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Background. Although the prognosis of papillary thyroid cancer (PTC) is relatively good, some patients experience recurrence or
distant metastasis after thyroidectomy and progress to radioactive iodine refractory stage. Therefore, accurate prediction of
clinical outlook can aid to screen out the minority of patients with poorer prognosis and avoid excessive treatment in low-risk
patients. Methods. The RNA-seq and clinical data of PTC patients was downloaded from the Gene Expression Omnibus
(GEO) and the Cancer Genome Atlas (TCGA) databases. Multivariate and Lasso Cox regression analyses were used to
construct a prognostic nomogram to predict overall survival (OS). Thereafter, quantitative RT-PCR and Human Protein Atlas
(HPA) database were employed to verify the expression of key genes. Results. A four-gene risk score comprising ABI3BP, DPT,
MRO, and TENM1 was exhibited strong prognostic value. Moreover, an integrated nomogram was established based on the
risk score, age, AJCC (American Joint Commission on Cancer) stage, tumor size, extrathyroidal extension, and history of
neoadjuvant treatment, which exhibited significantly better predictive performance than TNM stage system (P < 0:05). GSEA
(Gene Set Enrichment Analysis) and GSVA (Gene Set Variation Analysis) revealed that the different tumor-associated
hallmarks, biological processes, and pathways were substantially enriched in the poor-prognosis group. In addition, a ceRNA
network was constructed by including the four genes (ABI3BP, DPT, MRO, and TENM1), 54 lncRNAs, and 10 miRNAs.
Finally, both the relative mRNA and protein expression of ABI3BP, DPT, MRO, and TENM1 were validated. Conclusion. The
present study identified a four-gene risk signature and developed a novel nomogram, which could be regarded as a reliable
prognostic model for PTC patients. The findings also revealed preliminary potential mechanisms that may influence the
prognosis outcome. These results can be conducive to design personalized treatment and prognosis management in affected
patients.

1. Introduction

In the past few decades, the incidence of thyroid cancer has
increased rapidly worldwide [1]. Papillary thyroid carci-
noma (PTC) is the most common pathological subtype,
which has accounted for more than 85% of cases [2]. PTCs
usually presents an excellent prognosis, and 10-year
disease-specific survival rates have been reported to be over
90% via management through the common therapeutic
approaches such as thyroidectomy, RAI therapy, and
thyroid-stimulating hormone (TSH) suppressive therapy

[3]. However, local recurrence and distant metastasis inevi-
tably occur in up to 20% and 10% in PTC patients [4]. More-
over, two-thirds of these patients exhibit loss of iodine-131
(131I) uptake initially or gradually, thereby indicating dedif-
ferentiation of the PTC termed as RAI-refractory PTC [5].
Thus, accurate assessment of the prognosis of PTC is critical
to ensure that the high-risk patients receive appropriate
treatment and to prevent excessive treatment of the low-
risk patients.

The 8th edition of the AJCC/TNM (tumor node metasta-
sis) manual was released in 2017 [6, 7]. TNM staging has
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Figure 1: Flowchart of the study design.
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Figure 2: Continued.
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been identified to be useful in predicting the disease mortal-
ity, and it is recommended for all PTC patients [7, 8]. How-
ever, it has been difficult to accurately distinguish the
difference between the survival outcomes in PTCs with sim-
ilar clinicopathological features [9, 10]. A number of prior
studies have proposed that combining BRAF, TERT, and
RAS mutations with TNM staging can lead to better predic-
tion of the prognosis of PTC patients [11–13]. Our team has
previously constructed an integrated nomogram based on
clinicopathological factors and the related risk scores, which
showed significantly better predictive performance than
AJCC stage [14–16].

In this study, we aimed to develop a prognosis-
predicting model based on nomogram as a prognostic eval-
uation method. We have obtained data of PTC patients from
The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO) databases. Univariate and multivariate
Cox regression analysis and Lasso regression analysis was
performed to establish a four-gene signature in the training
cohort. Time-dependent receiver-operating characteristic
(ROC) and Kaplan-Meier (KM) curve was used to assess
the validity of the four-gene signature and the nomogram
in the entire patient cohort.

