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Abstract

Background: Although several therapeutic options have become available for patients with Cutaneous T-cell Lymphoma
(CTCL), no therapy has been curative. Recent studies have demonstrated that CTCL cells overexpress the CC chemokine
receptor 4 (CCR4).

Methodology/Principal Findings: In this study, a xenograft model of CTCL was established and a recombinant adeno-
associated viral serotype 8 (AAV8) vector expressing a humanized single-chain variable fragment (scFv)-Fc fusion (scFvFc or
‘‘minibody’’) of anti-CCR4 monoclonal antibody (mAb) h1567 was evaluated for curative treatment. Human CCR4+ tumor-
bearing mice treated once with intravenous infusion of AAV8 virions encoding the h1567 (AAV8-h1567) minibody showed
anti-tumor activity in vivo and increased survival. The AAV8-h1567 minibody notably increased the number of tumor-
infiltrating Ly-6G+ FccRIIIa(CD16A)+ murine neutrophils in the tumor xenografts over that of AAV8-control minibody treated
mice. Furthermore, in CCR4+ tumor-bearing mice co-treated with AAV8-h1567 minibody and infused with human peripheral
blood mononuclear cells (PBMCs), marked tumor infiltration of human CD16A+ CD56+ NK cells was observed. The h1567
minibody also induced in vitro ADCC activity through both mouse neutrophils and human NK cells.

Conclusions/Significance: Overall, our data demonstrate that the in vivo anti-tumor activity of h1567 minibody is mediated,
at least in part, through CD16A+ immune effector cell ADCC mechanisms. These data further demonstrate the utility of the
AAV-minibody gene transfer system in the rapid evaluation of candidate anti-tumor mAbs and the potency of h1567 as
a potential novel therapy for CTCL.
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Introduction

Cutaneous T cell lymphomas (CTCLs) are a clinically

heterogeneous group of lymphoproliferative malignancies char-

acterized by the clonal accumulation of mature and skin-homing

memory T cells. Mycosis fungoides (MF), which is the most

common and indolent form of CTCL, accounts for 50%–60%

of CTCL cases [1]; primary cutaneous CD30+ lymphoproli-

ferative disorders, more specifically primary cutaneous anaplastic

large cell lymphoma (PC-ALCL) – the second most common

CTCL, accounts for circa 30%; and Sézary syndrome, which is

an aggressive leukemic variant of CTCL, affects approximately

5% of patients. These patients exhibit significant immune

dysfunction [2,3] because of the global dysregulation of T cells,

which is due to an unknown etiology [4,5]. Bacterial sepsis is

the terminal event in most patients with advanced cancer.

Current therapies for patients with advanced CTCL, including

its leukemic variant, are only palliative, and extensive long-term

remissions are rare. The poor 5-year survival rate of these

patients receiving existing therapies clearly emphasizes the need

for the development of new targeted therapies in this fatal

disease [6].

Over the past few years, several studies have described the

expression of chemokine receptors in the skin and blood of CTCL

patients, including the uniformly high expression of CC chemo-

kine receptor 4 (CCR4) [7,8,9,10]. CCR4 is highly expressed in

both leukemic CTCL including Sézary syndrome and in MF, both

in the very early stages (patch and plaque stages) of the disease and

in large cell transformations [7,8,10,11,12]. It is also expressed on

circa 60% of PC-ATCL cells [1]. In a recently published

consensus article regarding the classification of CTCL, it is clear

that CCR4 is expressed in the vast majority of CTCL cells,

regardless of their histological subtype [1]. On the other hand,

expression of CCR4 is limited amongst non-malignant cells [13].

It is not present on neutrophils, monocytes, or B cells [14]. It is

absent on naı̈ve T cells, and present on fewer than half of all

memory T cells [15].
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Figure 1. AAV vector construction and the expression of human mAbs in AAV-transduced mice. (a) Schematic representation of AAV-
single chain variable region antibody (scFv) - human IgG1 Fc fusion (scFvFc) or ‘‘minibody’’ construct. Human mAb 11A (control) and ‘‘humanized’’
h1567 genes encoding the V domains of heavy (VH) and light (VL) chains were cloned between the AAV internal terminal repeats (ITRs) contained in
vector pTRUF and expressed as a minibody protein. (b) In vivo transduction with AAV8-h1567-scFvFc and AAV8-11A-scFvFc in SCID-BEIGE mice after
administering 261011 vg (viral genome) units per mouse by a single intravenous (i.v.) tail vein injection and in a final volume of 150 ul PBS. Serum
levels were measured over time by human IgG ELISA. (c) SDS-PAGE confirming the molecular weight and disulfide-bond integrity of the 11A and
h1567 minibodies. (d) Western blotting analysis of the monomer and dimer forms of the 11A and h1567 minibodies using an anti-human IgG1-Fc
antibody and processed under reducing and non-reducing conditions. (c & d) minibody proteins recovered from in vitro culture (left) and serum
following in vivo transduction (right) are shown. (e) Binding specificity of the AAV8-derived h1567 minibody. The specific binding of h1567 scFv-Fc in
serum was shown using CCR4-positive cell lines, Mac-1 and 293T-CCR4 by flow cytometry. An equivalent concentration of the control 11A minibody
did not show any binding. 293T cells serve as CCR4 negative control cells.
doi:10.1371/journal.pone.0044455.g001
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While expression of CCR4 by tumor cells is associated with

