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Abstract: LIDAR data contain feature information such as the height and shape of the ground target
and play an important role for land classification. The effect of convolutional neural network (CNN)
for feature extraction on LiDAR data is very significant, however CNN cannot resolve the spatial
relationship of features adequately. The capsule network (CapsNet) can identify the spatial variations
of features and is widely used in supervised learning. In this article, the CapsNet is combined with
the residual network (ResNet) to design a deep network-ResCapNet for improving the accuracy of
LiDAR classification. The capsule network represents the features by vectors, which can account for
the direction of the features and the relative position between the features. Therefore, more detailed
feature information can be extracted. ResNet protects the integrity of information by passing input
information to the output directly, which can solve the problem of network degradation caused by
information loss in the traditional CNN propagation process to a certain extent. Two different LIDAR
data sets and several classic machine learning algorithms are used for comparative experiments.
The experimental results show that ResCapNet proposed in this article ‘improve the performance of
LiDAR classification.

Keywords: image classification; deep learning; convolutional neural network (CNN); residual
network (ResNet); capsule network (CapsNet)

1. Introduction

LiDAR launched in the 1980s and successfully detected the lunar surface for the American Apollo
mission to the moon. Because of its huge technical potential, many research scholars have studied it to
promote the development continuously and progress of theory and technology. Thus, it becomes an
indispensable detection technology in the field of science and technology. LIDAR has many advantages,
such as high resolution, good concealment, and strong anti-interference ability. It is widely used in
many different fields. For example, it can elevate the measure accuracy of projects that are difficult
to measure in construction engineering [1]; it can build the 3D models for historical buildings to
record information in terms of cultural relics; it can detect underwater distances to provide data for
environmental protection programs [2]; it also can be used to detect landslides and other disasters [3].
In recent years, deep learning has developed rapidly and has achieved remarkable results in various
fields [4-7]. Therefore, this article also uses deep learning algorithms for pixel-level classification of
LiDAR data.

The data used in this article are the LIDAR-derived rasterized Digital Surface Models (LiDAR-DSM),
which were obtained by processing the points cloud data acquired from the airborne LiDAR system by
denoising and rasterization [8]. LIDAR-DSM mainly includes the terrain change of the target area and
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the feature height of the target object in the area, which is suitable for distinguishing classification
tasks with different height targets and measuring planning. It plays an important role in the process
for the measurement, planning, and construction of cities [9].

In recent years, the convolutional neural network (CNN) has been introduced into the LIDAR data
classification [10], which solves the problem of the parameters to be difficult to adjust and laborious
caused by the traditional manual extraction of LIDAR-DSM features. Accurate classification of DSM
data plays an important role in distinguishing different feature categories. The classification task of
this data is usually based on pixel classification; that is, the interpretation process of remote sensing
images [11].

At present, there are many studies on LiDAR classification. In 2006, Lodha et al. used Support
Vector Machine (SVM) to classify the DSM data, which obtained higher accuracy and convincing
visual results [12]. In 2012, Sasaki et al. used decision tree to each land category for analyzing the
average height to achieve classification [13]. Naidoo et al. used automated random forest model to
classify eight common savanna species [14]. In 2015, Khodadadzadeh et al. developed a new efficient
classification strategy for hyperspectral and DSM fusion, integrating multiple types of features and
achieving better classification results [15]. In 2016, Ghamisi et al. proposed a method of using DSM
data as extended attribute for joint classification with CNN to improve classification accuracy [16].
In 2017, Ghamisi et al. proposed a method to extract spatial and background information of DSM
data in an unsupervised manner to obtain higher classification accuracy [17]. In 2018, Wang et al.
combined morphology (MPs) and CNN to provide more feature information for DSM classification [10].
Subsequently, He et al. used spatial transformer networks (STN) for identifying the best input image
of CNN for LiDAR classification [18]. Xia et al. combined hyperspectral image (HSI) and DSM by
using integrated classifiers to process morphological features and classify them [19]. In 2019, Ge et al.
proposed a new framework for fusion of HSI and LiDAR data based on the extinction profiles, local
binary pattern (LBP), and kernel collaborative representation classification [20]. Wang et al. used spatial
transformation network(STN) and densely connected convolutional network (DenseNet) are combined
to form STN-DenseNet, which makes the input data adaptively deform according to the network
needs, making full use of all information from the front layers of the network [21]. Subsequently, Wang
et al. used the Fire modules of SqueezeNet to replace the traditional convolution layers in OctConv to
form a new dual neural architecture: OctSqueezeNet, which improved the accuracy and efficiency of
the network simultaneously [22].

However, CNN uses scalar to represent the information in many image processing fields. It is
difficult for CNN to identify the features when the spatial location of feature information changes.
It needs to deepen the layers of network constantly to extract more information [23-31]. The capsule
network (CapsNet) represents the feature information by a vector, and it can represent the positional
relationship between different features and the direction of the feature information. When the same
target occurs in position or angle change, it can still be identified accurately by CapsNet [32].

In recent years, CapsNet has been used in many image applications fields. In 2018, Wang et al.
proposed a hybrid method based on CapsNet and triple generative adversarial network (TripleGAN)
to avoid overfitting and extract the effective features [33]. Ahmad et al. proposed a new architecture
for 3D object classification, which is an extension of the Capsule Network to 3D data [34]. In 2019,
Zhu et al. proposed a deep capsule network for HSI classification to improve the performance of
the CNNS5s [35]. Paoletti et al. proposed a new CNN architecture based on spectral-spatial capsule
networks in order to achieve a highly accurate classification of HIS while reducing the network
design complexity [36]; Afshar et al. proposed a modified CapsNet architecture for brain tumor
classification, which takes the tumor coarse boundaries as extra inputs within its pipeline to increase
the CapsNet’s focus [37]; Yin et al. proposed an alternative data-driven HSI classification model
based on CapsNet [38]; Wang et al. proposed a Caps-TripleGAN framework for sample generation
and integrated CapsNet for hyperspectral image classification [39].
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In addition, for the traditional CNN, with the depth of the network increasing, the performance
of network may degrade; that is, when the accuracy of training tends to be flat, the training error
becomes larger. Residual network (ResNet) [40] was proposed to solve the problem. ResNet establishes
a bypass connection and sends the input to the output directly to avoid the loss of information and
to mitigate the degradation of the network. ResNet has significant benefits in many areas. In 2018,
Mou et al. propose a novel network architecture, fully Conv—-Deconv network, for unsupervised
spectral-spatial feature learning of hyperspectral images, which is able to be trained in an end-to-end
manner [41]. In the same year, Zhong et al. designed an end-to-end spectral-spatial residual network
(SSRN) that takes raw 3-D cubes as input data without feature engineering for hyperspectral image
classification [42]; Qin et al. proposed a deep residual neural network based on leukocyte classifier
constructed at first, which can imitate the domain expert’s cell recognition process, and extract salient
features robustly and automatically [43]. In 2019, Paolett et al. presented a new deep CNN architecture
specially designed for the HSI data. A new model pursues to improve the spectral-spatial features
uncovered by the convolutional filters of the network [44]. Zhan et al. proposed an attention residual
learning convolutional neural network (ARL-CNN) model for skin lesion classification in dermoscopy
images, which is composed of multiple ARL blocks, a global average pooling layer, and a classification
layer [45].