2. Materials and Methods

2.1. Acquisition and Processing of Data. ALL RNA-seq data
and the clinical characteristics were extracted from three
GEO datasets (GSE33630, GSE3678, and GSE60542) and
TCGA-THCA dataset (Table S1). A total of 494 PTC
samples were selected from the TCGA-THCA dataset and
were then enrolled for the subsequent analysis. The
flowchart of the designed study has been illustrated in
Figure 1.

2.2. Screening of the Differentially Expressed Genes and Gene
Enrichment Analysis. Differentially expressed genes (DEGs)
between the normal and PTC samples with absolute log2
fold change ðFCÞ > 1:5 and P < 0:05 were screened from

three GEO datasets and the TCGA-THCA dataset by using
the “limma” R package. Enrichment analyses of Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway for DEGs were performed by using the
“clusterProfiler” R package and Webgestalt website (http://
www.webgestalt.org/).

2.3. Establishment and Validation of the Four-Gene Risk
Signature. In total, 344 samples were randomly selected from
the 494 PTC samples in the TCGA-THCA dataset as the
training cohort. The remaining 150 samples were used as
the testing cohort. In the training cohort, 35 OS-related
genes were selected based on univariate cox analysis. There-
after, least absolute shrinkage and selection operator
(LASSO) regression was used to screen 12 potential prog-
nostic genes. Finally, only 4 genes (P < 0:05) were included
in the risk signature based on the results of multivariate
Cox regression. Finally, the risk score for each patient was
calculated as follows: ∑n

i=1coefðiÞ ∗ exp ðiÞ, where exp ðiÞ
represents the expression of genes, and coefðiÞ is the coeffi-
cient of multivariate Cox regression. ROC and KM curves
for risk score were drawn with the “survival” and “time-
ROC” R packages to assess the potential predictive capacity
of the risk signature in the training cohort, testing cohort,
and the entire cohort.

2.4. Construction and Evaluation of the Nomogram. Univar-
iate and multivariate Cox regression analyses were utilized to
screen the various essential clinical characteristics related to
OS. A nomogram was established based on the risk score,
age, AJCC stage, tumor size, extrathyroidal extension, and
history of neoadjuvant treatment with the “rms” R package.
The C-index, Akaike information criterion (AIC), and
Bayesian Information Criterion (BIC) of the nomogram
were calculated, and the ROC, KM, calibration, and decision
curves were drawn.

2.5. Immune Analysis. The median nomogram point was
used to divide the entire cohort into two distinct groups of
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Figure 2: Gene enrichment analysis. (a–c) Top 10 enriched biological processes (BP), cellular components (CC), and molecular functions
(MF) of the DEGs. (d) Top 10 KEGG pathways were obtained by enrichment analysis.
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Table 1: The various clinical characteristics in the training, testing, and entire cohort.

Clinical characteristics Training cohort (344) Testing cohort (150) Entire cohort (494)

Histological type

PTC 269 118 387

FVPTC 71 29 100

Unknown 4 3 7

Age

<55 232 98 330

≥55 112 52 164

Gender

Male 92 42 134

Female 252 108 360

Tumor size

≤1 cm 26 11 37

>1 cm 291 128 419

Unknown 27 11 38

Neoadjuvant treatment

Yes 9 5 14

No 335 145 480

Focality

Unifocal 182 79 261

Multifocal 155 68 223

Unknown 7 3 10

Site

Unilateral 267 115 382

Bilateral 60 25 85

Isthmus 15 7 22

Unknown 2 3 5

Extrathyroidal extension

None 227 97 324

Minimal 92 40 132

Gross 13 6 19

Unknown 12 7 19

AJCC stage

I 195 84 279

II 37 15 52

III 75 35 110

IV 37 16 53

M

M0 195 86 281

M1 7 1 8

MX 142 63 205

N

N0 155 71 226

N1 155 65 220

NX 34 14 48

T

T1 96 43 139

T2 116 46 162

T3 116 53 169
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good-prognosis and poor-prognosis. Cell-type Identification
By Estimating Relative Subsets Of RNA Transcripts (CIBER-
SORTx) (https://cibersortx.stanford.edu/) was then
employed to analyze the immune infiltration of 22 types of
immune cells in good-prognosis and poor-prognosis groups.
The stroma and immune scores were measured by Estima-
tion of Stromal and Immune cells in Malignant Tumor tis-
sues using Expression data (ESTIMATE) analysis using
“estimate” R package.

