
biomedicines

Article

TGF-β1 Receptor Inhibitor SB525334 Attenuates the Epithelial
to Mesenchymal Transition of Peritoneal Mesothelial Cells via
the TGF-β1 Signaling Pathway

Jung-Yoon Heo 1,†, Jun-Young Do 2,† , Yunmee Lho 1, A-Young Kim 2, Sang-Woon Kim 3 and Seok-Hui Kang 2,*

����������
�������

Citation: Heo, J.-Y.; Do, J.-Y.; Lho, Y.;

Kim, A-Y.; Kim, S.-W.; Kang, S.-H.

TGF-β1 Receptor Inhibitor SB525334

Attenuates the Epithelial to

Mesenchymal Transition of Peritoneal

Mesothelial Cells via the TGF-β1

Signaling Pathway. Biomedicines 2021,

9, 839. https://doi.org/10.3390/

biomedicines9070839

Academic Editor: Henricus

A.M. Mutsaers

Received: 25 May 2021

Accepted: 16 July 2021

Published: 19 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Internal Medicine, Smart-Aging Convergence Research Center, College of Medicine,
Yeungnam University, Daegu 42415, Korea; yuni0325@ynu.ac.kr (J.-Y.H.); ckdwjdgus@naver.com (Y.L.)

2 Division of Nephrology, Department of Internal Medicine, College of Medicine, Yeungnam University,
Daegu 42415, Korea; jydo@med.yu.ac.kr (J.-Y.D.); dkdud0904@naver.com (A.-Y.K.)

3 Division of Gastro-Enterology, Department of Surgery, College of Medicine, Yeungnam University,
Daegu 42415, Korea; swkim@med.yu.ac.kr

* Correspondence: kangkang@ynu.ac.kr; Tel.: +82-53-620-3836
† These authors contributed equally to this work.

Abstract: We investigated the effect of SB525334 (TGF-β receptor type 1 (TβRI) inhibitor) on the
epithelial to mesenchymal transition (EMT) signaling pathway in human peritoneal mesothelial
cells (HPMCs) and a peritoneal fibrosis mouse model. In vitro experiments were performed using
HPMCs. HPMCs were treated with TGF-β1 and/or SB525334. In vivo experiments were conducted
with male C57/BL6 mice. The 0.1% chlorhexidine gluconate (CG) was intraperitoneally injected
with or without SB52534 administration by oral gavage. Mice were euthanized after 28 days. EMT
using TGF-β1-treated HPMCs included morphological changes, cell migration and invasion, EMT
markers and collagen synthesis. These pathological changes were reversed by co-treatment with
SB525334. CG injection was associated with an increase in peritoneal fibrosis and thickness, which
functionally resulted in an increase in the glucose absorption via peritoneum. Co-treatment with
SB525334 attenuated these changes. The levels of EMT protein markers and immunohistochemical
staining for fibrosis showed similar trends. Immunofluorescence staining for EMT markers showed
induction of transformed cells with both epithelial and mesenchymal cell markers, which decreased
upon co-treatment with SB525334. SB525334 effectively attenuated the TGF-β1-induced EMT in
HPMCs. Cotreatment with SB525334 improved peritoneal thickness and fibrosis and recovered
peritoneal membrane function in a peritoneal fibrosis mouse model.

Keywords: SB525334; epithelial mesenchymal transition; transforming growth factor-beta1; peri-
toneal fibrosis; peritoneal mesothelial cell