their skin involvement, CCR4 also has an important role in

normal and tumor immunity [13,14]. CCR4 is expressed at high

levels on T regulatory cells (Tregs) that can migrate to tumor cells

that secrete the CCR4 chemokines CCL17 and CCL21 to

facilitate evasion from immune surveillance [16,17]. High

expression of the these CCR4 ligands has been detected in CTCL

lesions [11], breast cancer [16], ovarian cancer [17] and oral

squamous cell carcinoma [18]. Thus, targeted therapy against

CCR4 may be an attractive treatment option for these malignan-

cies, not only to directly kill the CCR4+ tumor cells, but also to

overcome the suppressive effect of CCR4+ Tregs on the host anti-

tumor immune response.

Monoclonal antibody (mAb)-based immunotherapies have

become the standard therapy in an increasing number of human

cancers [19,20]. Tumor targeting with a human mAb directed

against tumor-associated markers, such as CCR4, might provide

a powerful therapeutic strategy against CTCL. In this study, we

used recombinant adeno-associated viral (AAV) vector-mediated

antibody gene transfer into SCID-BEIGE mice to evaluate the

effectiveness of h1567, a novel humanized anti-CCR4 mAb to

inhibit CCR4+ tumor cell growth and increase survival. The

CCR4-specific antibody gene was packaged into an AAV vector

and then delivered by a single direct intravenous (i.v.) injection

which leads to the endogenous synthesis and durable expression of

therapeutic antibody levels for months. Intravenous delivery of this

h1567 minibody-encoding AAV vector allowed for rapid and

accurate assessment of its therapeutic potential, thereby avoiding

ex vivo manipulations involved in the production and purification of

therapeutic mAbs.

In vivo studies using therapeutic mAb gene transfer after CCR4+
tumor cell implantation demonstrated the potent antitumor

activity of the mAb h1567. In addition, the in vivo effector cells

that mediate tumor cell killing through h1567 Fc binding to Fcc
receptors, namely FccRIIIa (CD16A), were delineated. These

studies suggest that mAb 1567 can serve as an effective antibody-

directed therapy for immunodepleting malignant CTCL cells and

may minimize collateral damage to the already compromised

immune system. Furthermore, in the context of anti-cancer mAb

therapies that require frequent and repeated administration, this

AAV-based therapeutic antibody gene transfer strategy might

serve as an alternative platform for their delivery.

Results

In vitro and in vivo Expression of AAV8-encoding Anti-
CCR4 h1567

A modified scFvFc minibody format was used as the antibody

moiety in the AAV8 vector, in which the V domains of heavy (VH)

and light (VL) chains of the humanized scFv h1567 were fused to

the coding region of the hinge and constant domains 2 and 3 (CH2

and CH3) of the human IgG1 heavy chain, to yield bivalent

binding to the target molecule hCCR4 (Figure 1a) (DK. Chang

et al., in press). The resulting recombinant AAV8 vector was used

for both in vitro protein synthesis and virus production for in vivo

antibody gene delivery. In a pilot dosing study, nude mice received

a single injection of two different concentrations of AAV8-h1567

via intravenous tail vein injection. Serum h1567 minibody levels

were followed for 15 weeks. H1567 minibody levels rose for the

first 2–3 weeks, reaching levels of circa 65 and 96 ug/ml for the

low (0.861011 vg/mouse) and high (2.061011 vg/mouse) vector

doses, respectively and then through the remaining weeks of the

study leveled off at near peak levels for the high dosed vector and

circa 1/3rd that level (,35 ug/ml) for the low dosed vector

(Figure S1). Because 261011 vg per mouse gave higher serum

levels of h1567, this vector concentration was used in the

subsequent in vivo studies.

CCR4+ Mac-1 tumor cells grow well in SCID-BEIGE mice and

therefore we established a SCID-BEIGE/Mac-1 xenograft tumor

model to evaluate the efficacy of AAV8-h1567 therapeutic

minibody gene transfer. In SCID-BEIGE mice treated with

a single intravenous tail vein injection of the AAV8 vectors, a time-

dependent increase in serum concentrations of the control 11A

and h1567 minibodies, reaching steady state levels of circa 50 ug/

ml after 7–14 days and remaining at those peak levels through day

28, the last day of the study (Figure 1b). The control 11A is

a irrelevant minibody that is directed against SARS Spike protein

[21]. To determine whether the AAV8-minibody transduction in

vivo could result in production of properly folded scFvFc, protein

A-purified minibodies recovered from serum of SCID-BEIGE

mice three weeks following intravenous delivery of AAV8 vectors

were analyzed by sodium dodecyl sulfate polyacrylamide gel

electrophoresis (SDS-PAGE) and Western blotting. As shown in

Figure 1c, when examined under reducing conditions, the 11A

and h1567 minibodies recovered from both in vitro and in vivo

sources showed bands at the expected size for scFvFc, circa 60 kD.

Analysis under non-reducing conditions showed dimer formation

(mol wt circa 120 kD), thereby confirming that the minibodies

were divalent in vitro and in vivo (Figure 1c). In addition, the ease

of recovery of the AAV8-derived minibodies from serum using

affinity purification on protein A, their reactivity on Western blot

with the anti-human Fc antibody, and their stable dimer formation

confirms the proper folding and structural integrity of their CH2-

CH3 domains (Figure 1c and 1d).

