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Diamond-Blackfan anemia (DBA) is a rare congenital erythroid aplasia with a highly

heterogeneous genetic background; it usually occurs in infancy. Approximately 30–40%

of patients have other associated congenital anomalies; in particular, facial anomalies,

such as cleft palate, are part of about 10% of the DBA clinical presentations.

Pierre Robin sequence (PRS) is a heterogeneous condition, defined by the presence of

the triad of glossoptosis, micrognathia and cleft palate; it occurs in 1/8500 to 1/14,000

births.

Klippel Feil (KF) syndrome is a complex of both osseous and visceral anomalies,

characterized mainly by congenital development defects of the cervical spine.

We describe the case of a 22-years-old woman affected by DBA, carrying a de novo

deletion about 500 Kb-long at 12q13.2-q13.3 that included RPS26 and, at least,

others 25 flanking genes. The patient showed craniofacial anomalies due to PRS and

suffered for KF deformities (type II). Computed Tomography study of cranio-cervical

junction (CCJ) drew out severe bone malformations and congenital anomalies as

atlanto-occipital assimilation (AOA), arcuate foramen and occipito-condylar hyperplasia.

Foramen magnum was severely reduced. Atlanto-axial instability (AAI) was linked to

atlanto-occipital assimilation, congenital vertebral fusion and occipito-condyle bone

hyperplasia. Basilar invagination and platybasia were ruled out on CT and Magnetic

Resonance Imaging (MRI) studies. Furthermore, the temporal Bone CT study showed

anomalies of external auditory canals, absent mastoid pneumatization, chronic middle

ear otitis and abnormal course of the facial nerve bones canal.

The described phenotype might be related to the peculiar deletion affecting the patient,

highlighting that genes involved in the in the breakdown of extracellular matrix (MMP19),

in cell cycle regulation (CDK2), vesicular trafficking (RAB5B), in ribonucleoprotein

complexes formation (ZC3H10) and muscles function (MYL6 and MYL6B) could

be potentially related to bone-developmental disorders. Moreover, it points out that
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multiple associated ribosomal deficits might play a role in DBA-related phenotypes,

considering the simultaneous deletion of three of them in the index case (RPS26, PA2G4

and RPL41), and it confirms the association among SLC39A5 functional disruption and

severe myopia.

This report highlights the need for a careful genetic evaluation and a detailed

phenotype-genotype correlation in each complex malformative syndrome.

Keywords: Diamond Blackfan anemia, Pierre Robin sequence, Klippel feil syndrome, musculoskeletal system

development, craniofacial syndromes, craniocervical junction, craniometry

BACKGROUND

Craniofacial disorders are highly variable developmental
anomalies and may occur on their own or with other syndromes
(Cielo and Marcus, 2015). Various syndromes, characterized by
craniofacial disorders, are also associated with anomalies of the
cranio-cervical region (Menezes and Vogel, 2008).

Diamond-Blackfan anemia (DBA) is a congenital erythroid
aplasia, that is usually present in infancy as severe hypoplastic
macrocytic anemia (Clinton and Gazda, 1993) and it has
to be differentiated by diseases with similar onset such as
Pearson syndrome (Tumino et al., 2011). It affects about 5
to 7 cases/million live births per year (Lipton et al., 2006).
Most cases are sporadic, while approximately 10 to 25% are
familial (Campagnoli et al., 2004; Quarello et al., 2012). It is
usually associated with morphological abnormalities (Clinton
and Gazda, 1993; Campagnoli et al., 2004).

Approximately 30–40% of patients with DBA suffer for
congenital anomalies that may involve head, upper limb,
heart and genitourinary systems (Vlachos et al., 2008; Boria
et al., 2010). The craniofacial anomalies are the most common
and characterized, mostly by hypertelorism and broad flat
nasal bridge (Vlachos et al., 2008). The hand deformities
include triphalangeal thumb and thenar muscle hypoplasia.
There may also be weak radial pulse (Ball et al., 1996).
Endocrine dysfunctions are common in DBA and, in order of
frequency, these include: adrenal insufficiency, hypogonadism,
hypothyroidism, growth hormone deficiency/resistance, diabetes
mellitus and diabetes insipidus (Lahoti et al., 2016). Many
affected children are below average height for their age, and may
have delayed puberty (Ball et al., 1996).