1. Introduction

Chronic kidney disease (CKD) is an increasingly prominent health problem and can
progress to end-stage renal disease, which requires renal replacement therapy. Peritoneal
dialysis (PD) has been one of the most important dialysis modalities in treating CKD
since the first PD trial by Ganter, in 1923 [1]. PD requires peritoneal dialysate within the
peritoneal cavity for solute transport or water removal. Artificial peritoneal dialysate lacks
biocompatibility, owing to factors such as high glucose, osmolarity, or glucose degradation
products, which results in peritoneal membrane damage [2,3]. Repeated peritoneal mem-
brane damage can lead to fibrosis and/or thickening of the peritoneal membrane. These
pathological changes can ultimately lead to peritoneal membrane failure and inability
to properly remove uremic toxins or water. Furthermore, excessive fibrosis can lead to
encapsulating peritoneal sclerosis, resulting in high mortality and morbidity [4]. Therefore,
proper prevention, attenuation, or interventions is necessary to maintain long-term PD and
improve the prognosis of patients with PD.
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The transforming growth factor-beta 1 (TGF-β)-induced epithelial to mesenchymal
transition (EMT) plays a key role in the development of PD-induced peritoneal fibrosis
(PF) [2,3]. TGF-β binds to latency-associated peptides stored in the extracellular matrix
and is released by various stress stimuli [5]. Active TGF-β binds to TGF-β receptor
type 2 (TβRII), which phosphorylates the serine and threonine residues on TGF-β receptor
type 1 (TβRI), thereby inducing the phosphorylation of serines on Smad 2 and 3 [6,7].
Consequently, the transcription of the TGF-β-target genes, such as Snail, is initiated,
which, in turn, triggers EMT. SB525334 is a potent TβRI inhibitor; previous studies have
demonstrated that SB525334 blocks TGF-β-induced Smad activation and decreases EMT in
some tissues/cell lines [8–11]. Considering the association between TGF-β signaling and
EMT in peritoneal mesothelial cells, SB525334 may attenuate TGF-β signaling, resulting
in a decrease in EMT and peritoneal membrane fibrosis. In this study, we investigated
the effect of SB525334 on the EMT signaling pathway in human peritoneal mesothelial
cells (HPMCs) and further examined its influence on the peritoneal membrane in a PF
mouse model.

2. Materials and Methods
2.1. HPMC Culture and Treatment Conditions

The Institutional Review Board of Yeungnam University Medical Center (IRB No:
2019-04-047 at 21 December 2019) approved HPMC collection using human specimens.
Briefly, gastrectomy was considered for all biopsy-confirmed patients with stomach cancer
and was performed using partial or total gastrectomy with total or partial omentectomy.
The remnant omentum is typically discarded at our center after surgery. Therefore, prior
to surgery, patient informed consent was obtained for use of mesothelial cells from the
discarded omentum. HPMCs were isolated as previously described [12–14]. In vitro
experiments were performed on cells after one to two passages. HPMCs were cultured
in M199 medium supplemented with L-glutamine (20 µM, Gibco, Waltham, MA, USA),
penicillin-streptomycin (150 units or 150 µg/mL, Gibco), hydrocortisone (0.4 µg/mL,
Sigma-Aldrich, St. Louis, MO, USA), apotransferrin (5 µg/mL, Sigma), insulin (5 µg/mL.
Sigma) and 10% fetal bovine serum (FBS) (Gibco). Cell cultures were maintained in
100 mm dishes (Nunc, Rochester, NY, USA) in a 5% CO2 humidified atmosphere incubator
(311 Forma Direct Heat CO2 incubator, Thermo Fisher Scientific, Waltham, MA, USA) at
37 ◦C.

2.2. Cytotoxicity Assay

The cytotoxicity of SB525334 (S1476, Selleckchem, Houston, TX, USA) was eval-
uated using the MTT assay (M6494, Invitrogen, Waltham, MA, USA). Approximately,
104 HPMCs/well were initially seeded and cultured in 96-well plates (0494, Corning, NY,
USA) for 24 h, then treated with SB525334 (0 µM, 0.1 µM, 1 µM, 1 µM, 10 µM, 100 µM and
200 µM) in 200 µL media for 24–72 h. At the end of the incubation period, 20µL of MTT
(5 mg/mL) was added to each well and incubated at 37 ◦C for 3.5 h. Subsequently, 200µL
of DMSO was added to each well to solubilize the formazan products. Absorbance was
measured at 570 nm using a microplate reader (Synergy HTX, BioTek Instruments Inc.,
Winooski, VT, USA).

2.3. Cell Morphology, Wound Healing and Invasion Tests

HPMCs in culture dishes were incubated in a M199 culture medium for 24 h for cell
cycle synchronization. The growth medium was then replaced with serum-free M199
medium supplemented with 1% FBS and 2.0 ng/mL of TGF-β (R&D Systems, Minneapolis,
MN, USA), with or without SB525334 (0.1 µM, 1 µM, 2 µM, 5 µM, or 10 µM), for 24–72 h.
Cell morphology was analyzed using an inverted phase-contrast microscope (200×) (DMi8,
Leica, Wetzlar, Germany).

