable to bacteria and large molecules, while it 
allows the passage of 70 kDa molecules in the choroid plexus. 
They are also “protected” by a series of resident immune cells 
which are anchored to endothelial or epithelial cells and are 
ready to respond to an insult, thus contributing to regulating the 
opening and closure of the vascular barriers in order to protect 
from propagation of inflammation. Resident immune cells in 
the gut and the choroid plexus are mainly composed of mac-
rophages, DCs, and  CD4+ T cells [16, 72, 73, 79, 83, 119–121]. 
The most abundant population is represented in both cases by 

macrophages which are localized in two different spatial niches: 
(1) stromal macrophages strictly in contact with vessels and (2) 
subepithelial luminal macrophages. The differential localiza-
tion suggests the dual role of macrophages in preserving either 
the endothelial layer which is the frontline with the systemic 
circulation or the epithelial layer which is a filtrating system 
with different size exclusions in the two organs to serve tissue-
specific functions (Fig. 2).

As we and others described, macrophages and DCs in the 
gut actively sample the intestinal lumen content [79, 139, 140], 
suggesting that there may be a parallelism in antigen sampling in 
the choroid plexus (Fig. 2). However, more studies are needed to 
evaluate the role of these cells in the maintenance of a tolerogenic 
environment and in the development of CNS immune response. 
More is known about gut tissue resident  CD4+ T cells, but the 
finding that also choroid plexus resident T cells have effector 
memory phenotype could highlights a similar “sentinel-like” 
function of these cells in the choroid plexus (Fig. 2).

The protective structures of the gut are not always infalli-
ble. We found that Salmonella enterica serovar Typhimurium 
through the activation of type III secretion system (TTSS) 
could invade the intestinal outer mucus and interfere with the 
Wnt/β-catenin signaling pathway in endothelial cells, thus 
increasing vessel permeability. The interference of enteric 
pathogens and some members of the microbiota which are 
enriched in certain conditions, such as a high-fat diet regi-
men, intestinal inflammation, or the presence of tumors, with 
the GVB increases the detection of PV-1 and modifies the 
intestinal endothelial cutoff of permeability from 4 to 70 kDa 
molecules, allowing the passage of microbes and microbially 
derived molecules into the blood circulation [5, 43, 45]. In 
contrast, in the PVB, the Wnt/β-catenin signaling pathway is 
only marginally activated at steady state but is upregulated 
early during inflammation to return to basal levels when the 
inflammatory stimulus is removed.

In a preclinical model of ulcerative colitis, we showed that 
paralleling gut vascular barrier impairment, during the early 
phases of the disease, the blood milieu becomes pro-inflamma-
tory, increasing the local recruitment of immune cells and cir-
culating levels of IL-6 and lipopolysaccharides. By contrast, the 
choroid plexus vascular barrier first undergoes a slight increase 
of permeability by downregulation of the Wnt/β-catenin signal-
ing pathway which is followed by a drastic shutdown of per-
meability and increased Wnt/β-catenin signaling pathway with 
modulation of choroid plexus immune cells.

The exclusion of dangerous molecules coming from the 
external environment is elicited by the gut where the GVB, 
together with the intestinal epithelial and immune barrier, 
guarantees the physical exclusion of gut microbiota and 
unwanted microbial molecules from the systemic circula-
tion. Based on its function, the GVB can allow the diffu-
sion from the lumen to the blood of molecules as large as 
4 kDa, pitching immune and metabolic products into the 
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blood (Fig. 1). The brain can catch molecules of maximum 
0.5 kDa across the BBB and of at least 70 kDa within the 
PVB, ensuring the maintenance of CNS homeostasis. When 
the gut defense is impaired, the brain needs to take over at 
the level of the blood cerebrospinal fluid barrier, the larg-
est gatekeeper of the brain, to protect itself. Here, the PVB 
massively shuts down when needed (Fig. 1), suggesting a 
possible modulation of the composition of tissue resident 
and recruited immune cells (Fig. 2), initiating a defensive 
program which can affect the BBB and CNS functions.

