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Autonomous robotic Ultrasound (US) scanning has been the subject of research for more
than 2 decades. However, little work has been done to apply this concept into a minimally
invasive setting, in which accurate force sensing is generally not available and robot
kinematics are unreliable due to the tendon-driven, compliant robot structure. As a result,
the adequate orientation of the probe towards the tissue surface remains unknown and the
anatomy reconstructed from scan may become highly inaccurate. In this work we present
solutions to both of these challenges: an attitude sensor fusion scheme for improved
kinematic sensing and a visual, deep learning based algorithm to establish and maintain
contact between the organ surface and the US probe. We further introduce a novel
scheme to estimate and orient the probe perpendicular to the center line of a vascular
structure. Our approach enables, for the first time, to autonomously scan across a non-
planar surface and navigate along an anatomical structure with a robotically guided
minimally invasive US probe. Our experiments on a vessel phantom with a convex
surface confirm a significant improvement of the reconstructed curved vessel
geometry, with our approach strongly reducing the mean positional error and variance.
In the future, our approach could help identify vascular structures more effectively and help
pave the way towards semi-autonomous assistance during partial hepatectomy and the
potential to reduce procedure length and complication rates.

Keywords: autonomous robotic ultrasound, robotic surgery, vessel reconstruction, tissue coupling estimation, non-
planar scan surface, anatomy based navigation

1 INTRODUCTION

Despite the advances in other areas such as dexterity and image quality, commercial surgical robotic
systems lack autonomy and are merely used as tools for the teleoperation of surgical instruments
(Attanasio et al., 2021). Autonomy in surgical robotics could help solve a plethora of issues, such as the
shortage of medical staff, availability of adequately trained surgeons, and could potentially enable them
to perform other, more relevant tasks or surgical procedures instead. A critical point in enabling this is
the knowledge of the patient’s specific anatomy to adequately define resection margins for extracting
diseased tissues and safely manipulate anatomical structures. While pre-operative imaging can help
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gain useful insights, the exact mapping of these images to the
surgical site is unknown under general circumstances, both to the
human or the computer. This particularly applies to highly flexible
organs such as the liver, where the positioning of the patient during
surgery along withCO 2 insufflation may cause significant changes
in position and shape of the organ (Zhang et al., 2021). In this and
other surgical scenarios, intraoperative US scanning is often
adopted to acquire knowledge of the anatomy (Zhu et al., 2018).

While many research efforts have been dedicated to exploring
automated scanning on the patient’s skin (extracorporeal US -
Pierrot et al. (1999); Elek et al. (2017)), scanning inside the patient
during minimally invasive surgery (intracorporeal US - Pratt et al.
(2015); Schneider et al. (2016)) poses several unaddressed
challenges. Extracorporeal US systems adopt serial
manipulators that greatly simplify precise and reliable spatial
movements and force measurements. An extensive review on
robotic systems for manipulation of extracorporeal US may be
found in Elek et al. (2017). Research work includes both systems
for teleoperation, often integrating force feedback (Pierrot et al.,
1999), visual servoing methods (Abolmaesumi et al., 2002; Royer
et al., 2015), as well as more recently the creation of autonomous
systems in Xiao and Wang (2021) and Jiang et al. (2021). In the
context of improving robotically assisted surgery, prior works
mostly use extracorporeal (Mathur et al., 2019) or endolumninal
probes (inserted through natural orifices), particularly
Transrectal Ultrasound (TRUS), controlled via an external
robot (Hung et al., 2012; Mohareri et al., 2012) to visually
track robotic instruments and target regions. Due to their
increased distance to the operating region, extracorporeal
probes lack the details of a more close-up scan of the surgical
site under general circumstances. Endoluminal US on the other
hand, is restricted to target regions that lie close to orifices (e.g.,
prostate) or luminal organs (e.g., esophagus) accessed via flexible
endoscopes.

Minimally invasive surgical systems, on the contrary, are built
compliantly, commonly with tendon-driven instruments as their
end-effectors, making both precise kinematics and force
measurements inherently difficult (Nia Kosari et al., 2013).
Moreover, the visual information acquired through US must
be spatially mapped to the guiding robot for it to be
meaningfully applied in an assistive or autonomous
application. To this end, previous research involving surgical
robots mainly resorted to optically tracking instruments and
probe (Pratt et al., 2015). This is a feasible approach in the
presence of a stereo endoscope, but lens distortion and the short
disparity between the two lenses of the endoscope reduces its
accuracy and applicability, and the markers need to be visible in
the scene, posing a set of very restrictive assumptions. The use of
alternative technologies such as electromagnetic tracking are
limited by the presence of metallic instruments (Schneider
et al., 2016) or metallic elements in the surgical table and the
potential disruption to the surgical workflow, requiring setting up
and placing the field generator near the surgical site on the
patient. Various works have treated the development of
hardware devices to facilitate Robotic Intracorporeal
Ultrasound (RICUS) (Schneider et al., 2016) or methods for
registering robotic instruments with RICUS probes (Mohareri