2.6. Gene Set Enrichment Analysis (GSEA) and Gene Set
Variation Analysis (GSVA). GSEA and GSVA were per-
formed with the GSEA software and the “GSVA” R package.
The reference gene sets in GSEA were the c2.cp.kegg.v7.5.1.-
symbols.gmt, and if the normal P value < 0.05 and FDR
(false discovery rate) q value < 0.25, the gene set was consid-
ered as significantly enriched.

2.7. Construction of a Competing Endogenous RNA
Regulatory Network. The (differentially expressed miRNAs)
DEmiRNAs and (differentially expressed lncRNAs) DElncR-
NAs between the normal and PTC samples in the TCGA-
THCA dataset with absolute log2 fold change ðFCÞ > 1:5
and P < 0:05 were screened by using the “limma” R package.
The miRcode database was used to match DElncRNAs and
DEmiRNAs. ABI3BP, DPT, MRO, and TENM1 target miR-
NAs were predicted based on the three distinct databases:
miRWalk, TargetScan, and miRmap. Subsequently, a ceRNA
regulatory network was constructed according to the results
obtained above. Cytoscape (version 3.8.2) was used to visu-
alize the competing endogenous RNA (ceRNA) network.
OS-related DEmiRNAs and DElncRNAs were screened by
the KM curves.

2.8. Data Mining in the GEPIA and HPA Databases. The
RNA expression data of ABI3BP, DPT, MRO, and TENM1
genes in normal and PTC samples were extracted from the
Gene Expression Profiling Interactive Analysis (GEPIA)
database. The immunohistochemistry (IHC) data was

obtained from seven patients in the Human Protein Atlas
(HPA) database, for whom the basic information is available
as shown in Table S2.

2.9. Patients. Ten paired PTC tumors and adjacent normal
thyroid tissues were obtained from patients in the Thyroid
Surgery Department of Xiangya Hospital from March 2020
to June 2020. An informed consent was obtained from all
the participants, and the study was approved by the Ethics
Committee of Xiangya Hospital of Central South University
(No. 202004192).

2.10. Quantitative RT-PCR. Total RNA was extracted from
the normal and PTC tissues by using Trizol Reagent (Accu-
rate Biology, China). cDNA synthesis was performed using
Reverse Transcription Kit (Accurate Biology, China). Quan-
titative RT-PCR was then carried out with the RT-PCR Kit
(Accurate Biology, China). The sequence of all the primers
used have been described in Table S3.

2.11. Statistical Analysis. Statistical analysis was performed
based on R software (version 4.1.0). Chi-square test or Fish-
er’s exact test were used to analyze the categorical variables.
T-test and one-way ANOVA were used to analyze the con-
tinuous variables. Univariate and multivariate Cox regres-
sion and log-rank test were performed to evaluate OS.
Unless otherwise stated, P < 0:05 indicated that the differ-
ence was statistically significant.

3. Results

3.1. Identification of DEGs and Gene Enrichment Analysis.
The value distribution of the selected samples in the three
GEO datasets is uniform which has been shown in Supple-
mentary Figure 1. The various DEGs were obtained in
three GEO datasets and TCGA-THCA datasets
(Supplementary Figure 2A-D) (453 in GSE33630, 323 in
GSE3678, 442 in GSE60542, and 2328 in the TCGA-THCA
dataset). The intersection of the four datasets contained
176 DEGs (Supplementary Figure 2E), including 102

Table 1: Continued.