Around 60% of patients with DBA have associated germline
mutations (50%) or deletions (10%) in 15 ribosomal protein
genes and, in rare cases, GATA1 (Choesmel et al., 2007;
Boria et al., 2010; Mirabello et al., 2017). There are no clear
genotype-phenotype correlations, with exception of patients
with mutations in RPL5 and RPL11, which display a high
frequency of developmental anomalies, especially cleft palates
and triphalangeal thumbs (Gazda et al., 2012). Themost common
affected gene is RPS19 (Draptchinskaia et al., 1999; Campagnoli

Abbreviations: AADI, Anterior atlanto-dental interval; AAI, Atlanto-axial

instability; AOA, Atlanto-occipital assimilation; CCJ, Cranio-cervical junction;

Cgh-Array, Comparative genomic hybridization Array; CT, Computed

tomography; DBA, Diamond-Blackfan anemia; KF, Klippel Feil; MRI, Magnetic

resonance imaging; PRS, Pierre Robin sequence.

et al., 2004). Heterozygous mutations or deletions of RPS26 are
relatively uncommon (Doherty et al., 2010; Quarello et al., 2012).
It has been already described a patient with KFS associated with
DBA due to a point mutation in RPS26 identified only by direct
sequencing, missing analysis of the surrounding regions (Cmejla
et al., 2011).

Pierre Robin sequence (PRS) is a rare etiologically
nonspecific complex, defined by the clinical triad of glossoptosis,
retro/micrognathia, and cleft or agenesis of the palate (Printzlau
and Andersen, 2004; Butow et al., 2009).

Two forms of PRS have been reported in scientific literature:
the syndromic PRS (S-PRS) and the non-syndromic PRS
(N-PRS). The first one shows a prevalence of about 35%,
compared with the 65% of the N-PRS (Printzlau and Andersen,
2004; Butow et al., 2009). The S-PRS, as in this case,
can be associated with several different syndromes including
Stickler Syndrome, Velo-cardio-Facial Syndrome, Fetal Alcohol
Syndrome, mandibular Syndrome and trisomy 18.

Few studies have described the relation between KFS and PRS
(Judge et al., 1999; Molnar et al., 2007; Al-Ani et al., 2009; Butow
et al., 2009), and we have been able to find only 4 previous cases
in literature until now.

Klippel-Feil (KF) syndrome is also a rare disease, that occurs
from 1 in 40,000 to 42,000 newborns worldwide, with a slightly
higher occurrence in females (Thomsen et al., 1997; Tracy et al.,
2004). Symptoms of KFS are cervical vertebra fusion syndrome,
KF deformity, and KF sequence disorder, characterized by
abnormal fusion of two or more cervical vertebrae, which is
present from birth with other osseous anomalies (Tracy et al.,
2004; Samartzis et al., 2006; Conforti et al., 2012). The KFS has
a heterogeneous clinical presentation and aetiology. Although
the majority of cases are un-classified, four different genes have
been described as causing this disease: two with an autosomal
dominant transmission (GDF6 – KFS1 and GDF3 – KFS3)
(Tassabehji et al., 2008; Ye et al., 2010) and two with an autosomal
recessive one (MEOX1 – KFS2 andMYO18B – KFS4) (Mohamed
et al., 2013; Alazami et al., 2015).