and Salcudean, 2014). Recent work outlined in Stilli et al.
(2019) reports a novel rail mechanism that allows the US
probe to be spatially fixed to the scan location, thus
improving scan stability and facilitating spatial registration
of the scan. While the results are encouraging, the device may
limit the possible movements of the probe or block access to
sites of interest compared to a scan purely guided by a robotic
instrument. Different tracking methods (kinematics, optical
tracking and electronic-magnetic tracking) for theda Vinci
Research Kit (dVRK) Patient Side Manipulator (PSM)’s
position are compared in Schneider et al. (2016) to
reconstruct a vessel phantom. The authors report a target
registration error of 5.4 ± 1.7mm using the dVRK
kinematics. Pratt et al. (2015) describes a system for
autonomous tissue resection. The work focuses on tracking
and autonomously cutting along a line rather than navigating
along anatomical features. Moreover, the work employs
external visual trackers, a very restrictive assumption that
may limit the functionality in a realistic clinical environment.

None of the references on RICUS give clear indications as to
how they ensured adequate coupling between the US probe and
tissue surface. Pratt et al. (2015) demonstrates scans on a planar
surface, not needing to reorient the probe after an initial set
orientation (Pratt et al., 2015). Schneider et al. (2016) describes
scanning a non-planar surface, presumably telemanipulated
rather than autonomously. In extracorporeal US coupling
may be ensured via 3D perception of the environment in
combination with a force torque sensor within the robotic
end-effector or directly inferred from the join torques. These
methods, however, are not easily transferable to a minimally
invasive setting, where sensor size, robot inaccuracies and the
visual complexity of the scene limit the practical application.
Another approach is to use an ultrasound image-based solution,
such as ultrasound confidence maps (Karamalis et al., 2012), in
combination with a force sensor (Chatelain et al., 2017).

In this work, we follow a similar approach, based, however, on
a simplified, easily scalable, data-driven algorithm to estimate the
local tissue coupling quality. Building upon the works of Jiang
et al. (2021) and Xiao and Wang (2021), we extend the idea of
autonomous US scanning along anatomical features to a
minimally invasive surgical robot and intracorporeal US As a
core part of this endeavour, we present and evaluate a method for
fusingg Inertial Measurement Unit (IMU) data with robot
kinematics. In doing so, we improve the robot’s localization in
3D space and enable a more precise and reliable anatomic
reconstruction from the US scans, despite the robot’s
kinematic inaccuracies and without the need for restricting
tracking systems. In summary, this work presents an approach
that is easily scalable to multiple vessels, can deal with the absence
of reliable force sensing and does not require external spatial
tracking. We claim that our aforementioned contributions
provide a first step towards enabling more reliable
autonomous intracorporeal ultrasound scanning, with a strong
focus on providing a solution that is easily adaptable to a clinically
realistic scenario and workflow. We use and assess our approach
on a dVRK (Kazanzides et al., 2014), the standard platform in
research on robotic minimally invasive surgery.
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2 MATERIALS AND METHODS

Our considered setup consists of a single PSM (also referred to as
robot) of a dVRK (Kazanzides et al., 2014) and a Philips L15-7io
probe driven by an iU22 US machine (Philips, Amsterdam, NL).
The dVRK enables the control of a formerly clincal da Vinci PSM
and implements ROSmiddleware to directly set target values for the
robot servo control loop. It also includes inverse kinematics to allow
the specification of target values in Cartesian space. The PSMs are
designed to rotate an integrated trocar tube around a fixed fulcrum,
kinematically restricting movements and mechanical stresses
around the incision point. We use the currently newest version
(dVRK ROS 2.1) including the recently updated re-calibration of
the prismatic joint. We chose the imaging specifications of the US
probe to be identical to those used in commercially available
surgical robotic US probes (7–15MHz) to make the results and
conclusions directly transferable to conventional RICUS In its
original form the US probe is intended to be hand-held during
open surgery. To adapt it to the PSM’s instruments, we designed a
custom 3D printed interface similar to Schneider et al. (2016),
allowing it to be compatible with the dVRK’s Fenestrated Bipolar
Forceps for stable and repeatable grasping. We further integrate an
IMU into the US probe for improved localization despite potentially
slightly varying grasps of the probe, as well as a Force Sensitive
Resistor (FSR) to prevent excessive normal forces. The pick-up
interface further allows the addition of an IR tracking frame to
acquire ground truth data for evaluation. For the case of automated
vessel scanning, we separate the different spatial degrees of freedom
of the US probe into two different categories: anatomy-based and
tissue-coupling-based movement adaptions. Anatomy-based
movements are made to follow and orient the probe towards the
overall anatomic structure, while tissue-coupling-based movement
adaptions are primarily due to the scanning surface and the contact
with the US probe. Our resulting control and planning scheme
follows this logic by involving dedicated image processing pipelines
for each category (see Figure 1). In the planner, both branches
converge to decide on the most urgent task to be performed:

coupling adaption (RUS
z , dUSy ), vessel centering (dUSx ), vessel

center line alignment (RUS
y ), and probe forward progression

(dUSz ) (see more detailed outline in Section 2.5).