Binding Activity of h1567 Minibody in Serum Following
AAV8-mediated Gene Transfer

To determine the functional integrity of the AAV8-derived

scFvFc minibodies, sera obtained from mice 14 days after in vivo

AAV8 transduction were examined for the level of binding to

CCR4 by flow cytometry. As shown in Figure 1e, the secreted

h1567 minibody in the mouse serum could specifically bind to the

CCR4+ Mac-1 cells and CCR4+293T cells but not to parental

293T cells, indicating that the scFv domain was correctly folded

and that it retained full antigen-binding activity. Irrelevant 11A

minibody, which served as a negative control, did not bind to

CCR4-expressing cells.

Treatment of Pre-established Tumor-bearing Mice with
AAV8-h1567

The therapeutic effects of AAV8-h1567 gene transfer were next

evaluated in vivo in SCID-BEIGE mice that carried subcutaneously

implanted Mac-1 tumor xenografts. Groups of 4 mice were given

a single intravenous injection of AAV8-h1567 or control AAV8-

11A vector on day 7 after tumor inoculation and tumor volume

was assessed twice weekly. As shown in Figure 2a, a single

injection of AAV8-h1567 resulted in significantly reduced tumor

growth compared with AAV8-11A treated mice or PBS control

treated mice (P,0.01 at day 18, P,0.0005 at day 21). Mouse

survival was monitored for up to 2 months. Tumor-bearing mice

treated with AAV8-h1567 significantly outlived (P,0.005) mice

treated with AAV8-11A or untreated mice (Figure 2b).

Mechanisms of Tumor Cell Killing by h1567 in SCID-BEIGE
Mice

Since SCID-BEIGE mice lack T and B lymphocytes as well as

functional natural killer (NK) cells, it is possible that the CCR4+

AAV8-Derived Anti-CCR4 Minibody Gene Therapy
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Figure 2. Anti-tumor effect of AAV8-derived h1567 minibody. (a) The tumor volume of each individual tumor plotted as a function of times
(days post inoculation). AAV vectors were delivered intravenously by tail vein injection 7 days after the inoculation of 2.56106 Mac-1 tumor cells.
**P,0.01, ***P,0.0005 when comparing tumor mass in AAV8-h1567-treated and control vector AAV8-11A-treated group on Day 18 and Day 21,
respectively. (b) Survival analysis of AAV8-h1567 or control AAV8-11A-treated tumor-bearing mice (engrafted with 2.56106 Mac-1 tumor cells).
Tumor-bearing PBS-treated mice were used as background controls. Statistically significant difference was observed between 1567 minibody-treated
group and control groups (P,0.01). (c) Immunohistochemical analysis of representative tumor sections with anti-Ly-6G, a specific mAb recognizing
murine neutrophils. The immunostaining shows tumor-infiltrating neutrophils (brown stain) in tumor from the SCID-BEIGE mice 21 days after
administration of AAV8-h1567 encoding anti-CCR4 minibody (upper-left for entire tumor section and center-panel for magnified section). No staining
was seen in the tumor from the mice treated with control vector AAV8-11A (lower-left and right panel). (d) Quantification of neutrophil infiltration
from panel C. Entire tumor sections were captured using the Aperio ImageScope instrument, and the percentage of positively stained cells were
quantitated by using a color deconvolution algorithm. *P,0.05. (e) In vitro ADCC activity against Mac-1 cells in the presence of h1567 minibody. The
ADCC activity was assessed using purified SCID-BEIGE neutrophils as effector cells and CCR4+ Mac-1 cells as target cells. Neutrophil-mediated lysis of
target cells was induced at an E:T ratio of 80:1 in the presence of 50 ug/ml purified h1567 minobodies. The figure shown is representative of three
independent experiments. *P,0.05, **P,0.01, ***P,0.0005. All data are represented as the mean 6 SD.
doi:10.1371/journal.pone.0044455.g002
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Mac-1 tumor cells were eliminated by h1567 through neutrophil-

dependent ADCC as neutrophils are intact in SCID-BEIGE mice

and they express FccRIIIA receptors which have been shown to

mediated ADCC [22,23]. Tumor sections were excised 21 days

after AAV8 gene transfer and analyzed histologically for

expression of Ly6G, a member of the Ly-6 family of glycosyl-

phosphatidylinositol (GPI)-anchored proteins expressed on murine

neutrophils [24,25]. Immunostaining of tumors sections with

neutrophil-specific Ly-6G mAb confirmed infiltration of neutro-

phils into tumors treated with AAV8-h1567 (Figure 2c, upper-left

and middle panels) but not with AAV8-11A (Figure 2c, lower-left

and right panels). Quantification of the neutrophil infiltration

demonstrated a marked accumulation of Ly-6G+ staining cells

only in the h1567 treated mice (Figure 2d).

To further assess the h1567-mediated, mouse neutrophil-

dependent tumor cell killing, in vitro ADCC assay was carried

out using purified SCID-BEIGE mouse neutrophils and h1567

minibody. Coculturing Mac-1 cells with mouse neutrophils in the

presence of h1567 at the effector to target ratio of 80:1 resulted in

significant neutrophil-mediated ADCC as measured by lactate

dehydrogenase (LDH) release from Mac-1 cell (Figure 2e).