Clinical characteristics Training cohort (344) Testing cohort (150) Entire cohort (494)

T4 14 8 22

TX 2 0 2

Radiation

Yes 212 90 302

No 121 55 176

Unknown 11 5 16

BRAF mutation

Yes 193 82 275

No 135 62 197

Unknown 16 6 22

Overall survival (year)

Mean ± SD 3:208 ± 1:205 3:58 ± 0:24 3:323 ± 0:121
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upregulated genes and 74 downregulated genes. GO analysis
demonstrated that these 176 DEGs were primarily enriched
in cell junction assembly, synapse organization, and positive
regulation of protein serine in the biological process,
collagen-containing extracellular matrix, secretory granule
lumen, and cytoplasmic vesicle lumen in the cellular
components, serine-type peptidase activity, serine
hydrolase activity, and serine-type endopeptidase activity
in the molecular functions (Figures 2(a)–2(c)).
Additionally, KEGG pathway enrichment analysis
indicated that DEGs were significantly enriched in tyrosine

metabolism (Figure 2(d)). These results suggested that the
genesis and development of PTC might be closely related
to these genes or pathways, including pathways that play
an important role in development of cancers, such as
serine activity, tyrosine metabolism, extracellular matrix,
and cellular junction. Therefore, these results can guide our
subsequent study related to understanding the molecular
mechanisms of PTC.

3.2. Establishment of the Four-Gene Risk Signature. The
baseline of the clinical characteristics of the training cohort,
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Figure 3: Establishment of the four-gene signature. (a, b) 12 genes were screened by Lasso regression analysis of the 35 OS-related genes. (c)
The final four key genes were selected by performing multivariate Cox regression of the 12 genes.
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Figure 4: Continued.
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Figure 4: Validation of the four-gene Signature. (a–f) Risk score distribution and survival overview in the training cohort, testing cohort,
and entire cohort. The horizontal axis depicts the ranking of patients in the cohort in terms of the risk score from lowest to highest. (g–i) The
KM survival curves of risk score in the training cohort, testing cohort, and entire cohort. Patients were divided into high-risk and low-risk
groups based on the median risk score. (j–l) The ROC curve of the risk score in the training cohort, testing cohort, and entire cohort.

Table 2: Cox regression of the clinical characteristic and the risk score.