2.1 Nomenclature
In the upcoming, sections we will make use of mathematical
notation, to denote the several coordinate frames and
transformations between those frames defined in our system.
Transformations with a mere subscript such as TA (including RA
and �pA) are used to refer to the coordinate frame itself, while the
transformation from a coordinate frame TB to coordinate frame TA
is written as TB

A and denoted with subscript and superscript.
Additionally, we use comma-separated superscripts such as
TB,des
A to specify the relative poses, in this case the desired

(abbreviated as des) relative pose of B with respect to A.
Expressed in other terms, TB

A is the pose of TB relative to TA.
Broken down further, TB

A is defined as a homogeneous

transformation, composed of a rotation RB
A and a translation �p

B

A

TB
A � [ RB

A
�pB
A

0 0 0 1
] (1)

In vectors, we use uppercase letters for the superscript to
denote defined coordinate frame quantities (e.g., relative position

of the origin �p
B

A or coordinate axes �x
B

A, �y
B

A and �z
B

A). We further
use lowercase letters to specify relative positions without defined
coordinate frames. An example of this is the changing center line
of the vessel tclA. The only exception to this is the gravity vector gA,
which does not specify a reference frame or lowercase subscript,
as gravity is a world-implicit quantity (e.g., implying a specific
orientation).

2.2 Inertial Measurement Unit
Initial experiments highlighted that the dVRK’s instruments have
pronounced backlash, particularly in the last three joints at the tip
of the instrument. Even without external loads, the orientation of

FIGURE 1 | System Structure: The current US frame is acquired and fed into U-Net (entire image) and DC-Net (overlapping image slices). The segmentation results
of the U-Net are post-processed, and ellipses are fitted around segmentation patches likely to correspond to vessels (upper path). The current vessel center is used to
perform in-plane movements (dx) to center the vessel within the image. Recognized vessel centers from previous frames are buffered and used to estimate the center line
and reorient the image normal RUS

y (rotation around yUS - see also Figure 3). The parallel path with the outputs from the DC-Net are compressed into coupling
parameters that are used to adapt rotation around the image normal (Rz) and compressionmovements (dy). If the probe alignment with the vessel and coupling is properly
adjusted, the probe is progressed forward in the image plane normal direction (dz).
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the instrument is not accurately determined, which is further
amplified along the length of the end-effector link towards the
origin of the US base frame TUS. Tendon-driven robots are known
to have such drawbacks that increase over time and usage and
result in that add up along the chain of links (Nia Kosari et al.,
2013). This effect is more pronounced with external loads at the
instrument tip. US scanning involves two different sources of
external loads. Firstly, loads induced by the probe itself due to its
weight (force), weight distribution (torque), and its cable (force
and torque). Secondly, the interaction between probe and tissues
creates a force normal to the contact surface, as well as friction
forces within the contact plane. The sum of forces induced by the
probe and the contact result in significant variations of the
probe’s actual position and orientation that is not measured
by the PSM’s joint encoders.

To compensate for these effects and to improve the kinematic
estimation, we integrate an IMU (Bosch BNO055, Bosch Bosch
GmbH, Stuttgart, Germany) measuring gravity and thus the
orientation of the global TPSM. We ignore the integrated
magnetometer readings, considering it an unrealistic assumption
for a future application in a clinical setting. We further ignore the
measured accelerations and rotational velocity readings, as these
measurements were found to be too noisy under the slow
movements our system performs. To fuse the available information
between the robot kinematics and the IMU, we consider the spatial
orientation determined by the robot kinematics as well as the gravity
vector from the IMU, transformed into TUS. Following the logic of a
Mahony filter (Mahony et al., 2008), we then calculate the update in
orientation in the following way:

Δ �ωPSM
US � �zPSM

US ×
�gUS

‖ �gUS‖ (2)

where �zUS
PSM

is the z-axis of the global frame TPSM, expressed in
TUS, and �gUS, the direction of gravity expressed in TUS. Employing
the quaternion product, we map ΔωUS

PSM into a quaternion
velocity and update TUS

PSM. We then go back in the kinematic
chain toward the end-effector link to the ultimate joint and
update the end-effector location based on the updated
orientation (see Figure 2B). Unlike the Mahony filter, we

apply the full update in each step (Kp � 1
Δt) and break the

recursiveness by newly starting with the measured �z
US

PSM from
the robot’s kinematics in each time step. In the following, we will
refer to this approach as PSM-IMU-fused kinematics, as opposed
to the pure PSM kinematics obtained from joint encoder reading
and forward kinematics.