Control 11A minibody was not able to induce neutrophil-

mediated cytotoxicity. These in vitro results correlate with the

observed anti-tumor activity in vivo and suggest that the antitumor

activity of the h1567 minibody in this CTCL murine model is

mediated, at least in part, through Fcc receptor IIIA (CD16A)

engagement on mouse neutrophils to induce ADCC effector

functions.

Mechanism(s) of h1567 in vivo Tumor Killing in Human
Peripheral Blood Mononuclear Cell (PBMC)-engrafted
Mice Bearing Pre-established CCR4-positive Tumors

The therapeutic CTCL model was further extended to evaluate

the role of human effector cells in tumor cell killing using

bioluminescence imaging (BLI) of luciferase expressing CCR4+

Mac-1 cells established by retroviral transduction. Ten SCID-

BEIGE mice that were grafted with 16106 CCR4+ Mac-1 cells

and developed equivalent sized tumors as detected on day 7 by

BLI were divided into two groups. Eleven days after initial tumor

cell inoculation, the AAV8-minibody vectors were administered

intravenously. Next, human PBMCs (hPBMCs) were given by

intraperitoneal injection 7 days after AAV vector administration.

As shown in Figure 3a, treatment with AAV8-h1567 and

hPBMCs resulted in substantial tumor growth inhibition com-

pared to AAV8-11A plus hPBMC treated mice. Quantitative

monitoring of tumor growth by in vivo BLI correlated with visible

tumor growth, further confirming the tumor growth inhibition

effect of AAV8-h1567 compared with control group (Figure 3b).

A significant difference was observed between the control AAV8-

11A and therapeutic AAV8-h1567 groups on days 40, 42, and 45

after tumor inoculation by caliper measurement and by days 25

and 38 by BLI (Figure 3a and b). Real-time whole-body BLI of

a representative mouse showed that tumor growth was consider-

ably inhibited in mice treated with AAV8-h1567 compared with

control mice over the treatment period (Figure 3c). Analysis of

micro-computed tomography/positron emission tomography

(mCT/PET) images also revealed tumor growth inhibition with

AAV8-h1567 treatment compared with the control group. While

both AAV8-h1567 and AAV8-11A showed primary tumor growth

28 days after tumor inoculation, the tumor cells became much

more locally invasive in the AAV8-11A treated group and showed

increased metabolic activity as indicated by the accumulation of

the PET tracer 18F-fluorodeoxyglucose (FDG) in whole-body

images of mice (Figure 3d).

To further assess the in vivo mechanisms of tumor cell killing in

the AAV8-h1567 plus human PBMC treated group, the role of

human NK cells, which also express FccRIIIA receptors, was

evaluated. In the AAV8-h1567 treatment group, a substantial

increase in tumor-infiltrating human NK cells was observed, as

shown by the intense CD56 immunostaining compared with

control 11A treated mice (Figure 4a). Quantitative color

deconvolution analysis showed a significantly increased staining

in the mouse group treated with AAV8-h1567 compared with the

control group treated with AAV8-11A (P,0.01; Figure 4b).

Human NK cell-mediated ADCC activity was also evaluated in

vitro using purified human NK cells as effector cells. As shown in

Figure 4c, human NK cells were able to kill Mac-1 target cells in

the presence of h1567 in a dose dependent fashion. Control 11A

minibody showed only very low levels of killing. As both mouse

neutrophils and human NK cells express FccRIIIA receptors

(CD16A) on their surface that can bind h1567, these in vitro and in

vivo data strongly support that h1567 mediated killing occurs, at

least in part, through FccRIIIA engagement and activation of

immune cell effector functions.

Discussion

In this study, an AAV8-based therapeutic antibody gene

transfer model was developed to evaluate a novel humanized

anti-CCR4 monoclonal antibody h1567 as a therapeutic drug

candidate against CTCL. The SCID-BEIGE mice that were used

to establish this CTCL model lack T and B cells and functional

NK cells [26]. High level, durable expression of the h1567

minibody was achieved after a single intravenous injection and

significant anti-tumor activity against CCR4+ Mac-1 cells was seen

in two animal treatment studies. These results provide the first in

vivo evidence that mAb h1567 may be clinically active against

CTCL cells and suggest that further studies should be undertaken

to investigate its clinical efficacy.

Remarkable among the findings of this study is that a single

intravenous tail vein treatment with AAV8-h1567 minibody

resulted in a dose dependent increase in serum minibody levels

that steadily increased over a two week period and remained at

near peak levels through the end of this 15 week study (Figure S1,
Figure 1b). The integrity of the minibodies was demonstrated

biochemically in vitro and in vivo by several parameters including

their CCR4+ binding activity, stable dimer formation and ease of

recovery by protein A chromatography (Figure 1 c and 1d). This

scFvFc minibody format may be ideal for experimental AAV8

delivery since conventional mAb expression is derived from heavy

and light chain genes, and it can be difficult to achieve the

balanced expression of two genes within a single AAV vector that

has a small packaging capacity (less than 5 kb), although a 2A self-

processing peptide and furin cleavage have been successfully used

to drive the expression of full-length rat IgG [27,28]. For cancer

immunotherapy, scFvFc minibodies appear to be promising

because they have been shown to be functionally comparable

with full-length IgG and have been successfully used to treat

various tumors in preclinical studies [29,30,31]. As an added

benefit, along with their bivalent antigen-binding avidity and

intact antibody effector functions, they comprise a single poly-

peptide chain that does not require balanced heavy and light

antibody chain heterocomplex associations and have a smaller

molecular weight for better tissue penetration compared with

whole IgG molecules [32].