We combine the advantages of ResNet and CapsNet to design the ResCapNet to obtain more
detailed information of LiDAR data for classification applications. The main contributions of this
article are as follows.

(1) Combine the CapsNet and ResNet to form a new network framework named ResCapNet.
The input features are extracted using ResNet and the outputs of ResNet are sent to CapsNet for
further classification.

(2) The proposed method is tested on two different LIDAR data sets to predict for each pixel the land
type associated with that pixel while the number of training samples is limited.

The organization of this article is as follows. Sections 2 and 3 present the CapsNet and ResNet,
respectively. Section 4 is dedicated to the details of the proposed classification method in this article
and Section 5 reports the experimental results and analysis. Section 6 is the conclusions of the
proposed framework.

2. Capsule Network

The CapsNet is made up of capsules rather than neurons. A capsule is a small group of neurons
that can examine a particular object, such as a rectangle, and learns from a certain area of the feature
maps. The output of CapsNet is an n-dimensional vector. The length of each vector represents the
estimated probability of the existence of the object and the direction of each vector records the attitude
parameters of object, such as the exact position, rotation, thickness, inclination, and size of the object.
If the object changes slightly, such as moving, rotating, or changing the size, the CapsNet will obtain
an output vector of the same length but with a slight change in direction. Therefore, the feature
extraction of CapsNet is not affected by the changes of space for features. Traditional CNNs require
additional components to identify each detail of the objects automatically, and CapsNet can represent
the hierarchical structure of each detail part directly. CapsNet has two main characteristics: The first is
layer-based compression, and the second is dynamic routing.

2.1. Layer-Based Compression

As shown in Figure 1, both input #; and output v; are vectors. Multiply the transformation matrix
Wi; with the output u; of the previous capsule for turning the u; to #1;. Then, in Equation (1) and
Equation (2), calculate the weighted sum s; according to the weight C;;. Cj; is the coupling coefficient,
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which is calculated through the iteration of dynamic routing process, and specifies the sum of } c;; is
1. Cij measures how likely can capsule i activate capsule j.

Ay = Wiju @
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The activation function of s; is squash instead of ReLU, so the length of the final output vector v; of the
capsule is between 0 and 1. This function compresses small vectors to zero and large vectors to unit
vectors. The activation function Squash is shown as Equation (3).
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Figure 1. Calculation chart of Capsule.

2.2. Dynamic Routing

Capsule calculates the output by calculating the intermediate value Cj; through the iterative
dynamic routing. In Equation (1) and Equation (2), the prediction vector #; is the prediction (vote)
from capsule i and has an impact on the output of capsule j. If the activation vector has a high similarity
with the prediction vector, the two capsules are highly correlated. This similarity is measured by the
scalar product of the prediction vector and the activation vector.

Therefore, in Equation (4), the similarity score b;; will consider both the possibility of feature
existence and the attribute of the feature, unlike neurons, which only consider the possibility of feature
existence. At the same time, if the activation u; of the capsule i is very low, since the length of i; is
proportional to u;, bl-]- will still be low; that is, if the capsule of the detail feature is not activated, the
correlation between the detail feature and the overall feature is very low. The coupling coefficient C;; is
calculated by the softmax of b;; in Equation (5):

l’Jl’j “— ﬁ]ﬁ X vj (4)
exp(bi]')

Cree — V77
Y Yrexp(bi)

The process of dynamic routing is shown in Algorithm 1 as follows:

®)
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Algorithm 1 Dynamic Routing

Routing (ﬁj|i’ r, 1)
for all capsule i in layer /-1 and j in layer I: b;j < 0
for r iterations do
for all capsule i in layer [-1: C; « softmax(b;)
for all capsule j in layer I: s; « }; cijitji
for all capsule j in layer I: v; = squash(s;)
for all capsule i in layer I-1 and j in layer I: b;; < b;; + #;0;
return v;

Dynamic routing is not a complete replacement for backpropagation. The transformation matrix
W;; is still trained by backpropagation, while the dynamic path is only used to calculate the output
of the capsule. Calculate the C;; to quantify the connection between the child capsule and its parent
capsule. Each data point is re-initialized to 0 before performing dynamic routing calculations [43].

3. Residual Network

Deep convolutional networks integrate the characteristics of different levels, such as global features
and detail features. The levels of features can be enriched by deepening the network. Therefore,
a deeper network structure is used to obtain more detail features generally. However, there is a problem
of degradation on traditional CNN when using too deep network layers. When the network layer
reaches a certain level and the network is too complicated, the accuracy rate will saturate and then
decrease rapidly.

ResNet was proposed by He et al. in 2015 [42]. Because hierarchical networks have many
redundancies, ResNet is designed to optimize network layer. The aim of ResNet is to complete the
identity mapping and ensure that the input and output of the identity layer are the same. The identity
layer of the network is determined automatically through training. ResNet changed several layers of
the original network into a residual block.

The specific structure of the residual block is shown in Figure 2, where x is the input of this
residual block and the residual is F(x). F(x) is the output after the linear transformation and the
activation of the first layer. After the linear transformation of the second layer, the input x of this layer
is added to F(x), and total activated by ReLU for getting output. The initial input x is added to the
output of the second layer and then activated. This path is called shortcut connection. Establishing a
direct correlation channel between the input and the output can make the parameterized layers focus
on learning the residuals from the input to the output.

x
\ 4
weightlayer
x
F@&) ¢ ReL.U identity
weightlayer

Faxytx D «——
ReLU

Figure 2. The identify block of ResNet.
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Residual operation is shown as Equations (6)—(8), where o in Equation (6) represents the non-linear
function ReLU. In Equation (7), y is the common output of the shortcut and the second ReLU.
In Equation (8), when the input and output dimensions need to be changed, such as changing the
number of channels, a linear transformation W; can be performed on x by the shortcut operation.