Variables
Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

Risk score 2.718 (1.888, 3.914) <0.001 2.37 (1.40, 4.00) 0.001

Age 1.119 (1.077, 1.163) <0.001 1.10 (1.050, 1.21) 0.045

Race (white) 1.255 (0.284, 5.536) 0.765 — —

Gender (male vs. female) 1.921 (0.692, 5.324) 0.209 — —

Neoadjuvant treatment (yes) 23.55 (4.967, 111.7) <0.001 22.59 (2.40-45.22) 0.006

Histology (PTC vs. FVPTC) 3.162 (0.421, 23.953) 0.266 — —

Site (unilateral vs. bilateral) 0.847 (0.186, 3.866) 0.831 — —

Site (isthmus vs. bilateral) 0.970 (0.086, 10.929) 0.981 — —

Focality (unifocal vs. multifocal) 3.918 (0.884, 17.36) 0.072 — —

Tumor size 1.362 (1.048, 1.769) 0.021 1.25 (1.05-1.57) 0.034

Extrathyroidal extension (minimal vs. gross) 0.110 (0.029, 0.413) 0.001 0.012

Extrathyroidal extension (none vs. gross) 0.100 (0.031, 0.316) <0.001 0.003

M (M1 vs. M0) 4.852 (1.042, 22.681) 0.045 2 (0.31, 12.96) 0.468

M (MX vs. M0) 4.852 (1.049, 22.683) 0.529 — —

N (N1 vs. N0) 1.443 (0.472, 4.425) 0.522 — —

N (NX vs. N0) 2.45 (0.58, 10.27) 0.221 — —

T (T2 vs. T1) 1.04 (0.17, 6.23) 0.968 0.72 (0.11, 4.74) 0.736

T (T3 vs. T1) 1.57 (0.3, 8.15) 0.591 0.53 (0.08, 3.29) 0.493

T (T4 vs. T1) 11.73 (2.34, 58.78) 0.003 2.66 (0.36, 19.55) 0.335

T (TX vs. T1) 0 (0, Inf) 0.998 0 (0, Inf) 0.999

AJCC stage (II vs. I) 5.26 (0.74, 37.61) 0.098 3.39 (0.36, 31.58) 0.284

AJCC stage (III vs. I) 9.53 (1.98, 45.96) 0.005 6.45 (1.08, 38.4) 0.041

AJCC stage (IV vs. I) 19.27 (3.7, 100.35) <0.001 6.29 (3.75, 12.92) 0.034

Radiation (yes vs. no) 1.29 (0.4, 4.12) 0.666 — —

BRAF mutation (yes vs. no) 0.618 (0.223, 1.714) 0.355 — —
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testing cohort, and the entire cohort has been presented in
Table 1. 35 genes (P < 0:05) related to OS were screened by
univariate Cox regression in the training cohort (Table S4).
After performing Lasso regression analysis on these 35
genes, 12 genes were obtained (Figures 3(a) and 3(b)).
Finally, 12 genes were analyzed by using multivariate Cox
regression, and ABI3BP, DPT, MRO, and TENM1 were

selected to construct the four-gene risk signature
(Figure 3(c)). The risk score = −0:56124 × ABI3BP + ð−
0:25805 × DPTÞ + ð−0:38946 ×MROÞ + 0:55421 × TENM1.

3.3. Validation of the Four-Gene Risk Signature. The four-
gene risk signature could effectively stratify patients into a
high-risk group and a low-risk group with the median risk
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Figure 5: Construction of a nomogram for prediction of OS. (a) Nomogram was developed based on the risk scores and different clinical
features. (b) Calibration plots were constructed to evaluate the predictive performance of OS. (c–e) The ROC curves of the AGES score,
MACIS score, and the nomogram in the entire cohort. (f, g) The decision curves of AGES score, MACIS score, and the nomogram in
the entire cohort.

14 Disease Markers



score. Thus, we could intuitively conclude that the patients
who had died were basically the patients with higher ranking
(higher risk score) (Figures 4(a)–4(f)). Consistent with this,
significant differences of OS between the high-risk and
low-risk groups in the training cohort (P = 5:13 × 10−3), test-
ing cohort (P = 2:30 × 10−2), and the entire cohort
(P = 2:56 × 10−4) were depicted by constructing KM curves
(Figures 4(g)–4(i)). Moreover, the AUCs of the risk score
corresponding to 1-year, 3-year, and 5-year survival were
1, 0.847, and 0.832 in the training cohort, 1, 0.836, and
0.947 in the testing cohort, and 0.855, 0.829, and 0.841 in
the entire cohort, respectively (Figures 4(j)–4(l)). These
results indicated that the four-gene risk signature exhibited
useful value in accurately predicting the prognosis of PTC
patients.

3.4. Building and Validating a Predictive Nomogram. There-
after, in the entire cohort, univariate and multivariate Cox
regression analyses were performed on the risk score and
the clinical characteristics (Table 2). The risk score, age,
AJCC stage, tumor size, extrathyroidal extension, and his-
tory of neoadjuvant treatment were selected to establish a
nomogram (Figure 5(a)). The C-index, AIC, and BIC of this
nomogram were 0.970, 85.743, and 86.451, respectively
(Table 3). Moreover, a calibration curve revealed that the
nomogram was excellent at predicting OS (Figure 5(b)).
Moreover, the AUCs of the nomogram corresponding to
1-year, 3-year, and 5-year OS were 0.985, 0.962, and 0.973,
respectively (Figure 5(c)). They were found to be signifi-
cantly better than the traditional (Age, Grade, Extrathyroidal
extension, Size) AGES score and (Metastases, Age, Com-
pleteness of resection, Invasion, Size) MACIS score
(Figures 5(d) and 5(e)). Moreover, the decision curves of
3-year OS and 5-year OS of these three models indicated
that in terms of predicting OS of PTC patients, the net ben-
efit [17] of the nomogram model was substantially higher
than that of the traditional AGES and MACIS score
(Figures 5(f) and 5(g)). Taken together, these results
revealed that this nomogram performed well in predicting
the prognosis of PTC patients.

3.5. Immune Analysis. The nomogram could effectively
stratify patients into a good-prognosis group and a poor-
prognosis group based on the median total point. Surpris-

ingly, immune analysis demonstrated that there was no sig-
nificant difference in the abundance of 22 types of immune
cells between the good-prognosis and poor-prognosis
groups (Figures 6(a) and 6(b)). Consistent with this, the
stroma scores, immune scores, and ESTIMATE scores were
observed to be not significantly higher in the poor-
prognosis group compared with the good-prognosis group
(Figures 6(c)–6(e)), thus suggesting that the proportion of
the stromal cells to immune cells in these two groups may
be similar, but there was no difference in the tumor purity.
These results implied that immune infiltration and immune
microenvironment had minimal effect on the OS of PTC
patients.