Conclusions and prospective

In summary, we reviewed two semipermeable endothelial 
layers that compose the gut and the choroid plexus vascular 
barriers. We show that these two barriers are connected and 
cooperate together with resident immune cells to control 

organ homeostasis. We suggest that infectious agents, tox-
ins, immune, and metabolic alterations could alter the physi-
ological permeability of the two barriers in opposite ways, 
thus ensuring that when the primary structure is disrupted, 
the second can take over. The analogies between the GVB 
and the PVB and their role in immune tissue resident com-
position and immunomodulatory functions of trafficking 
cells lead to intriguing future perspectives on their role in 
intestinal, neurological, and oncological diseases. Target-
ing the PVB-GVB axis may provide new insight for the 
simultaneous reconstitution of the two barriers, limiting the 
IBD-linked neurological comorbidities and opening new 
possibilities for drug delivery and immune surveillance 
within the CNS. The description of the brain-CSF barrier 
as a main route of viral infections in CNS invasion was 
recently reported. In particular, the Zika virus (ZIKV) and 
SARS-CoV-2 pathogens were found in the choroid plexus 
and CSF of patients before invading the brain parenchyma. 

Fig. 1  Schematic representation of the structural and functional analogies between the gut vascular barrier (GVB) and the choroid plexus vascu-
lar barrier (PVB)
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Fig. 2  Schematic representation of GVB and PVB immune resident and circulating immune cells
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These data suggest that CNS microorganism invasion and 
immune recruitment could be mediated by the blood-CSF 
barrier rather than by the BBB [141–144] and that the cho-
roid plexus vascular barrier could play an important role in 
mediating CNS invasion and inflammation. Thus, several 
disorders, including the metabolic syndrome and neurologi-
cal degeneration [145, 146], may be related to an impairment 
of the GVB-PVB axis which could become a new target for 
treatment and prevention. It will be particularly important to 
switch the interest from the affected organ to the gut in order 
to reestablish barrier properties.

Important outstanding questions need to be addressed: 
How are resident immune cells in the CP involved in protect-
ing from invasion of infectious agents? Is the PVB involved 
in the recruitment in pro- and anti-inflammatory cells in the 
CNS? Which molecular targets are mediating the selectivity 
of immune cell trafficking? Can resident dendritic cells within 
the choroid plexus establish immune tolerance in the brain?

Further analysis integrating transcriptional profile and 
functional aspects of CP-homing immune cells and traffick-
ing of blood leucocytes is needed to shed light on the emerg-
ing role of similarities and connections between the gut and 
choroid plexus–mediated brain immune homeostasis.

The structures of the intestinal and choroid plexus bar-
riers are similar. The intestinal barrier is composed of the 
mucus layer, epithelial cells sealed by tight junction and 
adherens junction (TJ/AJ), and the innermost GVB. The 
GVB consists of endothelial cells, surrounded by pericytes 
and enteric glial cells. Similarly, the brain-CSF barrier is 
composed of specialized ciliated epithelial cells named 
ependymal cells, sealed by the TJ and AJ, and the inner PVB 
formed by fenestrated endothelial cells stabilized by peri-
cytes. The structural difference between the GVB and the 
PVB is due to their anatomical position. The GVB regulates 
the connection between the external/gut environment and 
the bloodstream; the PVB instead represents the interface 
between the blood and the CNS.

In physiological conditions, the GVB allows the exchange 
of molecules and metabolites from the gut lumen to the blood-
stream (4 kDa) and prevents the dissemination of infectious 
agents. In these conditions, the PVB is highly positive for 
PV-1 and permissive to 70 kDa molecules, supporting the 
molecular signaling between the brain and other organs.