F = Wyo(W,x) (6)
y =F(x, {W;}) +x 7)
y = F(x{Wj}) + Wsx 8

4. ResCapNet for LIDAR Classification

The proposed method by us is shown as Figure 3. The network structure consists of two parts, the
upper part is ResNet for extracting features and the lower part is CapsNet for classification.
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Figure 3. Architecture of the proposed method. The proposed architecture is composed of two
subnetworks: 1) ResNet and 2) CapsNet. (1) The structure of the ResNet is modified based on

ResNet-34 to make it suitable for LIDAR data sets. (2) The outputs of ResNet are sent to CapsNet for
LiDAR classification.

4.1. Proposed Network Structure

We adopt the structure of ResNet34 and modify it to fit LIDAR data. Resnet-34 consists of four
parts, each of which has three, four, six, and three identity blocks. Every identify block in each part
has 64, 128, 256, and 512 filters, respectively. In the experiments of this article, because the size of
the input is small, we reduced the size of the convolution kernel in the first convolution layer from
7 to 3 to ensure that the network can extract useful information. Meanwhile, reduce the number of
filters used for each identify block in the four parts respectively to 16, 28, 40, and 52 and no output
classification layer is used. Figure 4 shows the identity block used in this article, which consists of two
convolutional layers and two batch normalization (BN) layers.
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Figure 4. The identify block of ResNet used in this article.

The parameter of dynamic routing in digit caps for the two data sets are all set to 3. The size of
convolution kernel in primary caps is 3 X 3 and the channel is set to 3. Because there are seven land
classes in Bayview Park data set, the number of vectors in primary caps and digit caps are both set to 7
and the number of capsules in digit caps is also set to 7. Meanwhile, there are 11 land classes in the
Recology data set, so the number of vectors in primary caps and digit and the number of capsules in
digit caps are all set to 11.

4.2. Adaptive Learning Optimization Algorithm

In this article, the Stochastic Gradient Descent (SGD) with momentum is used to back-propagate
and update the network parameters for obtaining the optimal framework of ResCapNet, as shown in
Equations (9) and (10),

v=pv-aVo 9)

Xe—x+0v (10)

where o represents the learning rate and v represents the momentum factor. The gradient acts on v
directly. When the direction of the negative gradient is the same with the direction of v, the direction of
update is correct, and the weight will be updated quickly.

4.3. Loss and Activate Function

This article uses the ReLU function as the activation function of the network. In Equation (11),
some outputs of the neuron are set to zero, which can reduce the dependency between the parameters
and alleviate the overfitting phenomenon of the network.

g(x)= max(0, x) (11)
We adopt the softmax function to classify and choose the exponential form of softmax in Equation (12).

(z)
e
ak

= — 12
! ZKe(Z’L() .
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The input of the last layer is Z]L, the output of the last layer is a]L. and e is a constant. The inputs of all

neurons in the L layer is Y g e(Z0). Therefore, the loss function is cross-entropy loss in Equation (13).
o2

Yo%)

Loss; = —logy; = —log (13)

5. Experimental Results and Analysis

5.1. Algorithm Data Description

In this article, two different LIDAR data sets were used to evaluate the proposed method; one is
Bayview Park data set and the other is Recology data set. They were obtained from the 2012 IEEE
International Remote Sensing Image Convergence Competition. The Bayview Park data set was
collected in June 2010 by the sensor WorldView?2 in San Francisco, USA, as shown in Figure 5. The data
set had a spatial resolution of 1.8m and contains 300 x 200 pixels. It had seven land classes, which
were buildingl, building?2, building3, road, trees, soil, and seawater.

Buildingl

Building?2

Building3
Road
Trees

Soil

- Seawater

Figure 5. Bayview Park data set: (a) DSM map; (b) Groundtruth map.

Figure 6. shows the Recology data set, which was also acquired in an urban location in
San Francisco, USA. It contained 200 x 250 pixels and had a spatial resolution of 1.8 m. It had 11 land
classes, which were building1, building?2, building3, building4, building5, building6, buildings, trees,
parking lot, soil, and grass.

Buildingl
Building?2
Building3
Building4
Building5
Building6
Building?7
Trees
Parkin

Lot

Soi

B Grass

Figure 6. Recology data set: (a) DSM map; (b) Groundtruth map.
5.2. Experimental Setup

The experiments in this article were carried out under Windows system and accelerated with
Nvidia RTX2060(Asus, Taiwan, China) graphics card. The codes take tensorflow as the backend and
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are implemented through the Keras and the python (Anaconda, Austin, Texas). The data sets were
divided into training sets and test sets. We selected 400, 500, 600, and 700 samples randomly in the
data sets as the training set, and the rest for testing the effect of the model. Verified by experiments,
it was better to set the size of the input for ResCapNet to 38 x 38 pixels, meanwhile the input size of
all comparative experiments was set to 38 x 38 pixels, and the DSM data were linearly mapped to
[-0.5, 0.5]. The training batch size of the data sets was 32. Set 150 epochs for training, and when the
classification accuracy of the network no longer increases (exceeding 20 epochs), the training will stop
early. Selecting the ‘same’ for the fill pattern of each layer’s feature maps, so that the length and width
of each layer’s inputs and outputs are unchanged. The structure of CNN is shown in Table 1.

Table 1. Architecture of CNN.

NO. Conv ReLU Pool Stride
1 3x3x1x20 Yes 2x2 1
2 3x3x%x20x20 Yes 2 X2 1

We use SGD algorithm with momentum as the gradient optimizer. The momentum was selected
to 0.9 and the descent rate was selected to 107°. When training the ResCapNet model, the initial
learning rate for the Bayview Park data set and the Recology data set were set to 0.001, and when
training the CNN and the ResNet models, the initial learning rate were also set to 0.001. For the
Bayview Park data set, the maximum depth of the decision tree was set to 100, and for the Recology
data set, the maximum depth of the decision tree was set to 25. The kernel function of the SVM was set
to the radial basis function (rbf), the rbf coefficient defaults to “auto”, and the penalty parameter of the
error term was set to 100. The value of k for the KNN was set to 1, the leaf_size was set to 30, and the
metric distance select to Euclidean distance. The estimates of the Random Forest for the two data sets
were set to 30.