3.6. Gene Set Enrichment Analysis (GSEA) and Gene Set
Variation Analysis (GSVA). Since the immune infiltration
analysis did not yield significant results, GSEA and GSVA
were performed to further explore the potential differences
in the molecular mechanisms between the good-prognosis
and poor-prognosis groups. As shown in Figures 7(a)–7(h),
the “ribosome,” “intestinal immune network for IgA pro-
duction,” “systemic lupus erythematosus,” “asthma,” “nod
like receptor signaling,” “glycosaminoglycan degradation,”
“viral myocarditis,” and “cell adhesion molecules cams”
pathways were found to be significantly enriched in the
poor-prognosis group. Moreover, GSVA demonstrated that
“peroxisome,” “myc targets V2,” “uv response up,” and
“cholesterol homeostasis” were the hallmark pathways mod-
ulated in the poor-prognosis group (t value > 2)
(Figure 7(i)). This implied that these pathways or the genes
regulating them could play an important role in promoting
the progression of PTC.

3.7. Construction of a ceRNA Regulatory Network. 95
DEmiRNAs (Table S5) and 839 DElncRNAs (Table S6)
between the normal and PTC samples in the TCGA-
THCA dataset were screened (Figures 8(a) and 8(b)). A
total of 54 DElncRNAs and 10 DEmiRNAs were paired
into 151 DElncRNA-DEmiRNA interactions, whereas 10
DEmiRNAs and 4 DEmRNAs were matched to form 15
pairs of DEmiRNA-DEmRNA interactions (Table S7).
Consequently, the lncRNA-miRNA-mRNA ceRNA
regulatory network, which contained 68 distinct nodes and
166 edges was constructed (Figure 8(c)). Among these,
DElncRNAs and DEmiRNAs, KM curves showed that one
lncRNA (MIR181A2HG) and one miRNA (hsa−mir−375)
could serve as potential protective biomarkers in PTC
patients (Figures 8(d) and 8(e)).

3.8. Validation of the Expression of the Four Genes in PTC
Tissues. Among the four genes in four-gene risk signature,
the levels of ABI3BP, DPT, and MRO were downregulated,
whereas that of TENM1 was upregulated in PTC samples
(Figures 9(a)–9(d)). Thereafter, we used quantitative RT-
PCR to verify the expression of these four genes in 10 pairs
of PTC tissues (Figures 9(e)–9(h)). Furthermore, immuno-
histochemical staining data of TENM1 in the normal and
tumor tissues were obtained by searching the HPA database,

Table 3: The C-index, AIC, and BIC of the different models.

Models C-index AIC BIC

Nomogram 0.970 85.743 86.451

MACIS score 0.928 112.410 113.118

AGES score 0.923 116.589 117.297

Risk score 0.847 119.816 120.524

AJCC stage 0.793 137.890 138.598

Age 0.832 123.993 124.701

Tumor size 0.65 152.771 153.479

Extrathyroidal extension 0.712 147.590 148.298

History of neoadjuvant treatment 0.548 149.542 150.250
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and higher protein expression of TENM1 was observed in
analyzed tumor tissues (Figures 9(i)–9(k)).

4. Discussion

It has been established that even when the patients receive
the standardized treatment, about 5%-23% of PTC patients
display a poor prognosis [18]. Therefore, prediction of the
prognosis of PTC patients can not only promote the active
implementation of individualized treatment but also aid to
avoid the various negative effects associated with excessive
medical treatment. A number of prognostic markers
obtained from gene expression profiles can accurately pre-
dict the prognosis of a single patient at the molecular level
and can be complementary to the traditional clinical staging
prediction system such as TNM staging [19].