CASE PRESENTATION

Subject and Clinical Features
We describe the case of a 22 year-old woman (II2), known to be
affected by PRS. She is the second-born of a mother who had
had three term pregnancies (Figure S1). The two brothers are
in good health, without signs of congenital abnormalities. The
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FIGURE 1 | (A) CT minimum intensity projection (MIP) Sagittal (a: right parasagittal plane, b: midsagittal plane, c: left parasagittal plane) and Coronal (d: anterior

atlanto-occipital complete fusion, e: lateral masses atlanto-occipital bilateral complete fusion, f: posterior atlanto-occipital partial fusion) CCJ reconstruction. Complete

C 1 anterior arch and lateral masses fusion and partial fusion of the posterior arch to the occipital foramen (double-headed arrows). Foramen arcuate (white harrows).

Note the “comma” appearance of complete anterior atlanto-occipital fusion (curved harrow) and the smaller odontoid process (arrowhead). (B) CT Coronal (a) and

transverse minimum intensity projection (MIP) (b–e) and transverse shaded surface display (SSD) (f) reconstructions of narrowed foramen magnum due to right

occipito-condylar hyperplasia (withe arrows). (C) MR transverse T2 (a), T1 (b), FLAIR (c) and coronal FLAIR (d) weighed sequences, show right ventrolateral

compression of the lower medulla and upper cervical spinal cord (white arrow) at the level of narrowed foramen magnum due to CCJ complex malformation (black

star).

pregnancy was 38 weeks. After a natural childbirth, she weighed
2.1 kg and showed neonatal respiratory distress syndrome.
She displayed a typical PRS (micrognathia, glossoptosis, cleft
palate) and triphalangeal thumbs. She was also diagnosed
with a congenital perimebranous ventricular defect, without
haemodynamic effects.

On follow-up examinations, a neurodevelopmental delay was
observed: she gained head control at 4–5 months, the ability to
sit and to stand unassisted, respectively, at 11 months and at 13
months, and learned to walk, precariously, at 20 months. By this
time, she gained a poor verbal language.

In her first months of life, she was hospitalized for the
management of her congenital abnormalities; therefore, she
was diagnosed with an inherited hyporigenerative anemia that
required regular blood transfusion therapy throughout her life.
She is currently transfused with four units of packed red blood
cells per month.

Genetic characterization of the congenital anemia by
multiplex ligation-dependent probe amplification (MLPA) assay
led to the discovery of a de novo chromosomal deletion involving
RPS26 (data not shown), allowing diagnosis of DBA (Doherty
et al., 2010; Quarello et al., 2012).

The clinical examination on admission to our institute,
when she was 21 years old, showed a peculiar face, skeletal
abnormalities in a complex malformation syndrome and

a mental deficiency. Dysmorphic facial features included,
beside PRS, prominent nose bridge, low-set ears, bilateral
external auditory meatus abnormalities, ocular asymmetry
with buphthalmos, intermittent exotropia with left eye
dominance, severe myopia, tooth decay and cavities. In
addition, skeletal malformations consisted mainly of short
stature, right-convex thoracic scoliosis with dorsal hump,
hip dysmetria with heterometry of lower limbs, shortness
and clinodactyly of fingers with hypoplasia of the distal
phalanges of 1th fingers, cutis laxa with characteristic
wrinkled palms and soles and multiple skin nevi. She
also had several endocrinological alterations as primary
amenorrhea, mild hyper-prolactinaemia and moderate familiar
hyper-cholesterolaemia.

She showed trigeminal nerve palsy, bilateral mixed
hearing loss, rhinolalia, dysarthria and acquired dysphagia
for solid foods. She suffers by severe neck pain. Functional
limitations in shoulder abduction were detected with lower limbs
antigravity muscle weakness and decreased functional ability.
Reflexes were normal, except for a bilateral indifferent plantar
response.