5.3. Experimental Results and Aanlysis

We adopted overall accuracy (OA), average accuracy (AA), kappa coefficient (K), recall, precision,
and RGB false color map to evaluate the performance of the model. Tables 2 and 3 provide the
classification results of different methods for Bayview Park data set and Recology data set when
selecting 400, 500, 600, and 700 training samples, respectively.

Table 2. Classification results of different training samples on Bayview Park data set.

Training Samples
Methods Index 400 500 600 700

Decisi OA% 76.84 +051 7646 +0.71  76.66+153 7685+ 155
eTCISK’“ AA% 7124 +143 71.80+231  72.04+229 7223 +3.14
ree Kx100  68.04+1.69 6835+121 67.71+211  69.73 + 0.60

OA% 7248 £2.12 76.79 £ 0.31 76.91 £ 2.01 77.21 £0.88
SVM AA% 76.87 +1.42 78.59 +1.97 78.85 + 1.15 81.19 £ 2.31
Kx100 67.32 + 1.69 68.39 + 1.04 68.82 + 1.67 69.81 + 2.33

OA% 79.51 £ 0.27 81.90 + 0.38 85.25 £ 0.19 86.06 + 0.77
KNN AA% 81.35 £ 0.16 83.42 + 0.06 84.92 +0.82 87.47 £ 0.37
K100 73.80 £ 0.22 76.49 + 0.37 79.94 £ 0.35 81.95 + 0.36

Rand OA% 86.78 + 040 87.75+031  88.16+0.44  90.43 + 0.67
;n Oi“ AA% 88.75+1.74 89.20+0.17 89.33+048  89.95+0.95
ores Kx100  8233+0.62 83.61+038 84.06+059 8657 +0.87
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Table 2. Cont.

Training Samples

Methods Index 400 500 600 700
OA% 87.35+191 8791 £1.16 88.33 £0.73 90.61 +1.89
CNN AA% 88.90 + 1.03 89.63 £2.71 89.51 +2.04 90.23 + 0.68

K100 82.72 £ 1.67 85.02 £1.85 86.03 + 1.98 86.72 +2.34

OA% 85.01 £ 1.47 87.05 £1.19 90.07 £ 1.18 90.11 £ 0.91
CapsNet AA% 83.89 £2.13 87.78 £1.70 91.34 +1.24 91.64 +£1.73
K100 80.21 +£1.81 82.85 £ 0.79 86.81 +£1.45 86.92 +1.22

OA% 89.91 £+ 2.07 91.57 £ 1.76 93.12 £ 1.51 94.79 + 0.90
ResNet AA% 91.03 + 1.88 93.23 £ 0.81 94.25 + 1.06 95.78 £1.34
Kx100 86.62 £ 1.99 88.84 +2.39 90.91 + 2.07 93.53 £1.17

OA% 91.99 + 0.81 92.79 £ 0.41 94.09 +£1.23 95.42 + 0.91
OctSqueezeNet AA% 93.21 £0.43 95.02 £ 0.90 95.75 £ 1.25 96.43 + 1.37
Kx100 89.48 £ 1.00 90.48 + 0.47 92.23 +1.64 93.99 +£1.97

OA% 93.05 + 0.63 94.39 £ 0.57 94.87 £ 0.56 96.12 + 0.51
ResCapNet AA% 94.36 + 0.84 95.45 +0.79 96.03 £ 0.76 97.01 £ 1.09
K100 90.77 + 0.98 92.56 + 0.53 9322 +£0.77 94.89 + 1.14

Table 3. Classification results of different training samples on Recology data set.

Training Samples
Methods Index
OA% 68.73 +1.22 73.08 £0.13 7411 £ 0.28 76.30 + 0.29
AA% 60.49 + 2.02 64.28 £1.35 66.27 + 0.62 68.58 +1.37
Kx100 63.01+£140 6810+0.01 69.38+0.32  70.06 +0.33

OA% 7248 +2.12 76.79 + 0.31 7691 +2.01 77.23 £ 0.88
SVM AA% 76.87 +1.42 78.59 +1.97 78.85 + 1.15 81.19 £ 2.31
Kx100 67.32 + 1.69 68.39 £ 1.04 68.82 + 1.67 69.81 + 2.33

OA% 77.62 £ 0.82 84.73 £ 0.16 85.58 + 0.03 88.36 £ 1.24
KNN AA% 80.29 £ 0.98 85.78 £2.98 85.31 £ 0.40 89.27 £ 1.05
K100 73.54 £ 0.76 80.29 £ 0.12 83.08 + 0.08 86.29 + 1.04

Rand OA% 8517 +1.35 87.22+083 8879+207 9171+ 1.02
;“ Of‘ AA% 88.19+2.13 89.85+3.06 90.01+145 91.15+1.43
ores Kx100  8216+0.76 8626+157 8654=211  89.01+1.22

OA% 85.91 +£1.33 88.51 +£1.22 90.47 + 0.62 92.48 +1.69
CNN AA% 88.46 + 2.36 90.36 + 0.43 90.31 + 1.04 92.07 £1.95
KXx100 83.03 £ 1.51 87.08 £ 0.79 86.67 £ 0.77 89.96 + 1.80

OA% 81.17 £ 1.46 85.04 £1.73 87.02 £ 0.84 90.17 £ 1.18
CapsNet AA% 82.75 +£2.34 86.82 +1.44 87.62 £ 1.60 91.17 £1.87
K100 77.43 £1.89 82.13 £ 1.02 84.56 +1.03 88.23 +1.43

OA% 90.53 + 1.83 93.51 + 1.39 95.43 + 0.66 95.72 + 0.95
ResNet AA% 88.70 £ 2.08 94.47 +1.13 94.28 + 1.25 95.16 £ 1.75
Kx100 88.77 £2.33 92.94 + 1.68 94.92 +0.79 95.06 +1.14

OA% 9294 £ 0.21 93.75 +£1.23 95.07 +£0.48 9591 £ 0.73
OctSqueezeNet AA% 93.63 £ 0.17 93.72 £ 0.60 95.36 £ 1.15 95.89 + 0.17
Kx100 92.79 £ 0.74 93.79 £ 0.99 94.13 + 0.63 95.13 £ 0.11

OA% 93.34 +1.22 9421 +1.24 96.23 + 0.98 96.39 + 0.79
ResCapNet AA% 94.25 + 0.81 95.27 +0.42 97.16 £ 1.05 97.31 £1.02
K100 91.17 £ 0.80 93.10 + 1.03 95.51 +0.88 95.70 £ 0.65

400 500 600 700

Decision
Tree

We can see that ResCapNet always achieved the highest accuracy and the best OA were 96.12%
+ 0.51% for the Bayview Park data set and 96.39% + 0.79% for the Recology data set. The best
OA of Bayview Park data set was 0.70%, 1.33%, 5.95%, 5.51%, 5.69%, 10.06%, 18.91%, and 19.27%
higher than OctSqueezeNet, ResNet, CapsNet, CNN, Random Forest, KNN, SVM, and Decision Tree,
respectively. The best OA of Recology data set increased 0.48%, 0.67%, 6.22%, 3.91%, 4.68%, 8.03%,
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19.18%, and 20.09% compared to OctSqueezeNet, ResNet, CapsNet, CNN, Random Forest, KNN, SVM,
and Decision Tree, respectively.