A wound healing/migration assay was used to detect cell migration. HPMCs were
seeded at a density of 105 cells/well in a culture-insert-2 well (81176, Ibidi GmbH, Mar-
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tinsried, Germany). After allowing the cells to attach overnight, the culture insert was
removed and the cells were washed with phosphate-buffered saline (PBS) (PR2007-100-00,
Biosesang, Seongnam, Korea) to remove nonadherent cells. The growth medium was then
replaced with a fresh serum-free M199 medium, supplemented with 1% FBS and TGF-β
(2.0 ng/mL), with or without SB525334 (1 µM), and the plate was photographed at 0 h and
16 h. The number of cells migrating to the wound area was manually counted (in three
fields per well) under a light microscope at 50×magnification [15].

The cell invasion assay was performed using Transwell inserts with 8 µm pore size
polycarbonate membranes (3422, Corning), according to a previously described protocol
with slight modifications [16]. Briefly, the inner surface of the membrane was coated with
20 µL of Matrigel (0.5 mg/mL, 354234, Corning) and incubated overnight at 37 ◦C to solidify
the Matrigel. The outer surface was coated with 30 µL of type I collagen (0.5 mg/mL,
354236, Corning) and incubated for 3 h at 37 ◦C. After drying, 100 µL of serum-free M199
medium, supplemented with 2% FBS and 700 µL of serum-free M199 medium, containing
10% FBS, was added to the upper and lower chambers of the Transwell system, respectively.
After conventional digestion, the cells in each group were resuspended in serum-free M199
medium at a density of 105 cells/flask. A total of 200 µL of cell suspension was added to the
upper chamber of the Transwell system on top of the Matrigel coating. After incubation at
37 ◦C for 16 h, the invaded cells were sequentially fixed in 4% paraformaldehyde (pc2031-
100-00, Biosesang) for 10 min, methanol for 5 min and 0.5% crystal violet solution (V5265,
Sigma-Aldrich), prepared in methanol, for 1 h. Stained cells were counted using a light
microscope (100×).

2.4. Western Blotting

The primary antibodies against E-cadherin (610181, BD Biosciences, Franklin Lakes,
NJ, USA), α-SMA (α-smooth muscle actin, A2547, Sigma-Aldrich), Snail (#3895, Cell Sig-
naling Technology, Boston, MA, USA) (all 1:1000) and the corresponding horseradish
peroxidase (HRP)-conjugated secondary anti-mouse IgG (sc-516102, Santa Cruz Biotech-
nology, Dallas, TX, USA) (1:2000) and the primary antibodies against fibronectin (ab268020,
Abcam, Cambridge, MA, USA), GAPDH (#2118, Cell Signaling Technology), phospho-
Smad2 (#3108, Cell signaling Technology), phospho-Smad3 (#9520, Cell Signaling Technol-
ogy) and Smad2/3 (#3102, Cell signaling Technology) (all 1:1000) and the corresponding
HRP-conjugated secondary anti-rabbit IgG (A16096, Invitrogen) (1:2000) were diluted at
indicated concentrations.

The harvested HPMCs and tissues were subjected to 10% SDS-PAGE on appropriate
resolving gels and immunoblotted. Briefly, tissues and cells were lysed in ice-cold RIPA
buffer (25 mM Tris-HCl (pH of 7.6), 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate,
0.1% SDS (89901, Thermo Fisher Scientific)), containing 1% protease inhibitor single-use
cocktail solution (100×, 1 mM AEBSF, 800 nM aprotinin, 50 µM bestatin, 15 µM E64, 20 µM
leupeptin, 10 µM pepstatin A and 5 mM EDTA (78430, Thermo Fisher Scientific)). The
lysates were centrifuged at 14,000 rpm for 10 min at 4 ◦C and the supernatants were
collected. Proteins were separated with 10% SDS-PAGE and transferred onto 0.45 µm
PVDF membranes (GE10600023, Amersham, GE Healthcare, Buckinghamshire, UK). The
membranes were blocked with 5% skim milk (MB-S1667, MBcell, Seoul, Korea) in TBS-T
(247 mM Tris (pH of 7.4), 1.37 M NaCl, 27 mM LCl and 0.5% Tween 20 (TR2007-100-74,
Biosesang)), before incubation overnight at 4 ◦C with the primary antibodies. Next, the
membranes were washed with TBS-T and incubated with appropriate HRP-conjugated
secondary antibodies. Protein bands were detected using enhanced chemiluminescence
reagents (34095, Thermo Fisher Scientific). The membranes were assessed using LAS-3000
(Fujifilm, Tokyo, Japan) and the density of the area was evaluated using the ImageJ software
(version 1.50e, National Institutes of Health, Bethesda, MD, USA).
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2.5. Immunofluorescence Staining