2.3 Vessel Segmentation
For Vessel segmentation, we use a U-Net (Ronneberger et al.,
2015), in line with previous works such as Jiang et al. (2021) and
Xiao and Wang (2021). The network is trained with manually
collected and labeled data from two anatomically different US
vessel phantoms. Our loss function is a combination of binary-
cross entropy and dice loss. Contained in the dataset are a total of
697 labeled images (non-augmented), splitting up into 592 (85%)
for training and 105 (15%) for evaluation. Each image contains up
to three vessel cross-section labels, with the majority containing a
single one. Our final model has a validation Dice score of 0.887,
which is lower than the 0.982 reported in Jiang et al. (2021). We
attribute this to the data augmentation, specifically image color
inversion (roughly ten percent of the images) that we apply. While
the techniques lead to more robust results, they also result in very
inaccurate predictions for these specific samples. For training and
inference, we employed an NVIDIA Quadro RTX5000. The final
segmentation during our experiments runs at speeds of 7-8fps. This
is prior to further performance improvements of our code, which
are expected to further boost the frame rate.

In its raw form, the U-Net represents segmentation masks as
binary pixelated images. Further processing is therefore needed to
compress the data into more meaningful vessel features.
Therefore, we extract the contours from the filtered image and
fit ellipses around the contours using OpenCV, allowing a
differentiation between several vessel instances (instance
segmentation). By assuming a lower threshold vessel diameter
of 20 pixels (corresponding to a vessel diameter of around
0.45mm) for the navigational task at hand, we can further
clean up potential erroneous or irrelevant vessel detections.
Figure 3B shows a typical result of a detected vessel after
post-processing the segmentation. We start by applying some
initial filtering (erosion, dilation, thresholding) to eliminate small

FIGURE 2 | (A) Coupling adaption of the US probe via rotation around zUS axis (equivalent to image normal vector), shifted into the center of the image probe. To
determine the amount and direction of probe angle adaption we use the condensed cCOM parameter (see Eq. 3) (B) Update of the end-effector orientation and global
position TTT via attitude sensor fusion resulting in fused tool tip frame TTTf. Based on TTTf, TUS is updated as well (not depicted for simplicity).
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noisy patches that are unlikely to correspond to actual vessels.
Unlike the approach of resampling the vessel followed by Jiang
et al. (2021), this approach allows the differentiation between
various vessel instances or bifurcation points present in the
image. While during this proof of concept study, we consider
only a single vessel, addressing bifurcations, could be interesting
work for the future.

2.4 Visual Coupling Quality Estimation
For quantification of the coupling quality and the detection of a
decoupled probe, we propose a convolutional neural network, in
the following referred to as Decoupling Network (DC-Net). Due
to the wave-nature of US a poor coupling between the probe and
tissue in a location on the sensor will affect the whole image slice
along the propagation direction of the US wave (depth of the
image). Rather than processing an entire image at once and
solving the regression task of estimating the coupling quality
across the image’s width, we propose feeding the network fully
overlapping slices, including half of the information from each
neighboring slice. This vastly reduces the size of the network and
simplifies it to a binary classification task (good/poor coupling)
on each separate slice. This approach additionally increases the
number of available data samples for training and evaluation.
Making the slices overlap increases the robustness of the system
due to the inclusion of partly redundant visual information. Each
image is split into 32 slices, which we chose to be a compromise
between resolution and performance.

The network is comprised of four convolutional layers with
depths 32, 32, 64, and 64, respectively, followed by two dense
layers. Between each of the convolutional layers, we apply a leaky
ReLu activation (alpha = 0.05) function followed by anisotropic
max pooling (4 in depth and 2 in width dimension). The latter
accounts for the large pixel ratio of 8:1 between the depth and
width of the extracted slices. Following the convolutional layers,
we process the flattened output through two dense layers with an

in-between ReLu activation function and dropout of 0.5. The final
classification result is generated via applying a softmax activation
to the output of the last dense layer (see Figure 4), resulting in
values between 0 (coupled) and 1 (decoupled). The data set is
comprised of a total of 6,634 image slices with 40% of samples
labeled poorly coupled and 60% well coupled. After 250 training
epochs on 85% of data samples, we reach an overall validation
accuracy of 0.99 on the remaining 15% of samples.To reduce the
number of classified slices into parameters that give meaningful
indications for probe adaptions, we propose two parameters that
summarize the coupling over the width of the image and are used
to adjust the probe orientation and position. We first calculate the
center-of-mass (CoM) equivalent of the classified coupling
quality as follows