Figure 7 is a comparison of the test results of different methods when 700 training samples were
selected for the two data sets. It can be intuitively seen that the method proposed by us had the
best classification effect. Tables 4 and 5 give the precision and recall of each class for 700 samples
on Bayview Park data set and Recology data set. Tables 6 and 7 give the classification accuracy of
per class on Bayview Park data set and Recology data set. According to the classification results of
each land classes shown in these four tables, when CapsNet was used alone, the classification effect of
land classes with lower height was good, because it was sensitive to spatial features, but its overall
classification accuracy was not high. When ResNet was used alone, the classification accuracy of land
classes with higher height was high, but it was difficult to identify the land classes with lower height.
The combination of the two greatly reduced the influence for the height of the land classes on the
classification results, and the classification accuracy of each category was very high.

Table 4. Precision and recall of each class for 700 samples on Bayview Park data set.

Metnoas - - -
D"'Tcri:im 059 052 08 076 088 081 062

SVM 083 080 078 080 084 061  0.88

KNN 098 077 097 082 099 070  0.70

precision Rl?::i(s’:“ 084 094 100 100 091 082  0.89
CNN 099 087 087 094 100 078  0.87

CapsNet 093 098 086 098 092 085  0.79

ResNet 097 100 100 086 097 090  0.82
OctSqueezeNet 1.00 0.99 0.98 0.92 0.99 0.87 0.89
ResCapNet 100 100 100 097 100 096  0.93

I Classes - - - -
DeTCriion 070 074 078 066 081 079 072

SVM 079 073 090 046 077 092 052

KNN 095 096 096 087 076 094 074

recall R;f)‘i:i“ 093 042 091 071 098 093 070
CNN 096 085 094 080 094 099  0.66

CapsNet 085 063 096 078 099 088 079

ResNet 096 099 098 094 098 086  0.84
OctSqueezeNet 099 099 100 093 095 095  0.86

ResCapNet 0.99 1.00 1.00 0.98 0.99 0.97 0.93
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Table 5. Precision and recall of each class for 700 samples on Recology data set.

12 of 20

Classes

Methods Il BN B e . Il BN N P e
D"T“r‘:;” 074 059 088 076 069 061 055 087 087 051 029
SVM 074 078 096 091 077 077 084 086 065 076 1.00
KNN 088 0.88 098 096 089 076 093 099 068 036 1.00

precision
Random 098 092 088 1.00 097 098 1.00 086 086 081 1.00
Forest
CNN 099 099 097 092 094 089 084 096 083 086 0.88
CapsNet 0.82 087 095 095 097 089 094 092 090 083 085
ResNet 098 099 098 099 100 098 095 098 091 090 095
OctSqueezeNet 099 100 100 100 100 098 100 099 088 090 1.00
ResCapNet 099 100 097 100 099 100 100 098 093 098 096
Classes

Methods Il BN B e . Il BN N P e
DeTCr‘:;(’“ 063 076 084 051 079 056 093 084 084 058 033
SVM 083 069 096 08 071 065 060 087 092 011 017
KNN 097 08 094 08 094 091 09 080 068 072 054

recall
Random 091 092 098 053 092 071 098 100 1.00 032 023
Forest
CNN 099 099 097 092 094 089 084 09 083 086 088
CapsNet 097 08 094 064 093 08 100 097 091 052 082
ResNet 099 100 099 096 100 096 092 099 097 071 088

OctSqueezeNet 099 1.00 100 099 099 099 075 100 097 067 094
ResCapNet 099 100 100 092 099 098 096 1.00 098 073 087

Figures 8 and 9 visually show the classification results of each class on the two data sets. It can be
clearly seen that classification results of ResCapNet for each class were excellent. Figures 10 and 11
provides classification maps for different classifiers.

700

600

500

400

4

o

60 80
OA(%)

(@)

Figure 7. Cont.

B ResCaps
B OctSqueezeNet
M ResNet
B CapsNet
E CNN
KNN
M Random Forest
mSVM

100 ™ Decision Tree
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Figure 7. Classification results of different methods: (a) Bayview Park data set; (b) Recology data set.
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Table 6. Classification results of each class for 700 samples on Bayview Park data set.
Classes Decision SVM KNN Random CNN CapsNet Res-Net OctSque-ezeNet Res-CapNet
Tree Forest

[ 68.08 £ 5.13 81.88 £3.91 99.50 + 1.06 95.18 £+ 3.89 93.58 £1.53 94.31+147 9825+1.55 99.52 £ 0.09 99.47 * 0.53

[ 53.69 +9.28 84.01 £3.12 80.88 £ 1.89 98.81 +1.20 9278 £1.12 9532213  99.62 +0.38 99.93 + 0.07 99.82 £ 0.18
[ 73.01 £ 4.49 91.31 + 5.04 100 100 92.87+148 9326+1.81 99.60 +2.86 99.54 + 0.46 100

72.56 + 0.12 81.60 + 4.43 90.84 + 2.66 82.55 + 6.37 91.25+147 9488+1.19 9643 +277 96.29 +2.77 98.12 + 1.22

86.68 £ 2.29 83.67 £ 1.86 98.15 £ 0.31 90.48 £ 1.16 8643161 9274+170 97.72+0.93 98.67 + 0.88 98.52 + 0.60

7843 +5.27 61.04 + 3.46 70.62 +1.09 87.02 +£ 0.57 85.57 £1.69 83.53+079 87.87+211 88.75 £ 3.26 89.44 * 2.63

[ 66.10 + 0.46 86.23 +£2.92 72.26 + 0.43 84.03 + 091 90.69 £2.68 8551122 90.99 +2.76 92.47 +2.30 93.68 + 2.45
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Table 7. Classification results of each class for 700 samples on Recology data set.
Classes Decision SVM KNN Random CNN CapsNet Res-Net OctSque-ezeNet Res-CapNet
Tree Forest