HPMCs (2 × 105 cells per chamber) were grown on an 8-well chamber slide (154534,
Thermo Fisher Scientific) for 24 h for cell cycle synchronization. The growth medium
was then replaced with serum-free M199 medium supplemented with 1% FBS and TGF-β
(2.0 ng/mL), with or without SB525344 (1 µM), for 24 h. For immunofluorescence staining,
cells were washed in 1% bovine serum albumin (BSA) (160069, MP Biomedicals, Illkirch,
France) dissolved in PBS and fixed in 4% paraformaldehyde (10 min at 4 ◦C). They were
then permeabilized with 0.1% Triton X-100 in PBS (15 min at 4 ◦C) and washed again with
1% BSA in PBS. After an overnight incubation at 4 ◦C with primary antibodies against
E-cadherin (610181, BD biosciences, Franklin Lakes, NJ, USA) (1:100), α-SMA (#19245, Cell
Signaling Technology) (1:200) and COL1A1 (collagen type 1 alpha 1, #72026, Cell Signaling
Technology) (1:500), the cells were treated with 1% BSA in PBS for 1 h and, subsequently,
washed again with PBS. The cells were then incubated for 1 h with a fluorescein-conjugated
secondary antibody, either Alexa Fluor 488-conjugated goat anti-mouse IgG (A11001,
Invitrogen), or Alexa Fluor 568 goat anti-rabbit IgG (A11012, Invitrogen). A slide chamber
was mounted using mounting medium containing DAPI (H-1200, Vector Laboratories,
Burlingame, CA, USA), in the dark at room temperature. Nuclei were counterstained with
DAPI and the stained slide chamber was examined under a light microscope (400×).

2.6. Quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR) Analysis

qRT-PCR was performed in a 20 µL reaction mixture containing 10 µL of iQ™ SYBR®

Green Supermix (1708880AP, Bio-Rad, Hercules, CA, USA), 1 µL each of 10 pmole/µL for-
ward and reverse primers, 6 µL of water and 2 µL of template cDNA. The primer sequences
used were as follows: COL1A1 forward, 5′-GCCTCAAGGTATTGCTGGAC-3′, reverse,
5′-ACCTTGT TTGCCAGGTTCAC-3′; Snail forward, 5′-GTTTACCTTCCAGCAGCCCT-3′,
reverse, 5′-TCCCAGATGAGC ATTGGCAG-3′; β-actin forward, 5′-ATCGTGCGTGACATT
AAGGA-3′, reverse 5′-ATTGCCAATGGTGATGACCTG-3′. Relative mRNA expression
levels of the target genes in each sample were calculated using the comparative CT method.
The relative expression of each gene was normalized to that of β-actin. The samples were
assayed on a CFX Connect real-time System (CFX Connect Optics Module, Bio-Rad).

2.7. Animal Experiments

All experiments were conducted with male C57/BL6 mice (10 weeks, 20–25 g) (Sam-
tako Biokorea, Seoul, Korea). Mice were group-housed under a 12:12 h light:dark cycle at
24 ± 1 ◦C. Mice had unrestricted access to standard tap water and were allowed to accli-
matize to the environment for at least seven days. All animal procedures were approved
by the Institutional Review Board of Yeungnam University College of Medicine (IRB No:
YUMC-AEC-2019-026 at 12 August 2020) and were in accordance with the Guide for the
Care and Use of Laboratory Animals.