cCOM � ∑n
i�0 cidi( )∑n

i�0di
(3)

with n being the number of slices in the image, ci the coupling
quality of slice i, and di the distance of the center of the slice to the
center of the image. We train the network to classify slice as
strictly 0 or 1; however we use the floating-point values given by
the ultimate softmax layer to result in values between 0.0 (good
coupling) and 1.0 (poor coupling) for our further calculation of
coupling quality parameters. While the values might seem
counter-intuitive at first glance (higher value equals lower
coupling quality), they were chosen to represent 0 as the
default state (good coupling) compared to in-equilibrium as
any offset from 0 (poor coupling). If all slices are near 0 (e.g.,
smaller than 0.1), we expect the cCOM to be in or very close to the
center of the image.

2.5 Planning and Control
To simplify the control problem, we split the probe manipulation
problem up into four independent movements (see Figures 3, 5):

FIGURE 3 | (A) Considered coordinate Frames TUS, TTT and TPSM Left: Before adaption of the image plane normal (poor orientation TUS and TTT), Right: After
adaption of image plane normal (ideal orientation), based on projected vessel center line (good orientation TUS’ and TTT’). (B) Visual representation of the post-processed
outputs of the two Deep Neural Networks. The fitted ellipse (blue outline) closely tracks the segmentation results of the U-Net (area in red). The detected coupling quality
by the DC-Net is visualized by the colored bar on the top transitioning from green (good coupling) to red (poor coupling) and the blue circle representing the
calculated cCOM parameter.
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orientation matching with the projected center line of the vessel
(rotation around yUS-axis), vessel centering (in-plane movement
in xUS-direction), forward movement along the vessel (out-of-
plane movement in zUS-direction) and coupling optimization (in-
plane movement in y-direction and rotation around xUS-axis).
The only direction not considered for adaption is rotation around
xUS, which for the purposes of this study we assume to remain
nearly constant. Each control cycle starts with a check of the
coupling quality; further movements are considered in case of
good coupling quality. Otherwise, the coupling is adjusted until
reaching an acceptable level. We found this to be |cCOM < 0.1|.
This is to ensure that the feature is not suddenly lost due to the
poor coupling of the probe. Assuming the coupling is adequate,
the planner continues with a proportional controller to keep the
detected vessel centered in the image frame. In the subsequent
layer, the planner checks for deviations of the image plane normal
with respect to the estimated vessel center line projection (see
Figure 3). If no orientation adaptions are needed, meaning the
probe is well coupled, with the vessel centered and the image
plane normal zUS orientated in accordance with the current center
line estimate, the probe is propagated forward in image plane
normal direction (in direction of zUS). All routines further include
a limited proportional controller to keep the vessel centered in
the image.

If one of the sides of the probe decouples, we expect cCOM to
shift toward the decoupled side (see Figure 3). As a result, we
trigger the planner to tilt towards the respective direction to re-
establish coupling. This process is depicted in Figure 2A, where
the probe is rotated around zUS shifted into the middle of the
probe (half a probe width into xUS direction). In addition to cCOM
we consider the overall mean as well as the mean of the left,
central and right third of the image to allow downwards probe
movements in the case that the entire probe is not well coupled.

In order to prevent applying excessive pressure to the tissue,
we integrate a simple force sensitive resistor into the setup (see
Figure 6A). The sensor is located between the pick-up interface

and top of the US probe. Any normal force applied to the probe
via the robot will travel through this element and thus register any
normal force applied to the probe. We calibrated the integrated
force sensor by fixating the probe on its pick up interface and
applying successively increased loads. FSR may not give very
accurate force reading and tend to drift over time. Therefore, we
only use the sensor to prevent excessive forces from being applied.
Drifting may be prevented by zeroing the probe before each scan,
e.g., while holding it slightly above the tissue surface to be
scanned. This process may even be automated in the future.
In our current setup, we set the force not to exceed 3.5N, which
includes the weight of the probe, so the contact force with the
tissue will be far below this value. In case 3.5N are exceeded, we
lift the probe off in direction of yUS until we are below the
threshold to the optimise potential further decoupling on the
sides of the probe. Furthermore, we found this to be the optimal
value for ensuring good coupling on the given phantom, while
preventing noticeable deformations. This value may differ for
different probes, softer phantoms or real tissue. While this extra
sensor does constitute additional integration effort, we believe
they are far easier to be integrated than a full three or even six
degrees of freedom force sensor.