[ 71.87 +4.84 71.87 £ 1.01 90.66 + 4.99 91.04 £ 3.59 9834119 92.09+1.09 9854 +1.46 99.06 + 0.94 98.13 + 1.60
[ 67.46 £ 2.29 64.97 +£1.94 82.26 +4.27 9540 £4.71 9540+136 9386121 9817 +1.83 99.56 + 0.44 99.76 + 0.24
[ 83.85 + 3.04 92.74 +1.10 95.07 + 1.84 93.99 +1.49 93.99£1.07 9321+1.12 98.03+1.97 98.12 +1.43 98.41 + 1.16
61.09 + 1.44 90.05 + 2.11 96.38 + 0.67 97.35 £ 0.35 9735+124 9546+1.13 9571 +1.86 99.55 + 0.45 99.63 + 0.37

66.72 £1.12 85.98 +1.42 91.53 £ 3.04 96.30 +2.77 96.30 £2.02 9796+195 98.92 +1.08 100 98.90 £ 1.10

48.55 + 6.93 70.04 + 0.81 89.26 + 1.38 9491 +1.24 9491 +1.18 8728 +141 96.56 +2.29 95.35 + 1.81 98.58 + 1.42

[ 70.22 + 9.40 88.09 +2.98 86.59 + 2.68 96.78 + 2.88 96.78 £1.87 95.00+1.79 9243 +253 96.94 + 1.64 98.81 + 1.19
[ 87.54 +2.85 87.05 + 1.30 87.88 +1.55 95.57 + 0.18 95.57 £1.16 9022 +£0.61 9711 +1.62 97.54 + 2.01 9541 +1.21
- 80.76 £ 1.41 64.26 £ 1.71 87.34 £ 1.02 76.94 + 0.06 7694 +£127 8429+0.79  89.80+2.03 87.48 +1.27 90.72 + 1.76
52.37 £ 0.93 81.03 +3.99 80.25 + 1.30 73.16 + 0.32 7316 £+1.51 7542 +1.46  88.97 £2.67 89.68 + 0.53 95.68 + 2.00

[ 54.77 + 3.34 97.94 + 1.48 91.63 +1.24 98.13 + 1.33 9643 +1.41 9813+127 9254 +246 91.68 + 1.61 95.47 + 2.48
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Figure 8. Classification results of different methods for each class on Bayview Park.
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Figure 9. Classification results of different methods for each class on Recology data set.
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Figure 10. Classification results on Bayview Park data set: (a) Ground-truth map; (b) Decision
Tree; (c) SVM; (d) KNN; (e) Random Forest; (f) CNN; (g) CapsNet; (h) ResNet; (i) OctSqueezeNet;
(j) ResCapNet.

Figure 11. Classification results on Recology data set: (a) Ground-truth map; (b) Decision Tree; (c) SVM;
(d) KNN; (e) Random Forest; (f) CNN; (g) CapsNet; (h) ResNet; (i) OctSqueezeNet; (j) ResCapNet.
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6. Conclusions

This article designs a deep learning model-ResCapNet, which combines the advantages of ResNet
and CapsNet for improving the original structure to effectively classify remotely sensed LiDAR data.
The two well-known LiDAR data sets are considered in this article, and eight established algorithms
are used to compare with our proposed method, it can be seen that, competitive with state-of-the-art
classification methods for LiDAR, our proposed method can achieve better classification results.
It achieves 96.12% and 96.39% in terms of OA on the Bayview Park and Recology data sets, respectively,
when the number of training samples is selected 700.

The shortcut channel of ResNet can retain more complete feature information and alleviate the
problem of network performance degradation caused by the inappropriate depth of CNN. At the
same time, it automatically extracts effective features from the data. This enables subsequent CapsNet
to learn more useful feature information. Meanwhile, because the sensitivity of CapsNet to space
transformation of features, it can extract more detailed feature information and retain more valuable
information compared to ordinary CNNs. Thus, the combination of the two structure obtains a very
good classification effect.

In addition, the practical effects of this methods on other remote sensing data sets need to be
continuously verified. Meanwhile, we need to further explore how to automatically generate an
optimal network model suitable for LiDAR classification.

Author Contributions: This article was completed by all authors. A.W. and M.W. designed and implemented the
classification algorithm. H.W. and K.]. made an experimental analysis of the algorithm. Y.I. participated in the
writing of the article. All authors have read and agreed to the published version of the manuscript.

Funding: Supported by National Natural Science Foundation of China (NSFC-61671190), the University Nursing
Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2017086) and Fundamental
Research Foundation for Universities of Heilongjiang Province (LGYC2018JQ014).

Acknowledgments: The authors would like to thank the support of the laboratory and university.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Zhang, LJ.; Li, Q; Wang, Z.Z.; Liu, HJ.; Li, Z.S,; Gui, Y.; Kletzli, R.; Yang, X.; Chen, S.; Liu, Y. Lidar
Application in Selection and Design of Power Line Route. In Proceedings of the 2007 IEEE International
Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23-28 July 2007; pp. 3109-3111.

2. Gao, J.; Sun, J.F,; Wei, ].S.; Wang, Q. Research of Underwater Target Detection Using a Slit Streak Tube
Imaging Lidar. In Proceedings of the 2011 Academic International Symposium on Optoelectronics and
Microelectronics Technology, Harbin, China, 12-16 October 2011; pp. 240-243.

3. Liu, J.K,; Shih, T.Y,; Liao, Z.Y,; Lau, C.C.; Hsu, PH. The Geomorphometry of Rainfall-Induced Landslides in
Alishan Area Obtained by Airborne Lidar and Digital Photography. In Proceedings of the IGARSS 2008—2008
IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7-11 July 2008.

4. Zhang, X.Y,; Wang, S.P,; Yun, X.C. Bidirectional Active Learning: A Two-way Exploration into Unlabeled and
Labeled Dataset. IEEE Trans. Neural Netw. Learn. Syst. (TNNLS) 2015, 26, 3034-3044. [CrossRef]

5. Zhang, X.Y,; Shi, H.C,; Li, C.S. Learning Transferable Self-Attentive Representations for Action Recognition in
Untrimmed Videos with Weak Supervision. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), Honolulu, HI, USA, 27 January-1 February 2019; pp. 1-8.