During intestinal inflammation, the GVB is impaired, and 
it becomes positive for PV-1 detection and allows the trans-
fer of 70 kDa molecules, including bacteria, into the blood-
stream. The pro-inflammatory environment is sensed by the 
PVB, which, in turn, decreases the PV-1 detection and shuts 
down its permeability. Indeed, the PVB blocks the exchange 
of 70 kDa molecules with the CSF and this event can modu-
late the CSF milieu and set up the CNS protective program.

The epithelial layer of the gut is inhabited by tissue resi-
dent intraepithelial  CD103+ dendritic cells (DCs) involved 

in the establishment of tolerance and in the priming of 
regulatory T cells. The gut presents also tissue resident 
lymphocytes as gamma delta (γδ) and unconventional T 
cells (UNC),  CD8+ T cells expressing the CD103 ligand 
for E-cadherin which promote the adhesion to the epithe-
lium.  CD8+ intraepithelial lymphocytes cooperate to tissue 
repair. Intestinal lamina propria is home to resident innate 
myeloid cells (MC), lymphoid cells (LC), regulatory mac-
rophages (MAC), and  CD4+ T regulatory cells (Treg). MAC 
and Treg mediate the tolerogenic intestinal activity through 
the secretion of IL-10 and TGF-β and the inhibition of Th1/
Th2/Th17 immune cells. At the apical surface of the epithe-
lial layer, adhesion molecules are expressed as intercellular 
adhesion molecule-1 (ICAM-1). During infection or dys-
biosis,  CX3CR1+ mononuclear phagocytes maintain barrier 
integrity while sampling of luminal antigens and can induce 
Th17 responses. Upon inflammation, epithelial expression of 
ICAM-1 is increased and mediates the recruitment of neutro-
phils (Nφ) at the luminal side of the colon. The bacterial and 
viral infections are sensed also by the endothelial cells of 
the GVB, increasing the expression of adhesion molecules, 
including ICAM-1 and MCHI/II and establishing the CD8T 
and CD4T–mediated immune response and the recruitment 
of neutrophils, monocytes (MONO), and macrophages.

The CSF is characterized by  CD4+ central memory T 
cells (CD4 Tcm). Within the CP, resident immune cells are 
described as stromal MAC, border macrophages (BAM), 
DCs, Nφ, and lymphoid B and T cells, including γδ T cells. 
BAMs and DCs activate the immunomodulatory activity 
in response to peripheral stimuli and migrate along the CP 
surface to present antigens to T cells. In physiological con-
ditions, DCs regulate  CD4+ effector memory T cells (CD4 
Tem) by the secretion of IL-10. During inflammation, resident 
DCs and BAMs present the antigen and activate CD4 Tem 
cells by IFN-γ signaling and through the upregulation of the 
adhesion molecule ICAM-1, allowing the migration of CD 
Tem through the ependymal layer into the CSF. A soluble 
fraction of ICAM-1 and VCAM-1 was found in the CSF in 
patients with bacterial meningitis, viral encephalitis, multiple 
sclerosis, basal ganglia hemorrhage, schizophrenia spectrum 
disorders, and depression. During an inflammatory status of 
the CNS, increased numbers of antibody-producing  CD138+ 
plasma cells in the CSF were reported. Immunomodulatory 
functions of the CP are carried out also by adhesion molecules 
on the luminal side of the epithelium including ICAM-1 and 
VCAM-1 which are constitutively expressed by the epithe-
lial and endothelial cells of the CP and are upregulated upon 
immune stimulation.

Abbreviations BBB: Blood-brain barrier; BCSFB: Brain cerebrospinal 
fluid barrier; CNS: Central nervous system; CSF: Cerebrospinal fluid; 
GVB: Gut vascular barrier; IBD: Intestinal bowel disease; ICAM-
1: Intercellular adhesion molecule-1; PVB: Choroid plexus vascular 
barrier; VCAM-1: Vascular cell adhesion molecule-1
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