In the present study, a novel four-gene risk signature
comprising ABI3BP, DPT, MRO, and TENM1 to predict
the OS of PTC was identified. The efficacy of this signature
was validated in the study cohort. Among these four genes,
the levels of ABI3BP, DPT, and MRO were downregulated
whereas that of TENM1 was upregulated in PTC. ABI3BP
is an ArgBP/E3B1/Avi2/NESH family protein, which can
participate in the negative regulation of the cell movement
and metastasis through its influence on membrane folding
and layer formation [20, 21]. It has been proven to be an
src-homologous 3(SH3) adapter molecule and can exhibit a
tumor-suppressive effect in thyroid cancer [22, 23]. ABI3BP,
which is reexpressed in the thyroid cells, has been reported
to trigger cellular senescence through affecting the p21 path-
way, resulting in a reduction in transformation activity, cell
growth, viability, migration, invasion, and tumor growth in

nude mice [22]. Moreover, the loss of ABI3BP expression
may be functionally involved in the pathogenesis of several
types of cancer such as gallbladder cancer [24] and esopha-
geal cancer [25]. DPT is a tyrosine-rich noncollagenous
extracellular matrix component, and the depletion of DPT
has been associated with hyperproliferation of scars, skin
fibrosis, systemic sclerosis as well as some cancers [26].
DPT has been reported to regulate cell proliferation and
invasiveness of a variety of tumors like endometrial cancer
[27], prostate cancer [28], hepatocellular carcinoma [29],
and oral cancer [30]. Moreover, low DPT expression in
PTC has been related to higher T classification. DPT can reg-
ulate CDK4, CDK6, and p21 through modulating MEK-
ERK-MYC signaling to inhibit PTC proliferation [31]. The
expression of TENM1 as a cell signal sensor in neurons has
been positively correlated with the growth and invasion of
PTC. TENM1 has been identified as the direct functional tar-
get of miR-486 in PTC cells. The restoration of miR-486 can
significantly inhibit the growth of PTC in vivo [32, 33]. Sim-
ilar to the previous two genes, TENM1 can also play an
important role in different types of cancer especially in the
brain tumors such as prolactin pituitary tumor [34] and glio-
blastoma [35]. MRO belongs to a novel gene family, named
“maestro heat-like repeat family (MROH)” [36]. Expression
of MRO in lean-type polycystic ovarian syndrome has
been found to be increased [37]. Nevertheless, MRO has
been poorly studied in the tumors, and the role of MRO
in thyroid cancer has not been previously reported. We
speculate that MRO, as a sex-determining gene affecting
the prognosis of PTC, might be related to the sex differ-
ences between PTC patients, but this observation needs
further analysis.
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Figure 6: Immune analysis. (a, b) Immune infiltration of 22 different types of immune cells. (c–e) The stromal scores, immune scores, and
estimate scores between the good-prognosis group and poor-prognosis group.
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The 8th edition of the AJCC/TNM staging system
(TNM-8th) was released in 2017. A number of studies have
proved that it was more appropriate for the prediction of the
survival and recurrence than TNM-7th [7, 38]. However,
studies also have shown that approximately 30%-40% [39,
40] of patients were downstaged upon reclassification. In
addition, TNM-8th oversimplifies the survival deterioration
that primarily occurs with increasing age at the time of diag-
nosis and underestimates the prognosis for the younger
patients, particularly those aged 45–55 years [9]. What is
more, the molecular profile, which is important for the pre-
cision medicine, has not been contained in TNM-8th. Con-
sequently, as knowledge of cancer biology evolves,
innovative diagnostic tools and treatment modalities need
to be developed and improved. Novel nomograms for pre-
dicting the survival of thyroid cancer patients have been pre-
viously formulated in several studies. For instance, Pathak
and colleagues developed nomograms to predict the likeli-
hood of the relapse and death from thyroid cancer in an
individual patient (C-indices were 0.92 and 0.76, respec-