She was properly informed about all the procedures and
about the intent of anonymously publishing the data obtained;
to confirm her acceptance, she signed informed consent forms
agreeing to the procedures and to publication.
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FIGURE 2 | (A) Transverse (a–c) and Coronal (d) minimum intensity projection (MIP) CT temporal bone study. Right external auditory canal malformation (a) (white

arrow); right chronic otitis media (b) (white star); ankyloses of left ossicular chain (c) (white circle); right widening of facial canal (third segment) (dotted arrow) and partial

calcification of left tympanic membrane (arrowhead) (d). (B) MR Coronal T2 (a–c, e), Sagittal T1 (d), and Sagittal T2 (f) weighed sequences whole spine study. The

study shows, besides rotoscoliosis (a, b), cervical (C 2–C 3, C 4–C 5) (d, f) and lumbar (L 4–L 5) vertebral fusion (white arrows), and L 5 bilateral sacralisation (e) (white

stars) (KFS type II malformation).

Radiological Features
The complex physical malformations required a neuro-
radiological evaluation with Computed tomography (CT) study
of the temporal bone, cranio-cervical junction (CCJ) and cervical
spine.

Brain and spine Magnetic Resonance Imaging (MRI) studies
were performed to evaluate neuro-radiological anomalies.

CCJ study focused on bone malformations, showing atlanto-
occipital assimilation (AOA) caused by a complete fusion of the
C1 anterior arch and lateral masses and by partial fusion of
the posterior arch to the foramen magnum. Arcuate foramen
was also observed on the left side (Figure 1A). The atlanto-
dental interval (AADI: distance, on the sagittal plane, between

the anterior assimilated C1 arch and the odontoid process) (Zong
et al., 2017) appeared increased (10mm) suggesting an atlanto-
axial instability (AAI) (Figure 1A), defined for atlanto-dental
interval>3mm (Gamble and Rinsky, 1985; Ferreira and Botelho,
2015).

The odontoid process was smaller (Figure 1A) than normal
average (Zong et al., 2017). Sites of embryogenesis for the
atlas’ anterior arch and the atlantoaxial ligaments system are
the same, so that the assimilation of the anterior arch of
the atlas is often associated with AAI (Ferreira and Botelho,
2015). Very few authors already reported, as in this case, the
association between PRS and AAI (Gamble and Rinsky, 1985;
Molnar et al., 2007) due to AOA. The patient is affected
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FIGURE 3 | In the gene view (top), the probe distribution and signal intensity are shown for the index patient (green) and her parents (red and blue), with a green bar

indicating the deletion detected with 8 probes. In the UCSC graphic view (middle), a similarly colored bar corresponds to the minimal aberration length, while the

flanking grey bars indicate the 5’ and 3’ breakpoint boundaries. The results of genomic quantification by real-time PCR are schematically represented (bottom). The

middle base-pair position of each amplicon along chromosome is surmounted by a square corresponding to the number of detected copies.

as well by a right occipito-condylar hyperplasia, producing
narrowing and malformation of both the foramen magnum and
the upper cervical spine canal (Figure 1B). This hyperplasia
causes the compression and displacement of the right side of
the bulbo-medullary junction (Figure 1C). Basilar invagination
(radiologically defined when the tip of the odontoid is located
above the Chamberlin line) (Molnar et al., 2007) and platybasia
(flattening of the skull base) were ruled out on both CT and MRI
(Kisker et al., 1997; Zong et al., 2017).

Temporal bone CT study showed right hypoplasia and
anomalous course of the external auditory channels, absence of
pneumatization at the right mastoid, a chronic right ear otitis
media, widening of the third part of the ipsilateral facial nerve
bone canal, partial calcification of the left tympanic membrane
and ossicular chain ankyloses (Figure 2A).

Whole spinal cord MRI study added further information,
showing not only rotoscoliosis, but also cervical (C2 – C3,
C4 – C5) and lumbar (L4 – L5) vertebral fusion and bilateral
L5 sacralisation (Figure 2B). The spine malformations led to
a diagnosis of KFS type II (Samartzis et al., 2006), without
malformations neither of the meninges nor of the nervous
system.