6. Zhang, X.Y,; Li, C.S,; Shi, HC,; Zhu, X.B,; Li, P; Dong, J. AdapNet: Adaptability Decomposing
Encoder-decoder Network for Weakly Supervised Action Recognition and Localization. IEEE Trans.
Neural Netw. Learn. Syst. (TNNLS) 2020, 1-12. [CrossRef]

7. Zhang, X.Y.; Shi, H.C.; Zhu, X.B; Li, P. Active Semi-Supervised Learning based on Self-Expressive Correlation
with Generative Adversarial Networks. Neurocomputing 2019, 345, 103-113. [CrossRef]

8. Lo, CS,; Lin, C. Growth-competition-based Stem Diameter and Volume Modeling for Tree Level Forest
Inventory Using Airborne LiDAR Data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2216-2226. [CrossRef]


http://dx.doi.org/10.1109/TNNLS.2015.2401595
http://dx.doi.org/10.1109/TNNLS.2019.2962815
http://dx.doi.org/10.1016/j.neucom.2019.01.083
http://dx.doi.org/10.1109/TGRS.2012.2211023

Sensors 2020, 20, 1151 19 of 20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Qi, CR; Yi, L.; Su, H. PointNet++: Deep Hierarchical Feature Learning on Points a Metric Space. In Advances
in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2017; pp. 5099-5108.

Wang, A.L.; He, X.; Ghamisi, P.; Chen, Y.S. LIDAR Data Classification Using Morphological Profiles and
Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 74-778. [CrossRef]

Liu, Y;; Ren, Y;; Hu, L.; Liu, Z. Study on Highway Geological Disasters Knowledge base for Remote Sensing
Images Interpretation. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium,
Munich, Germany, 22-27 July 2012.

Lodha, S.K.; Kreps, E.J.; Helmbold, D.P.; Fitzpatrick, D.N. Aerial LiDAR data classification using support
vector machines (SVM). In Proceedings of the Third International Symposium on 3D Data Processing,
Visualization, and Transmission (3DPVT’06), Chapel Hill, NC, USA, 14-16 June 2006.

Sasaki, T.; Imanishi, J.; Ioki, K.; Morimoto, Y.; Kitada, K. Object-based Classification of Land Cover and Tree
Species by integrating airborne LiDAR and high spatial resolution imagery data. Landsc. Ecol. Eng. 2012,
8,157-171. [CrossRef]

Naidoo, L.; Cho, M.A.; Mathieu, R.; Asner, G. Classification of Savanna Tree Species, in the Greater Kruger
National Park Region, by Integrating Hyperspectral and LiDAR Data in a Random Forest Data Mining
Environment. ISPRS |. Photogramm. Remote Sens. 2012, 69, 167-179. [CrossRef]

Khodadadzadeh, M.; Li, J. Fusion of Hyperspectral and LiDAR Remote Sensing Data Using Multiple Feature
Learning. IEEE ]. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2971-2983. [CrossRef]

Ghamisi, P; Hofle, B.; Zhu, X.X. Hyperspectral and LiDAR Data Fusion Using Extinction Profiles and
Deep Convolutional Neural Network. IEEE |. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 3011-3024.
[CrossRef]

Ghamisi, P.; Hofle, B. LIDAR Data Classification Using Extinction Profiles and a Composite Kernel Support
Vector Machine. IEEE Geosci. Remote Sens. Lett. 2017, 14, 659-663. [CrossRef]

He, X.; Wang, A.L.; Ghamisi, P; Li, G.; Chen, Y.S. LiDAR Data Classification Using Spatial Transformation
and CNN. IEEE Geosci. Remote Sens. Lett. 2018, 16, 125-129. [CrossRef]

Xia, J.S.; Yokoya, N.T.; Iwasaki, A. Fusion of Hyperspectral and LiDAR Data with a Novel Ensemble Classifier.
IEEE Geosci. Remote Sens. Lett. 2018, 15, 957-961. [CrossRef]

Ge, C.; Du, Q.; Li, W,; Li, Y.S.; Sun, WW. Hyperspectral and LiDAR Data Classification Using Kernel
Collaborative Representation Based Residual Fusion. IEEE ]. Sel. Top. Appl. Earth Obs. Remote Sens. 2019,
12,1963-1973. [CrossRef]

Wang, A.L.; Wang, M.H_; Jiang, K.Y.; Zhao, L.F,; Iwahori, Y.J. A Novel Lidar Data Classification Algorithm
Combined Densenet with STN. In Proceedings of the 2019 International Geoscience and Remote Sensing
Symposium (IGARSS), Yokohama, Japan, 28 July-2 August 2019; pp. 2483-2486.

Wang, A.L.; Wang, M.H.; Jiang, K.Y.,; Cao, M.Q.; Iwahori, Y.J. A Dual Neural Architecture Combined
SqueezeNet with OctConv for LiDAR Data Classification. Sensors 2019, 19, 4927. [CrossRef] [PubMed]

Ito, S.; Hiratsuka, S.; Ohta, M.; Matsubara, H.; Ogawa, M. Small Imaging Depth LIDAR and DCNN-Based
Localization for Automated Guided Vehicle. Sensors 2018, 18, 177. [CrossRef] [PubMed]

Kwon, S.K; Jung, H.S.; Baek, WK.; Kim, D. Classification of Forest Vertical Structure in South Korea from
Aerial Orthophoto and Lidar Data Using an Artificial Neural Network. Appl. Sci. 2017, 7, 1046. [CrossRef]
Shao, J.; Qu, C.; Li, J.; Peng, S. A Lightweight Convolutional Neural Network Based on Visual Attention for
SAR Image Target Classification. Sensors 2018, 18, 3039. [CrossRef]

Gao, F; Huang, T.; Wang, J.; Sun, J.; Hussain, A.; Yang, E. Dual-Branch Deep Convolution Neural Network
for Polarimetric SAR Image Classification. Appl. Sci. 2017, 7, 447. [CrossRef]

Gao, Q.; Lim, S; Jia, X. Hyperspectral Image Classification Using Convolutional Neural Networks and
Multiple Feature Learning. Remote Sens. 2018, 10, 299. [CrossRef]

Zhu, X.B.; Li, Z.Z.; Zhang, X.Y,; Li, P. Deep Convolutional Representations and Kernel Extreme Learning
Machines for Image Classification. Multimed. Tools Appl. (MTA) 2018, 78, 29271-29290. [CrossRef]