PF was induced using a previously described protocol, with slight modification [17].
Mice were classified into three groups as follows: (i) CTL (n = 5), 15% ethanol dissolved
in PBS (1.5 mL/100 g body weight) was intraperitoneally injected every other day and
oral gavage with corn oil (0.1 mL/body, C8267, Sigma-Aldrich) containing 0.5% DMSO
was performed daily; (ii) PF (n = 6), 0.1% chlorhexidine gluconate (CG) and 15% ethanol
dissolved in PBS (1.5 mL/100 g body weight) were intraperitoneally injected every other
day and oral gavage with corn oil (0.1 mL/body) containing 0.5% DMSO was performed
daily; (iii) PF + SB (n = 8), 0.1% CG and 15% ethanol dissolved in PBS (1.5 mL/100 g body
weight) were intraperitoneally injected every other day and oral gavage with SB52534
(20 mg/kg/day), including corn oil and 0.5% DMSO, was performed daily. To avoid
artifacts arising from peritoneal damage due to repeated injections, 0.1% CG was injected
at the lower part of the peritoneum and the upper portion of the parietal peritoneum was
used for the analyses. Mice were euthanized after 28 days. All mice were anesthetized via
intraperitoneal injection of a combination of tiletamine (125 µg/g), zolazepam (125 µg/g)
(Virbac, Seoul, Korea) and xylazine (0.78 µg/g) (260, Bayer-Korea, Seoul, Korea).
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2.8. Peritoneal Equilibration Test

Mice in each group underwent a peritoneal equilibrium test on the day before eu-
thanasia. Mice were injected with 2 mL of 4.25% glucose solution containing the dialysate
(Physioneal®, Baxter Healthcare, Singapore) for 2 h and euthanized; then, the dialysate was
collected. Glucose levels in the dialysate were determined according to the manufacturer’s
instructions (Seoul Clinical Laboratories, Seoul, Korea). Functional alteration of peritoneal
membranes was evaluated by D/D0 glucose levels at 2 h after dialysate infusion per level
at 0 h [18].

2.9. Histological Analysis of the Peritoneum

The parietal peritoneum of the abdominal wall or visceral peritoneum of the liver
surface was fixed with 4% paraformaldehyde, embedded in paraffin and cut into 4 µm
thick sections. Thickness of the parietal peritoneum, including the mesothelium and
submesothelial tissue, was measured in tissue sections under a light microscope (100×)
after staining with Masson’s trichrome (Trichrome stain kit, TRM-2, ScyTek, Logan, UT,
USA). Slide scans were performed using a panoramic digital slide scanner (Panoramic
scan2, 3Dhistech Ltd., Budapest, Hungary) and the thickness was measured using the
Caseviewer software (3Dhistech Ltd.).

For immunohistochemical staining, tissues were fixed with 4% paraformaldehyde
(pH of 7.4), embedded in paraffin and cut into 4 µm sections using a microtome. Tissue
sections were rehydrated using xylene and an ethanol gradient. After washing with water
for 5 min, the sections were permeabilized using 3% H2O2 (1145, Duksan, Ansan, Korea),
dissolved in methanol, for 15 min, then washed with water twice for 5 min. For antigen
unmasking, sections were immersed in citrate buffer (150 mM sodium citrate, pH of 6.0),
boiled for 10 min, cooled at room temperature for 20 min, washed with water and blocked
with 5% normal goat serum blocking solution (NGS) (S-1000-20, Vector Laboratories) in PBS
for 30 min. The sectioned tissues were incubated with anti-collagen I (GTX 20292, GeneTex,
Irvine, CA, USA) (1:200), anti-fibronectin (ab268080, Abcam) (1:200), or anti-TGF-β antibod-
ies (ab215715, Abcam) (1:200), dissolved in 5% NGS, overnight at 4 ◦C. The sections were
then washed with PBS, followed by incubation with a goat anti-rabbit antibody (A16096,
Invitrogen) (1:200), dissolved in 5% NGS, at room temperature for 1 h. Subsequently, the
sections were washed with PBS for 10 min, stained according to the manufacturer’s instruc-
tions (DAB Substrate Kit for Peroxidase, SK-4105, Vector Laboratories) and counterstained
with hematoxylin (S3309, DAKO, Carpinteria, CA, USA). Sections were then dehydrated
using an ethanol gradient, cleared in xylene and covered with cover slips using a mounting
medium solution (3801120, Leica). For immunofluorescence microscopy, 15 µm tissue
sections were incubated and processed in the same manner as the in vitro samples.