Genetic Characterization
Dysmorphic features and malformations observed in the patient
suggested to further investigate the initially identified genomic
deletion affecting RPS26. We then carried out array-CGH
analysis in the proband and her parents, confirming the
presence of a wider de novo heterozygous microdeletion on
chromosome 12q13.2-q13.3 (Figure 3). By Real-Time PCR, we
further refined 5’ and 3’ breakpoint boundaries of the deletion,

resulting in a minimal critical region of about 500Kb in
size (Figure 3 and Table S1). The microdeletion encompassed
at least 26 coding genes (Table 1) and expression profiling
by Taqman assay confirmed about 50% reduction of the
expression for many of these genes (Table 1; data not shown).
Some of them, in particular SARNP, DNAJC14, ORMDL2,
DNAJC14, ANKRD52,COQ10A andCS, although heterozygously
deleted, were not tested for expression (Table 1). At least three
genes (MMP19, RPS26 and SLC39A5) already cause autosomal
dominant diseases, while further 12 genes may be sensitive
to haploinsufficiency, as they showed a pLI > 0.75 (Table 1).
In addition, no similar deletions were annotated in Decipher
(decipher.sanger.ac.uk) or have been previously described in
literature.

Discussion
The index patient shows features at the boundaries of the three
reported syndromes.

The hypoplastic mandible, the glossoptosis and the U-shaped
cleft palate are strictly related to PRS and contribute to airway
obstruction (Butow et al., 2009; Cielo and Marcus, 2015) as
found in the described patient. In PRS, there is a 10.5%
incidence rate of ear malformations (Breugem et al., 2016),
which consist of multiple architectural anomalies involving
the entire ear, including abnormal auricles, anomalies of the
ossicular chain, abnormal stapes footplates and middle ear
infection. Middle ear disturbances, as in the index case,
are common and are mostly related to the cleft palate and
associated to the Eustachian tube dysfunction (Sando et al.,
1988; Yamaguchi et al., 1990; Robinson et al., 1993; Gruen
et al., 2005). Chronic mucotympanum, chronic middle ear otitis,
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TABLE 1 | List of genes deleted in the described patient, with results of Taqman assay and already associated inherited diseases.

RefSeq ID Gene name Definition pLI Taqman Phenotype MIM Inheritance

NM_033082 SARNP SAP domain containing

ribonucleoprotein

0,99 NT 610049

NM_032364 DNAJC14 DnaJ (Hsp40) homolog, subfamily C,

member 14

1,00 NT 606092

NM_014182 ORMDL2 ORM1-like 2 (S. cerevisiae) 0,15 NT 610074

NM_002429 MMP19 Matrix metallopeptidase 19 0,00 ↓ Cavitary optic disc

anomalies

611543 AD

NM_032345 PYM1 PYM homolog 1, exon junction

complex associated factor

0.86 ↓

NM_201554 DGKA Diacylglycerol kinase, alpha 80kDa 1,00 ↓ 125855

NM_006928 PMEL Premelanosome protein 0,00 ↓ 155550

NM_001798 CDK2 Cyclin-dependent kinase 2 0,96 ↓ 116953

NM_002868 RAB5B RAB5B, member RAS oncogene

family

0,22 ↓ 179514

NM_000456 SUOX Sulfite oxidase, nuclear gene

encoding mitochondrial protein

0,00 ↓ Sulfite oxidase

deficiency

272300 AR

NM_022465 IKZF4 IKAROS family zinc finger 4 (Eos) 0,95 ↓ 606239

NM_001029 RPS26 Ribosomal protein S26 0,75 ↓ Diamond-Blackfan

anemia 10

613309 AD

NM_001982 ERBB3 V-erb-b2 erythroblastic leukemia viral

oncogene homolog 3 (avian)