The functional integrity of the h1567 minibody was also shown

by its potent in vivo anti-tumor and in vitro killing activities. In the

first treatment study (model 1), marked inhibition of Mac-1 tumor

AAV8-Derived Anti-CCR4 Minibody Gene Therapy
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cell growth and increased survival was seen (Figure 2a and b)

even though these SCID-BEIGE mice have profound immune cell

defects including lack of T and B cells as well as impaired

macrophage and NK cell effector functions [26]. Further IHC

staining of the paraffin-embedded tumor tissues revealed a pre-

dominant infiltration of Ly-6G+ CD16A+ neutrophils only in the

h1567 minibody but not control 11A minibody treated mice

(Figure 2c). Furthermore, in vitro ADCC assay using purified

mouse neutrophils as an effector cells demonstrated that h1567

induced significant lysis of CCR4+ Mac-1 cells, while no lysis was

seen with 11A (Figure 2e). These results support the view that

neutrophil-mediated ADCC is involved in anti-tumor activities

following AAV8-h1567 gene delivery in the SCID-BEIGE CTCL

mouse model.

The therapeutic SCID-BEIGE CTCL model was further

extended to evaluate the role of human effector cells in tumor

cell killing. In the second treatment study (model 2), AAV8-h1567

gene delivery together with human PBMCs was evaluated and

a significant inhibition of CCR4+ Mac-1 tumor cell growth was

again seen (Figure 3). The therapeutic effect of the h1567 was

monitored using tumor size measurements and BLI. In compar-

ison with the measurement of tumor volume, BLI analysis enabled

earlier tumor detection and revealed extensive cell death in

response to h1567 treatment (Figure 3c). The addition of

microPET and CT images provided three-dimensional analysis

of the primary tumor and further evaluation of the effectiveness of

the AAV8-h1567 treatment in vivo. PET imaging indicated

invasive tumor cell infiltration into surrounding tissues which

was not seen in the h1567 treated mice (Figure 3d).

The FccRIIIA receptor (CD16A) is the dominant FccR

involved in human NK cell-mediated ADCC. Treatment of

CCR4+ Mac-1 tumor bearing mice with AAV8-h1567 and human

PBMCs resulted in a marked increase in the number of tumor-

infiltrating human CD56+ NK cells, suggesting that CD16A which

is expressed on human NK cells is involved in this tumor cell

killing through it’s interaction with the Fc portion of h1567,

Figure 3. PBMC-mediated antitumor activity of the AAV8-derived h1567 minibody in a xenograft SCID-BEIGE mouse model. (a)
Growth in tumor volume was quantified by caliper measurements. Tumor progression was significantly inhibited in the AAV8-h1567-treated group
compared with the AAV8-11A control group. Mice were given a single intravenous injection of AAV vectors 11 days after inoculation of the tumor
cells, which was followed by a single injection of PBMC on day 18. *P,0.05; **P,0.01. (b) Tumor growth was monitored in vivo by optical imaging
and quantified weekly by bioluminescent imaging. *P,0.05; **P,0.01. (c) Sequential in vivo imaging of tumor growth over time in the tumor mouse
model. Panels depict a representative mouse from each group. (d) Micro-CT/PET fusion images of representative mice 28 days after tumor
inoculation. Representative coronal (left), sagittal (right), and transverse sections (below) are shown for both controls and treated mice. Arrows
indicate tumor location. FDG PET revealed a decrease in glucose metabolism in AAV8-h1567-treated mice. Data shown are mean values 6 SD.
doi:10.1371/journal.pone.0044455.g003

AAV8-Derived Anti-CCR4 Minibody Gene Therapy
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Figure 4. ADCC activity of h1567 minibody in a xenograft human PBMC-SCID/BEIGE mouse model. (a) Immunohistochemical staining of
a representative tumor section with mAb directed against human NK cell surface marker CD56. The immunostaining shows highly positive CD56
tumor-infiltrating human NK cells (brown stain) in tumor from the SCID/BEIGE mice treated with AAV8-h1567 and hPBMCs (upper panel). Negative
CD56 staining was seen in the tumor treated with control vector AAV8-11A plus hPBMCs (lower panel). Images are shown from whole tumor cut
sections (left panels) and tumor sections at 206 magnifications (right panels). (b) The percentage of immunohistochemically detected tumor-
infiltrating natural killer cells was plotted. A significantly higher percentage of tumor-infiltrating human CD56-positive cells were detected in the
AAV8-h1567-treated mice group. **, p,0.01. (c) NK cell-mediated cytotoxicity was observed in a dose-dependent manner. Minibody concentrations
from 0.0001 to 0.1 ug/ml were tested at an E:T ratio of 2:1. The average and error bars (mean + SD) shown were calculated from triplicate wells of one
experiment. The figures shown are representative of three independent experiments. *P,0.05, **P,0.01 when comparing h1567 minibody-treated
and 11A control minibody-treated group. All data is shown as the mean 6 SD.
doi:10.1371/journal.pone.0044455.g004