Jiang, Y.G.; Wu, Z.X,; Tang, ] H.; Li, Z.C.; Xue, X.Y.; Chang, S.H. Modeling Multimodal Clues in a Hybrid
Deep Learning Framework for Video Classification. IEEE Trans. Multimed. (TMM) 2018, 78, 3137-3147.
[CrossRef]

Jiang, Y.G.; Wu, Z.X,; Wang, ]J.; Xue, X.Y.; Chang, S.H. Exploiting Feature and Class Relationships in Video
Categorization with Regularized Deep Neural Network. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
2018, 40, 352-364. [CrossRef] [PubMed]


http://dx.doi.org/10.1109/LGRS.2018.2810276
http://dx.doi.org/10.1007/s11355-011-0158-z
http://dx.doi.org/10.1016/j.isprsjprs.2012.03.005
http://dx.doi.org/10.1109/JSTARS.2015.2432037
http://dx.doi.org/10.1109/JSTARS.2016.2634863
http://dx.doi.org/10.1109/LGRS.2017.2669304
http://dx.doi.org/10.1109/LGRS.2018.2868378
http://dx.doi.org/10.1109/LGRS.2018.2816958
http://dx.doi.org/10.1109/JSTARS.2019.2913206
http://dx.doi.org/10.3390/s19224927
http://www.ncbi.nlm.nih.gov/pubmed/31726726
http://dx.doi.org/10.3390/s18010177
http://www.ncbi.nlm.nih.gov/pubmed/29320434
http://dx.doi.org/10.3390/app7101046
http://dx.doi.org/10.3390/s18093039
http://dx.doi.org/10.3390/app7050447
http://dx.doi.org/10.3390/rs10020299
http://dx.doi.org/10.1007/s11042-018-6781-z
http://dx.doi.org/10.1109/TMM.2018.2823900
http://dx.doi.org/10.1109/TPAMI.2017.2670560
http://www.ncbi.nlm.nih.gov/pubmed/28221992

Sensors 2020, 20, 1151 20 of 20

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Yang, P; Zhao, P.; Gao, X,; Liu, Y. Robust Cost-sensitive Learning for Recommendation with Implicit Feedback.
In Proceedings of the 2018 SIAM International Conference on Data Mining, San Diego, CA, USA, 3-5 May
2018; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2018; pp. 621-629.

Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic Routing Between Capsules. In Advances in Neural Information
Processing Systems; MIT Press: Cambridge, MA, USA, 2017; pp. 3856-3866.

Wang, X.; Tan, K.; Chen, Y. CapsNet and Triple-GANs Towards Hyperspectral Classification. In Proceedings
of the 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications (EORSA),
Xi’an, China, 18-20 June 2018.

Ahmad, A.; Kakillioglu, B.; Velipasalar, S. 3D Capsule Networks for Object Classification from 3D Model
Data. In Proceedings of the 2018 Asilomar Conference on Signals, Systems, and Computers, Pacific Grove,
CA, USA, 28-31 October 2018; pp. 2225-2229.

Zhu, K.Q.; Chen, Y.S.; Ghamisi, P; Jia, X.P.; Benediktsson, ]J.A. Deep Convolutional Capsule Network for
Hyperspectral Image Spectral and Spectral-Spatial Classification. Remote Sens. 2019, 11, 223. [CrossRef]
Paoletti, M.E.; Haut, ] M.; Beltran, R.F,; Plaza, J.; Plaza, A.; Li, J.; Pla, F. Capsule Networks for Hyperspectral
Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2145-2160. [CrossRef]

Afshar, P; Plataniotis, K.N.; Mohammadi, A. Capsule Networks for Brain Tumor Classification Based on
MRI Images and Coarse Tumor Boundaries. In Proceedings of the 2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12-17 May 2019; pp. 1368-1372.

Yin, . H.; Li, S.; Zhu, H.M.; Luo, X.Y. Hyperspectral Image Classification Using CapsNet with Well-Initialized
Shallow Layers. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1095-1099. [CrossRef]

Wang, X; Tan, K.; Du, Q.; Chen, Y.; Du, P. Caps-TripleGAN: GAN-Assisted CapsNet for Hyperspectral Image
Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7232-7245. [CrossRef]

He, KM.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of
the Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016.

Mou, L.C.; Ghamisi, P.; Zhu, X.X. Unsupervised Spectral-Spatial Feature Learning via Deep Residual
Conv-Deconv Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2018,
56, 391-406. [CrossRef]

Zhong, Z.L.; Li, J.; Luo, Z.M.; Chapman, M. Spectral-Spatial Residual Network for Hyperspectral Image
Classification: A 3-D Deep Learning Framework. IEEE Trans. Geosci. Remote Sens. 2018, 56, 847-858.
[CrossRef]

Qina, EW.; Gaoa, N.; Penga, Y.; Wub, Z.Z; Shenc, S.Y.; Grudtsina, A. Fine-grained Leukocyte Classification
with Deep Residual Learning for Microscopic Images. Comput. Methods Programs Biomed. 2018, 162, 243-252.
[CrossRef] [PubMed]

Paoletti, M.E.; Haut, ] M.; Beltran, R.F.; Plaza, ].; Pla, F. Deep Pyramidal Residual Networks for Spectral-Spatial
Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 740-754. [CrossRef]

Zhang, ].P; Xie, Y.T.; Xia, Y.; Shen, C.H. Attention Residual Learning for Skin Lesion Classification. IEEE Trans.
Med. Imaging 2019, 38, 2092-2103. [CrossRef] [PubMed]

® © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.3390/rs11030223
http://dx.doi.org/10.1109/TGRS.2018.2871782
http://dx.doi.org/10.1109/LGRS.2019.2891076
http://dx.doi.org/10.1109/TGRS.2019.2912468
http://dx.doi.org/10.1109/TGRS.2017.2748160
http://dx.doi.org/10.1109/TGRS.2017.2755542
http://dx.doi.org/10.1016/j.cmpb.2018.05.024
http://www.ncbi.nlm.nih.gov/pubmed/29903491
http://dx.doi.org/10.1109/TGRS.2018.2860125
http://dx.doi.org/10.1109/TMI.2019.2893944
http://www.ncbi.nlm.nih.gov/pubmed/30668469
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Capsule Network 
	Layer-Based Compression 
	Dynamic Routing 

	Residual Network 
	ResCapNet for LiDAR Classification 
	Proposed Network Structure 
	Adaptive Learning Optimization Algorithm 
	Loss and Activate Function 

	Experimental Results and Analysis 
	Algorithm Data Description 
	Experimental Setup 
	Experimental Results and Aanlysis 

	Conclusions 
	References