0,00 ↓ Lethal congenital

contractural

syndrome 2

607598 AR

NM_006191 PA2G4 Proliferation-associated 2G4, 38kDa 1,00 ↓ 602145

NM_021104 RPL41 Ribosomal protein L41 0,04 ↓ 613315

NM_032786 ZC3H10 Zinc finger CCCH-type containing 10 0,79 ↓

NM_015292 ESYT1 Extended synaptotagmin-like protein

1

0,00 ↓ 616670

NM_002475 MYL6B Myosin, light chain 6B, alkali, smooth

muscle and non-muscle

0,00 ↓ 609930

NM_021019 MYL6 Myosin, light chain 6, alkali, smooth

muscle and non-muscle

0,26 ↓ 609931

NM_003075 SMARCC2 SWI/SNF related, matrix associated,

actin dependent regulator of

chromatin, subfamily c, member 2

1,00 ↓ 601734

NM_005785 RNF41 Ring finger protein 41 0,86 ↓

NM_024068 NABP2 Nucleic acid binding protein 2 0,96 ↓ 612104

NM_173596 SLC39A5 Solute carrier family 39 (metal ion

transporter), member 5

0,00 ↓ Myopia 24,

autosomal

dominant

615946 AD

NM_173595 ANKRD52 Ankyrin repeat domain 52 1,00 NT

NM_144576 COQ10A Coenzyme Q10 homolog A

(S. cerevisiae), nuclear gene encoding

mitochondrial protein

0,12 NT

NM_004077 CS Citrate synthase, nuclear gene

encoding mitochondrial protein

1,00 NT 118950

Genes are listed as by their locus on chromosome 12; genes already linked to diseases are reported with their associated diseases and inheritance. Taqman assays were used to test

the expression levels of the core of this deletion. For each gene, pLI annotated in Exac Browser (http://exac.broadinstitute.org) is reported. A gene with pLI ≥ 0.9 is considered as

extremely intolerant to Loss of Function (Lofrese et al., 2015). NT, Not tested; AD, Autosomal dominant; AR, Autosomal Recessive.

tympanic membrane retraction pockets and choleastotomas are
the most frequent issues related to the middle ear (Gruen et al.,
2005). Other anomalies include abnormal course of the facial
nerve, as in the described case (Gruen et al., 2005; Rotondo
et al., 2010), abnormal insertion of the tensor tympani tendon,
ankylosis of the ossicules, and anomalous stapedial footplates,

most of which can be related to anomalies of the branchial
arches.

Typical elements of KFS are, instead, vertebral fusions, short
and webbed neck, decreased range of motion in the cervical
spine, deformed chest wall, high placed scapulae, abnormal
curvature of the spine (scoliosis), raised scapula (Sprengel’s
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scapula), rib defects, low hair line. The index case shows KF
deformity with multiple fusions of non-contiguous cervical and
lumbar vertebrae corresponded to type II of KFS, described by
Samartzis et al. (Samartzis et al., 2006).

Radiological evaluation pointed out diffuse and severe CCJ
bone malformations.

PRS and KFS could both display failure of segmentation
between the fourth occipital sclerotome and the first cervical
sclerotome resulting in AOA (Menezes and Vogel, 2008; Smoker
and Khanna, 2008). The displacement of the assimilated atlas
and the right occipito-condylar hyperplasia resulted, instead,
in a narrowed foramen magnum, which was responsible for
both severe compression of the underlying bulbo-medullary
junction and AAI (Gamble and Rinsky, 1985; Yamaguchi et al.,
1990; Molnar et al., 2007; Rotondo et al., 2010; Ferreira and
Botelho, 2015; Zong et al., 2017). The described Occipito-
condylar hyperplasia is an extremely rare congenital entity and
only 3 other cases were previously described (Smoker and
Khanna, 2008; Rojas et al., 2009; Lofrese et al., 2015). This bone
malformation may be due to the excessive growth of the proatlas
during the embryogenesis (Smoker and Khanna, 2008; Rojas
et al., 2009; Lofrese et al., 2015). Upon birth, the displaced AOA
and the overall shift in the head’s balance could cause progressive
growing of osteophytes, gradually constrain the bulb and the
spinal cord. Therefore, neurological decline may occur due to the
progressive degenerative ossification (Rojas et al., 2009; Lofrese
et al., 2015; Shih et al., 2015). The ossification on the ligamentous
interface and ligamentous holding forces may also increase axial
instability (Gamble and Rinsky, 1985; Yamaguchi et al., 1990;
Molnar et al., 2007; Rotondo et al., 2010; Ferreira and Botelho,
2015; Zong et al., 2017).