AAV8-Derived Anti-CCR4 Minibody Gene Therapy
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a finding that has been experimentally confirmed through Fc

mutagenesis studies (data not shown). Moreover, in vitro ADCC

studies with purified human NK cells demonstrated a concentra-

tion dependent killing by h1567 (Figure 4c). Thus the unifying

observations from both treatment studies strongly suggest that the

in vivo anti-tumor activity of h1567 is mediated, at least in large

part, by ADCC through engagement of FccRIIIA on mouse

neutrophils (model 1) and human NK cells (model 2). Since Fc

gamma receptors (FccRs) of different types are present on a variety

of effector cell populations, including NK cells, dendritic cells,

macrophages, monocytes and neutrophils [33,34], it is possible

that FccR engagement on other immune effector cells, not

investigated in this study could also be involved.

MAb therapy for advanced CTCL has been proposed [3] and

numerous trials with alemtuzumab (anti-CD52) have shown

modest to moderate clinical effects [35,36,37]. A recent trial with

low dose alemtuzumab has shown complete remission in 50% of

patients with refractory leukemic forms of the disease and without

infectious disease complications although it was found completely

ineffective in the treatment of MF [6]. A mAb to CD4 (GenMab)

has been designated an orphan drug for the treatment of MF by

the FDA [38]. While both approaches are designed to eliminate

CTCL cells, there can be significant adverse effects from either

treatment. CD52 is expressed by virtually all T and B cells, and the

elimination of all CD4-positive cells has well-known negative

consequences [39]. Clonal malignant T cells in these CTCL

patients express uniformly high levels of CCR4, but variable to low

levels of other skin homing addressins, including CLA, CCR10

and CCR6. CCR7, which is also uniformly highly expressed on

leukemic variants of CTCL with TCM phenotype, is not expressed

on the phenotypic TEM cells that are found in MF skin lesions [7].

Thus, only CCR4 is uniformly expressed on all forms of CTCL

and has a restricted expression pattern on normal T cells,

including Tregs [40]. Indeed, a subset of malignant T cells in some

CTCL have been shown to act as CCR4+ Tregs to suppress anti-

tumor responses and may fuel disease progression [41]. A

therapeutic mAb that could preferentially target all forms of the

disease and reverse Treg mediated immune suppression would be

a major advance in the effective therapy of CTCL. The activity of

mAb1567 in abrogating Treg mediated suppression of T effector

cell function is described elsewhere (DK. Chang et al., in press).

MAb KM0761, is another humanized anti-CCR4 mAb that has

shown promising results in CTCL animal studies [42] and in

clinical trials for refractory Adult T-cell leukemia (ATLL) and

peripheral T cell lymphoma (PLCL) where good clinical activity

without severe adverse side effects was seen [43,44]. Our data

support further exploration of the clinical potential of therapeutic

mAbs that target CCR4 in CTCL.

In summary, the results of the present study have validated the

utility of an AAV8-based therapeutic minibody gene transfer

platform for the rapid experimental evaluation of mAbs for the

treatment of human cancer. Furthermore, this study showed that

the AAV8-h1567 minibody inhibited the primary CCR4+ tumor

burden, suppressed local metastasis and prolonged the survival

time in tumor-bearing SCID-BEIGE mice. We remain hopeful

that additional studies will support this humanized mAb1567

moving from bench to bedside.

Materials and Methods

Ethics Statement
All animal procedures were performed according to the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health and in

accordance with an approved protocol by the Institutional Animal

Care and Use Committee of the Harvard Medical School (Permit

Number: 04254).

Cells
The human skin-tropic Anaplastic large-cell lymphoma (ALCL)

cell line Mac-1, which was originally isolated in the laboratory of

Marshall E. Kadin at Harvard Medical School [45], was cultured

in RPMI medium supplemented with 10% fetal bovine serum

(FBS), 0.06 mM 2-mercaptoethanol, and 500 mg/ml G418.

Immunophenotyping of the Mac-1 cell line showed the expression

of all known tumor-specific chemokine receptors, including high

levels of CCR4, CCR7, and CXCR4. This MAC-1 cell line was

stably transduced with a luciferase encoding retrovirus. HEK 293

cells were cultured in Dulbecco’s modified Eagle’s medium

supplemented with 10% FBS and 1% penicillin/streptomycin

(Invitrogen). All cells and cultures were maintained at 37uC in

a 5% CO2 humidified incubator. Human PBMCs obtained from

the Dana-Farber Blood Center were purified by a Ficoll-Hypaque

density gradient centrifugation as described in the general protocol

of Miltenyi Biotec Inc. (Auburn, CA). Mouse neutrophils were

isolated from SCID-BEIGE mouse blood by Percoll density

gradient centrifugation, as described [46]. Human NK cells were

isolated from human PBMC using the NK cell isolation kit,

according to the manufacturer’s protocol (Miltenyi Biotec, CA).