A further assumption we are making is that sufficient liquid is
present on the scanning surface. As opposed to the patient’s skin
the inside of the abdominal cavity is sufficiently moist, and
additional water is usually added via an irrigation rod prior to
scanning. In order to adapt out-of-plane movements with respect
to the vessel, we consider the last 35 detected vessel center points
in globally fixed PSM coordinates. We filter the point cloud to be
only valid if most samples include a detected vessel, no major
probe decoupling occurred, and the image normal plane
remained constant. Furthermore, only movements in the
estimated normal direction will produce point clouds that
contain valid information about the actual current orientation
of the vessel’s center line. This ensures that the slope can actually
be estimated. We encode this by enforcing that 89% of the last 30

FIGURE 4 | Structure of the DC-Net with four convolutional layers, each directly followed by a leaky ReLu layer and anisotropic max pooling. The flattened output of
the first four layers is further processed through two dense layers, including an in-between ReLu and dropout layer (p = 0.5) and a final softmax layer for binary
classification into coupled (0) and decoupled (1).

FIGURE 5 |Outline of the hierarchical planning routine, employing different tracks for adapting the probe orientation and position with respect to the tissue surface
or the reconstructed anatomy. We prioritise in the order of coupling over the centering of the vessel and finally the alignment of the vessel center line.
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samples are valid, which we empirically determined to be a good
value for stable estimation of the center line. If this criterion is not
fulfilled, we keep the current orientation as the best estimate.
Thereby, we minimise the potentially high amounts of noise from
the kinematics during rotational movements to affect the
estimated center line orientation and thus the image normal
adaption. Additionally, we impose a minimal distance covered
between the points in the current point cloud to ensure that a line
fitting is feasible and accurate. While we ignore the point cloud
sets obtained from non-normal scan movements, we still include
them for the final reconstruction of the vessel. We determine the
center line slope via a separate least-square line fitting for each
dimension. We transform the resulting slope into the US probe
frame and project the center line onto the xUS-zUS-plane (see right
of Figure 3A). This ensures that the probe only rotates around
assumed surface normal yUS and does not lift off or push further
into the surface, altering the coupling in unexpected ways. The
approach can be summarized with the following formula:

�zPSM
US,des � RUS

PSM · Ixz · RUS
PSM( )−1 · �tPSMcl

‖Ixz · RUS
PSM( )−1 · �t clPSM‖ (4)

Ixz �
1 0 0
0 0 0
0 0 1

⎛⎜⎝ ⎞⎟⎠ (5)

where �zPSM
US,des is the new desired orientation of the zUS-axis

expressed with the PSM coordinate frame TPSM, RUS
PSM is the

rotation component of the homogeneous transformation
between PSM and US probe coordinates, Ixz a selector
matrix to filter out the y-component in the US probe’s
coordinate frame, as we are rotating around this axis, and
�tPSM
cl the orientation vector of the fitted center line. To set up a
consistent right-hand coordinate frame, the remaining xUS-
axis in PSM coordinates is determined as

�x
US,des

PSM � �y
US

PSM × �z
US,des

PSM (6)

where yPSM is the current y-component of the Rotation matrix
RUS
PSM that describes the y-axis of the US probe coordinate frame

in PSM coordinates. The final desired probe rotation RUS,des
PSM is

built by combining all axes

RUS,des
PSM � �x

US,des

PSM , �y
US,des

PSM , �z
US,des

PSM
( ) (7)

3 EXPERIMENTAL VALIDATION

In setting up the system, we determined the transformation
between the US image and the robotic end-effector. Using the
metric correspondence given by the manufacturer, we converted
the image to a metric scale. To acquire the positional offset and a
more precise estimate for the transformation between the PSM and
the US image of the probe, we built a custom cross-wire phantom.
To reference the scan, we used an Infrared (IR) optical tracking
system consisting of four Optitrack Primex 13 (NaturalPoint, Inc.,
Corvallis, OR, USA) with markers attached to the probe as well as
the calibration phantom. We obtain the final transformation via
iterative closest point (ICP) matching.

To mimic the setting of a hepatectomy, we base our experiments
around a BLUEPHANTOM Branched 2 Vessel US Training Block
Model (CAE Healthcare, Saint-Laurent, Quebec, CA), depicted in
Figure 6A. We chose the vessel phantom to resemble vessels similar
to those found in the liver (diameter: 4 − 6mm). The phantom
consists of a straight main vessel with a second vessel branching off
around 45mm down the length of the vessel at a 60°–70° angle. This
vessel slowly curves until it runs roughly parallel to the straight vessel
(see Figure 6A), finally bending downwards at a roughly 15°. Since
we do not know the exact vessel location and orientation in 3D
space, we added an IR tracking system to the experimental setup that
is used to acquire ground truth data (accuracy of 0.1mm) however is
not intended as part of the setup used during a potential future
surgical application. To acquire a mapping between the IR tracking
system and the PSM end effector, we use a 3D printed frame that is
tracked via the IR tracking system. On the side of the PSM we

FIGURE 6 | (A) Setup for the experiments, with a roughly overlayed outline of the vessel structure inside the phantom, the ultrasound pick-up probe with integrated
IMU and FSR and the reference block. (B) Box Plot showing the error distributions of the resulting scans using pure PSM- or IMU-based kinematics. Outliers are
considered to be values outside the 1.5-fold interquartile range from each side of the box, demarked by whiskers (n = 12,596 data points from ten scans).
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spatially register the frame to the TPSM via touching spatial
landmarks and calculating the resulting transformation. All
robotic and US data, including the segmentation results and
extracted vessel ellipses, are published on ROS topics for
further processing and exchange between the several
program routines.