tively) based on patients’ characteristics but without identifi-
cation of any specific gene signature [41]. A nomogram that
first included a gene signature to predict 1-year, 3-year, and 5-
year DFS of DTC patients was established (C‐index = 0:801)
by Pan Ruchong [42]. However, five-gene signature appears
to cause significant expenditure in the healthcare compared to
the four-gene signature. In addition, to the best of our knowl-
edge, our study is the first study to confirm that the developed
nomogram performed better than the traditional AGES score
andMACIS score for prediction of OS. Besides, our study dem-
onstrated that BRAF mutations had minimal effect on OS of
PTC. Consistent with this, unlike previous studies suggesting
that BRAF mutations can imply poor prognosis [43], some
recent studies have also indicated that BRAF mutations cannot
be used as an independent prognostic and predictive factor in
PTC [44]. Moreover, Wang et al. found that compared to male
PTC patients, BRAF mutations cannot be considered as robust
independent risk factor for female patients [45]. In general, the
nomogram constructed in this study exhibited better predictive
efficacy for the OS of PTC patients and clinical applicability.
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Figure 7: (a–h) Gene Set Enrichment Analysis (GSEA) and (i) Gene Set Variation Analysis (GSVA) in the entire cohort.
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To understand the potential mechanisms affecting the
prognosis of patients with PTC, immune analysis, GSEA,
and GSVA were performed between good-prognosis and
poor-prognosis groups. Surprisingly, in contrast to some
other prior studies [46], immune infiltration and immune
microenvironment displayed little effect on the OS of PTC
patients. These results can be explained, in part, by the fact
that the four key genes we identified in this study are not
directly involved in the process of tumor immunity. There-
fore, no significant biological difference in immune infiltra-

tion was observed when PTC samples were divided into
good and poor prognosis groups. The “cell adhesion mole-
cules cams” [47], “Myc” pathways [48], and glycosaminogly-
cans (GAGs) [49], which can play an essential role in the
tumor pathogenesis and distant metastasis were found to be
enriched in poor-prognosis groups. The effects of intestinal
immunity caused by intestinal flora on the various cancers
are currently being elucidated, including gastrointestinal
tumors, liver cancer [50], and breast cancer [51]. In addi-
tion, intestinal immunity can also affect the thyroid
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Figure 8: Construction of a ceRNA regulatory network. (a, b) DElncRNAs and DEmiRNAs between the normal tissues and PTC tissues in
the TCGA-THCA dataset. (c) CeRNA network in TCGA-THCA dataset. Blue, yellow, and red represent DElncRNAs, DEmiRNAs, and
DEmRNAs, respectively. (d, e) The KM curves of MIR181A2HG and hsa-mir-375.
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function [52]. However, the effect of intestinal immunity on
PTC remains to be further studied. Moreover, a number of
studies have reported that systemic lupus erythematosus
(SLE) and asthma were associated with an increased risk

of overall cancers including non-Hodgkin’s lymphoma,
Hodgkin’s lymphoma, leukemia, multiple myeloma, and
thyroid cancer. Therefore, the increased expression of genes
associated with lupus and asthma in the poor-prognosis group
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Figure 9: Expression of the four genes in the normal and PTC samples. (a–d) The mRNA expression of ABI3BP, DPT,MRO, and TENM1 in
the normal and PTC samples. The data was obtained from the GEPIA database. (e–h) The expression of selected four genes in the normal
and PTC samples was analyzed using quantitative RT-PCR (n = 10). (i–k) Representative IHC images of TENM1 in the normal thyroid
tissues and in PTC tissues. The data was retrieved from HPA database.
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is understandable. What is more, the key molecules were pre-
sented in the ceRNA network including MIR181A2HG and
hsa-mir-375, which need to be studied in detail in PTC.

Although this study revealed numerous important find-
ings, but there are several limitations associated with it. First,
selection bias and confounding bias were inevitable due to
the retrospective design of this study. Second, the clinical char-
acteristics were mainly derived from TCGA database, and
thus, caution should be exercised when expanding our results
to patients of other ethnicities. Besides, in future studies, the
nomogram should be validated in different external datasets.
Finally, additional in vitro and in vivo functional experiments
need to be performed to further elucidate the detailed molec-
ular mechanisms affecting the prognosis of PTC.

5. Conclusion

To conclude, our study established a four-gene risk signature
and developed a novel prognostic nomogram in combination
with prognosis-related clinical characteristics to predict the OS
of PTC. The four DEGs were found closely related to the prog-
nosis of PTC and thus can act as potential therapeutic targets.
These results might be beneficial for individualized treatment
and medical decision-making during the management of PTC
patients.
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