Construction of AAV8 Vector Encoding anti-CCR4
Humanized scFvFc h1567 mAb

To construct the scFvFc h1567 minibody expression cassette,

the scFvFc h1567 gene was PCR-amplified from a plasmid coding

for the humanized anti-human CCR4 antibody that is derived

from heavy and light antibody chains of mAb 1567 (R&D Systems,

Inc) previously cloned in our laboratory (DK. Chang et al., in

press) and inserted into the AAV-cloning vector pTRUF (obtained

from the University of Iowa Viral Vector Core) at the restriction

sites of Sfi1 and Not1. Consequently, to efficiently direct the

expression and secretion of the single chain mAb, the pTRUF

vector was modified by inserting the human IgG VH4 leader

sequence and the Fc sequence (hinge, CH2 and CH3 domains) of

the human IgG1 flanked by 145-bp and AAV2-inverted terminal

repeats (ITRs) (Figure 1a).

Viral Vector Production
Recombinant AAV8 viral vectors were produced using a helper

virus-free system with some modifications [47]. Low-passage

human HEK 293 cells were cotransfected by linear polyethyleni-

mine (Polysciences) with three plasmids: the AAV cis-plasmid

pTRUF encoding the human mAb gene expression cassette

flanked with ITRs; the AAV-packaging plasmid p5e18 (2/8)

containing AAV2 rep and AV8 cap genes; and the Ad helper

plasmid pXX6-80 containing the VA RNA, E2, and E4 genes

required for AAV propagation (obtained from Dr. Jim Wilson,

University of Pennsylvania) [48]. At 48 h post-transfection, the

cells were harvested, and the AAV virus extracted by freezing and

thawing the cells. Subsequently, AAV was purified by two

sequential iodixanol density gradients, concentrated, then desalted

by centrifugation through Biomax 100-K filters (Millipore)

according to the manufacturer’s instructions. Viral titers were

determined as genome copy titers (vg), by quantitative real-time

PCR using primers and probe speicific for AAV vector pTRUF

[49]. Forward primer (59-TCTGAGTAGGTGTCATTC-

TATTCTGGG-39) is located at the end of the 39-poly(A), and

reverse primer (59-CACTAGGGGTTCCTAGATCTCTCCC-
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39) is at the beginning of the 39 inverted terminal repeat (ITR).

The probe (59-TCTTCCCAATCCTCCCCCTTGCTGTC-3;

FAM/TAMRA) is located in between.

Larger quantity of the AAV serotype 8 vectors encoding scFvFc

11A, control minibody specific for SARS [21], and scFvFc h1567

were produced at Harvard Gene Therapy Initiative (Harvard

Institute of Medicine, Boston, MA) and used in the animal studies.

Therapeutic Animal Models
SCID-BEIGE female mice aged 6–8 weeks were purchased

from Charles River Laboratories and maintained in the animal

facilities of Harvard Medical School. For therapeutic minibody

gene transfer studies (Mouse model 1), mice were inoculated

subcutaneously into the left flank using a 13-guage trocar with

2.56106 cells CCR4+ Mac-1 cells in 200 uL PBS. At one-week

post-tumor inoculation, mice were injected intravenously through

the tail vein in a single treatment of AAV8 vector encoding the

anti-CCR4 h1567 minibody or the irrelevant control 11A

minibody at a dose of 261011 v.g. (viral genomes) in 150 uL of

PBS. For a human PBMC-engrafted mice model (Mouse model 2),

mice were inoculated with 16106 luciferase-expressing CCR4+

Mac-1 cells. Eleven days after tumor cell inoculation, the tumor-

bearing mice were injected intravenously via the tail vein with

AAV8 vectors. Human PBMC were injected intravenously

through a tail vein, to a final concentration of 16106 cells per

mouse at 7 days post-AAV8 injection. Subcutaneous tumors were

measured using calipers, and tumor volumes were recorded

according to the formula V =K6L6W2, where W is the smaller

diameter and L is the larger diameter. Treated and control mice

were euthanized when the tumor diameter reached 1.5 cm or

when the mice were moribund. The mice underwent necropsy and

the tumors were evaluated by histology and immunohistochem-

istry (IHC).

Optical Imaging
Mice were monitored for tumor development and progression

by both caliber measurement and Xenogen BLI. The latter was

initiated for the monitoring of tumor growth 7 days after tumor

implantation, which was repeated once a week. Mice were

anesthetized with 3.5% isoflurane in an induction chamber, which

was followed by the intraperitoneal administration of 50 mg/ml

D-luciferin. For imaging, mice were maintained under 1.5%

isoflurane anesthesia that was delivered through a nose cone.

Whole body images were repeatedly acquired until the maximum

peak of photon number was confirmed during various exposure

times (10 s–1 min). Data were quantified using the time point that

gave the highest photon number during the scanning time and

analyzed using the Living Imaging software (Caliper Life Sciences,

Hopkinton, MA).

CT/PET Imaging
PET/CT scans were performed at the Harvard Medical School

Imaging Core Facility. Mice were fasted for 12 h before the 18F-

FDG injections, but provided water ad libitum. For 18F-FDG

injection and imaging, mice were anesthetized using 2%

isoflurane. The animals were then intraperitoneally injected with

7.4 MBq (200 mCi) of 18F-FDG, allowed to regain consciousness,

and then kept at 37uC until imaging. Imaging was started 30 min

after the intraperitoneal injection. Mice were imaged in a chamber

that minimized positioning errors between PET and CT to less

than 1 mm. Image acquisition time was 10 min. Images were

analyzed using AMIDE software [50]. All regions of interest were

defined on fused PET/CT images to ensure reproducible

positioning.