Our experiments are comprised of scans of the curved vessel
as a non-trivial geometry for probe orientation. The scan starts
from the vessel’s straight section (roughly parallel to yVP on
one end of the phantom), over towards its turn, and until it
merges with the main vessel towards the other end of the
phantom. Due to the turn and the varying starting angles, it is
practically impossible to fully scan the vessel without stable
probe orientation adaption that ensures an image normal
approximately parallel to the projected center line of the
vessel. For each scan, we start in close proximity to one end
of the phantom with the probe partly decoupled from the
tissue surface (similar to Figure 3) and with an image normal
orientation clearly deviating from the center line of the vessel.
The first five scans started with a rotational deviation of the
center line turned towards one side, while the other five were
started with a rotational deviation towards the opposite side.
During the scans, we recorded the robot’s position along with
the detected vessel centers and axes. All scans in the evaluation
are extracted from runs using IMU-PSM-fused kinematics for
control (see accompanying video for an exemplary scan).

To assess the resulting scans and compare them, we
calculate the root squared error (euclidean distance)
between the reconstructed vessel center points using IR
tracking with that of pure PSM or PSM-IMU-fused
kinematics. We reduce our analysis to the estimated
center points, as the detected radius of the vessel will be
the same for all methods and does not add any comparative
meaning between the different methods. Furthermore, we
calculate the mean difference in orientation between the IR
tracking and both kinematic methods to validate and
quantify the kinematic improvements made by the
addition of the IMU.

4 RESULTS

Over ten runs, we observed a mean error of 7.19 ± 6.24mm for
pure PSM kinematics and 2.58 ± 1.70mm for PSM-IMU-fused
kinematics (both with p = 0.05). The maximum errors observed
were 15.45 and 6.45mm for PSM and PSM-IMU-fused
kinematics, respectively. The medians and quantiles of the
error that are depicted in the box plot in Figure 6B are
6.76mm (median), 4.71mm (25% quantile) and 9.4mm (75%
quantile) for PSM kinematics and 2.57mm (median), 1.98mm
(25% quantile)/3.1mm (75% quantile) for PSM-IMU-fused
kinematics. The plot includes zero outliers for PSM-based
kinematics and 66 outliers for PSM-IMU-fused kinematics
from a total data 12,596 data points.

Comparing the trajectories depicted in Figure 7, we observe
that all scans obtained via PSM-IMU-fused kinematics are closer
to the true scans obtained via IR tracking. Trajectories obtained
with pure PSM kinematics can also be observed to end at largely
varying positions and heights (zVP). This is not the case for PSM-
IMU-fused kinematics. This may be largely explained by the play
in the joints and the compliant structure that is not accounted for
in the PSMs kinematics. Secondly, the applied correction of the
tool tip position in the PSM-IMU-fused kinematics is able to
substantially reduce skips and positional drifts, which are strongly
pronounced in the trajectories for pure PSM kinematics (see
highlighted trajectory in Figure 7). The skips are most likely
caused by play in the joints. They express the most during probe
orientation of adaption, which strongly involves the two joints
with the longest tendons, located near the end-effector. While the
robot assumes it is moving and changing its end-effector
orientation and position, it actually stays static until the joint
properly engages and the joint movement is starting to be
transmitted along the full kinematic chain. Along with the ten
scans we perform using PSM-IMU-fused kinematics, we executed
a total of ten scans using pure PSM kinematics for control but
found that only four out of the ten scans were completed
successfully (reaching the bifurcation point), since the skips
caused the vessel center line estimation to drift off.