The patient’s CCJ imbalance (due to skull-cervical spine
malformation), coupled with the lack of stable articular
joints, exposes her to a high risk of sudden neurological
manifestations. It has been shown that common pathways
exist between the neural cresta and the paraxial mesoderm
embryogenesis during CCJ development (Menezes and Vogel,
2008).

Among genes deleted in the index case, three of them
are involved in ribosomal biogenesis (RPS26, PA2G4, RPL41).
Ribosomes catalyze for protein synthesis and their function
impairment have been extensively involved in DBA pathogenesis.
The deletion of this gene cluster could aggravate hematological
features linked to DBA. Other genes in the deleted region are
related to different pathways.

MMP19 is a gene related to autosomal dominant inherited
congenital cavitary optic disc anomalies (Moore et al., 2000),
encoding for a zinc-binding endopeptidases that degrades several
components of the extracellular matrix. Zinc is an essential
cofactor for hundreds of enzymes, thus being fundamental for
hundreds of functions.

The identified deletion also included SLC39A5 that
encodes for a protein showing structural characteristics of
zinc transporters and it has been linked with an autosomal
dominant severe form of myopia (Guo et al., 2014), as in the
described patient.

Other genes involved in the deletion where expected to be
extremely intolerant to Loss of Function (LoF) because of their
pLI.

SAP domain containing ribonucleoprotein (SARNP) has a
putative role in cell cycle progression acting as a single-stranded
DNA binding protein (Fukuda et al., 2002).

DNAJC14 (DnaJ Heat Shock Protein Family (Hsp40) Member
C14) regulates target proteins’ export from the endoplasmic
reticulum to the cell surface and it seems to be involved in
protection from flavivirus infections (Yi et al., 2011). The exon
junction complex (EJC) serves as a positional landmark for the
intron exon structure of genes; the index patient has a deletion
of PYM1, a key member of this complex, actin as a disassembly
factor; it also associates with the 40S ribosomal subunit (Gehring
et al., 2009). DGKA, instead, encodes for a Diacylglycerol
kinase, ultimately removing it; it plays a role in intracellular
signaling and phospholipid synthesis. Cell cycle control has been
vaguely related to developmental syndromes (Tessadori et al.,
2017). The index patient has an allelic deletion for CDK2, a
key cell cycle related serine/threonine protein kinase. IKZF4
encodes a zinc-finger transcription factor required during early
B cell development. The protein encoded by SMARCC2 displays
helicase and ATPase activities, whose enzymatic disruption
often leads to development disorders. Type 1 cytokine receptor
signalling impairment has been, instead, linked previously
to congenital Immunodeficiency, although their functions are
redundant; NABP2 encodes for a Single-stranded DNA-binding
protein, usually necessary for several DNA-related metabolic
processes.

Ankyrin repeat domain 52 (ANKRD52) is a protein acting as
a regulatory subunit of protein phosphatase 6 (PP6), involved in
the recognition of phosphoprotein substrates (Watanabe et al.,
2018). Citrate synthase is, instead, a protein codified by CS,
acting as a Krebs tricarboxylic acid cycle enzyme catalazying the
synthesis of citrate from oxaloacetate and acetyl coenzyme A
(Hayward and Berendsen, 1998).

New studies focused on the role played by these genes,
in developmental control and their regulatory functions and
accurate craniometrical studies of CVJ anomalies, may offer early
diagnosis, new therapeutic targets and specific treatment before
neurological damage occurs.

This case-report points out that DBA, and mostly PRS
and KF have a further genetic heterogeneity and it underlines
the need for a careful genetic evaluation and a detailed
phenotype-genotype correlation in each complex malformative
syndrome.
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