Protein Expression and Purification
HEK 293T cells (ATCC, Manassas, VA) were transfected with

the AAV-coding plasmid containing the minibody-expressing

constructs using Lipofectamine 2000 (Invitrogen, Carlsbad, CA).

Three days after transfection, the minibodies were purified from

the supernatants with protein A sepharose affinity chromatogra-

phy. The in vivo production of AAV8-minibodies was generated by

i.v. injections into SCID-BEIGE mice as described above. Levels

of minibodies in the serum were measured in duplicate using

a human IgG ELISA quantitation kit according to the manu-

facturer’s protocol (Bethyl Laboratories, Inc., Montgomery, TX).

Western Blot Analysis
Western immunoblotting was performed on protein A column

purified samples containing in vitro synthesized minibodies and in

vivo AAV8-derived minibodies. The proteins were separated by

SDS-PAGE under reducing or nonreducing conditions and

electrophoretically transferred onto a nitrocellulose membrane

using the iBLot dry blotting system (Invitrogen). After blocking

with 5% skim milk overnight, the blot was probed with an AP-

conjugated human IgG-Fc antibody that was diluted 1:30,000 in

blocking buffer for 1 h at room temperature. Excess conjugate was

removed by five washes with Phosphate buffered saline containing

0.1% Tween 20 (PBS-T). The detection of protein was performed

by incubating the membrane with BCIP/NBT alkaline phospha-

tase substrate (KPL).

Flow Cytometry Analysis
The biological activity of the in vivo AAV8-derived h1567

minbodies was analyzed by fluorescence-activated cell sorting

(FACS) for binding activity. Mac-1 cells or 293T-CCR4 cells were

washed with PBS supplemented with 0.5% bovine serum albumin

(PBS-B) and then incubated with in vivo produced h1567 for 1 h at

room temperature, which was followed by incubation with anti-

human IgG-Fc conjugated to fluorescein isothiocyanate (FITC).

Flow cytometric analysis was performed using BD FacsCalibur

(BD Biosciences, San Jose, CA) and FlowJo data analysis software

(Tree Star, Inc., Ashland, OR).

Immunohistochemistry and Quantification of Cell
Staining

Immunohistochemical staining was performed at DFCI/Har-

vard Cancer Center Research Pathology Core. For qualitative and

quantitative immunohistochemical analysis, formalin-fixed and

paraffin-embedded tissue sections were stained with antibodies

directed against Ly-6G on the surface of mouse neutrophils and

human CD56 antigen on human NK cells. The stained slides were

then scanned using the Aperio ImageScope (Aperio Technologies,

Inc., Vista, CA), and full tumor sections were selected for

quantitative analyses. The percentage of positively stained cells

in the entire tumor sections was calculated using a color

deconvolution algorithm.

In vitro Antibody-dependent Cell Cytotoxicity Assay
ADCC was performed using the lactate dehydrogenase (LDH)

release assay method, according to the CytoTox96 non-radioac-

tive cytotoxicity assay procedure specified by the manufacturer

(Promega, Madison, WI). Mouse neutrophils purified from SCID-

BEIGE mouse or purified human NK cells from PBMC was used

as effector cells and CCR4+ Mac1 tumor cells were used as target

cells. Briefly, purified SCID-BEIGE mouse neutrophils or NK

cells were plated at a density of 16104 cells per well in a round-

bottom 96-well plate in the presence of h1567 or 11A minibodies.
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After 1 h of incubation, freshly prepared effector cells were added

at an effector-target cell ratio (E:T) of 80:1 (mouse neutrophils) or

2:1 (human NK cells). After 2 h incubation at 37uC, supernatants

of each well were recovered by centrifugation at 3006g for 5 min.

LDH activity in the supernatant was determined by measuring

absorbance at a wavelength of 490 nm. The cytotoxicity (%) was

calculated according to the following formula:

% Cytotoxicity~100| E{SE{STð Þ= M{STð Þ:

where E is the LDH release by effector-target coculture, SE the

spontaneous release of the LDH from the effector cells, ST the

spontaneous release of the LDH from the target cells and M the

maximum release of the LDH from the target cells incubated with

lysis solution (10% Triton-X). All measurements were done in

triplicate.

Statistical Analysis
Statistical analyses were performed using 2-way ANOVA with

Bonferroni post hoc tests and unpaired 2-tailed t-tests using

GraphPad Prism 5 (GraphPad Software, Inc., La Jolla, CA). P

values less than 0.05 were considered statistically significant.

Supporting Information

Figure S1 Dose dependent expression of h1567 anti-
CCR4 minibody. Nude mice (4 mice per group) were treated

one time by tail vein injection with AAV8-h1567 viral vectors at

the two concentrations shows. PBS buffer treated mice served as

controls. Mice were bled at the indicated time points over 15

weeks and their h1567 scFv-Fc levels were determined by ELISA

on anti-human Ig capture and detection.

(TIF)
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