FIGURE 7 | Resulting scans of the curved vessel branch using pure PSM-based (red), IMU-PSM-fused (blue) and IR tracked (green) kinematics. One of the PSM
kinematic-based scans with particularly large skips is highlighted in black.
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When we compare our results obtained with pure PSM
kinematics with the results reported in Schneider et al. (2016),
we register a higher mean error (7.19mm compared to 5.40mm),
while observing a vastly larger significance interval (4.52mm
compared to 1.7mm). We assume the authors denoted the single
standard deviation, in which case our previously given value of
4.52mmwould halve to 2.76mm. Still, the larger value could have
several causes. Firstly, we performed many rotations of the tip,
which is prone to give more inaccurate results and showed to
cause a lot of the skips that will increase the error mean, median,
and variance. Secondly, due to the geometry of our probe and its
attached cable coming out of the top of the handle, our probe will
create a larger pull on the end-effector causing more variation.
Further potential sources are the difference in tool age and usage,
and the difference in robot calibration or play. To quantify the
angular error of both methods, without inclusion of the
reconstructed vessel, we calculate the angle difference between
the obtained coordinate axes for each method and the assumed
ground truth, IR-tracked axes. We observe a strong reduction of
the mean angular error and its variation from 5.48° ± 4.64° for
pure PSM kinematics to 2.60° ± 0.82° (p = 0.05) for IMU-fused
kinematics when compared with IR-tracked orientation of zVP.
For the other axes, which are not directly corrected for by the
fusion routine, the mean errors and double standard deviations
(p = 0.05) stay in a similar range. The results for yVP and less
pronounced also for xVP, show an improvement in mean angular
error while simultaneously posing a slightly higher variation (xVP:
5.81° ± 6.13°/5.08° ± 6.97° - yVP: 7.76° ± 4.77°/5.90° ± 5.94°). As we
use the same visual information for all three reconstruction
methods, including IR-tracking, we also achieve kinematic
errors similar to those reported for the reconstruction with
6.27 ± 6.28mm for PSM-based kinematics and 3.17mm ±
1.96 for IMU-fused kinematics.

5 CONCLUSION

Our experiments demonstrate that the proposed system for
autonomous intracorporeal US scanning is capable of repeating
several scans within the range of a few millimeters. The addition
of an IMU proved to be valuable in determining the orientation and
position with more stability, showing fewer deviations and less heavy
outliers on a straight vessel scan. This is particularly apparent in the
steep jumps of the trajectory using PSM-based kinematics, which
disappear entirely or appear strongly smoothed with IMU-fused
kinematics. Our developed deep learning based method for the
detection of probe tissue coupling showed to be robust and useful
in adapting and maintaining a well coupled ultrasound image on a
convex surface. While the results are encouraging, we are still reliant
on the probe being placed in an initial pose in which the vessel is
visible in the ultrasound image. Furthermore, we are still using an FSR
to limit the force, although we are looking into methods of inferring
this information from other sources such as the joint encoders (Wang
et al., 2019). A rigorous test of the resulting reliability of thesemethods
is particularly crucial to prevent excessive forces from damaging the
tissue. More experiments may also need to be carried out to assess the
behaviour under different surface shapes tissue characteristics. These

parameters, representing the diverse characteristics found in real
tissue, are expected to have an influence on the measured contact
force and thus the coupling behaviour between tissue and probe.
These in turn are expected to affect the reliability of the presented
approach, implying that our current conclusions are for now limited
to the presented simplified bench top scenario. From a design
standpoint, however, we ensured that our employed technology is
straightforward to integrate into a realistic surgical scenario and
workflow, employing vision-based solutions and only additions of
small sensors with low setup requirements. In its current state, the
navigation and planning is limited to a single vessels and disregards
potential bifurcations and several vessel cross sections present in the
US image, despite the segmentation routine already enabling the
distinction between several vessel instances. Our concept study
compared both tested kinematics method with an IR-tracked
reference assumed to be the ground truth. According to the
calibration software the system imposes errors of less than 0.1mm
after calibration. Assuming a centered vessel and good contact
conditions, we found the mean in-plane detection of the vessel
center to be around 1mm accurate (95-percentile of 1.1mm). For
amore in depth evaluation of the reconstruction accuracy, particularly
the influence of the image-plane to end-effector registration error, we
will need to perform a Computed Tomography (CT) scan of the
phantom with integrated fiducial markers that allow for CT-US co-
registration (see Schneider et al. (2016)), which was outside of the
current scope of this work.

While the system has been designed with the specific
application to hepatic surgery in mind, the approach is
generally applicable to further robotic surgical procedures
involving vessel structures. We believe this information could
still be used to create a safe zone around a vessel structure to be
spared or help the surgeon to identify further the anatomy (e.g.,
the relative location to a tumor or liver lobe from pre-operative
data). To reach this goal, we will need to look further into
reducing sources of kinematic inaccuracies. One way to do
this could be the modelling of the compliant elements of the
robot, including the backlash, and to extend previous works such
as Chrysilla et al. (2019). Additionally, we plan to integrate the
distinction between several vessels into the navigation scene,
further opening up the possibility to capture the entire vessel
tree geometry and integrate pre-operative information for
predictive motion planning and navigation. Our eventual goal
will be to extend our approach to tissue trials such as ex-vivo
animals or Thiel-embalmed human cadaver livers.
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