2.10. Statistical Analysis

IBM SPSS Statistics (version 25.0, IBM Corp., Armonk, NY, USA) was used to analyze
the data. Data are expressed mean ± standard error. Groups were compared using the
Kruskal–Wallis or Mann–Whitney U rank-sum test. Differences between time points were
compared using the Wilcoxon signed-rank test. The association between two continuous
variables was evaluated using a linear regression analysis. Statistical significance was set
at p < 0.05.

3. Results
3.1. SB525334 Attenuates Morphological Changes and Cell Migration in TGF-β-Treated HPMCs

Supplementary Figure S1 shows the results of SB525334 toxicity according to the treat-
ment duration. Cell toxicity was observed after 24 h of treatment with 100 µM SB525334.
Morphological changes from cobblestone to spindle-shape were observed 24 h after TGF-β
administration and worsened over time. SB525334 alone did not result in morphological
changes and TGF-β-induced morphological changes were attenuated at SB525334 levels
above 1 µM (Figure 1).
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Wound healing and Matrigel tests showed that cell migration and invasion were
more prominent in TGF-β-treated HPMCs; however, SB525334 attenuated these effects
(Figure 2).
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3.2. Effects of SB525334 on EMT Markers in TGF-β-Treated HPMCs

TGF-β treatment led to an increase in expression of the mesenchymal cell marker
α-SMA and a decrease in that of the epithelial cell marker E-cadherin (Figure 3A). Co-
treatment with SB525334 reversed these changes. The levels of protein markers, including
fibronectin, α-SMA, Snail and E-cadherin, as measured by Western blotting, showed the
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same trends as those from immunostaining (Figure 3B). Decreased Smad phosphorylation
is known to contribute to decreased mRNA and protein levels of EMT inducers such as
Snail [7]. In our study, the decreased Smad phosphorylation found was consistent with the
decrease in protein and mRNA levels of Snail as its target (Figure 3B–D). TGF-β-treated
HPMCs increased the synthesis of COL1A1, which was counteracted by co-treatment with
SB525334 (Figure 3E,F).

3.3. Effects of SB525334 on an In Vivo Model

The body weight of mice from D0 to D21 was similar among the three treatment
groups; however, it was lower in the PF alone group than in the CTL group at D28
(Supplementary Figure S2). Chow intake was also lower in the PF group than in the CTL
group, but there were no significant differences in body weight or chow intake between the
CTL and PF + SB groups (Table 1). The non-standardized β values (standard errors and p
values) of chow intake for body weight at 1, 2, 3, or 4 weeks were 0.344 (0.114, p = 0.008),
0.291 (0.086, p = 0.003), 0.454 (0.102, p < 0.001) and 0.459 (0.070, p < 0.001), respectively.
The peritoneal equilibrium test showed a decreased D/D0 glucose ratio in the PF group
compared with that in the CTL group, but the ratio was recovered in the PF + SB group
compared with that in the PF group (Supplementary Figure S3).

Table 1. Chow intake during the experimental period.

CTL PF PF + SB

D1–D7 (g/week) 17.3 ± 0.6 14.6 ± 0.1 * 17.0 ± 0.4
D8–D14 (g/week) 17.7 ± 1.7 13.4 ± 0.3 * 16.0 ± 0.5
D15–D21 (g/week) 15.7 ± 1.9 13.4 ± 0.3 15.4 ± 1.2
D22–D28 (g/week) 16.8 ± 2.2 11.4 ± 0.1 * 13.5 ± 0.5

Comparison was performed using the Mann–Whitney U rank-sum test. Data are expressed as mean ± standard
error (n = 5 for CTL group, n = 6 for PF group, n = 8 for PF + SB group). CTL, control; PF, mice intraperitoneally
injected with 0.1% chlorhexidine gluconate; PF + SB, PF with SB525334 administration by oral gavage; D1, day 1;
D7, day 7; D8, day 8; D14, day 14; D15, day 15; D21, day 21; D22, day 22; D28, day 28. * p < 0.05, compared to the
CTL group.
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groups; however, it was lower in the PF alone group than in the CTL group at D28 
(Supplementary Figure S2). Chow intake was also lower in the PF group than in the CTL 

Figure 3. Changes in epithelial and mesenchymal cell markers in TGF-β-treated-human peritoneal mesothelial cells, with
or without SB525334 (1 µM). (A) Immunofluorescence staining of E-cadherin (green) and α-SMA (red) with nuclear counter-
staining (DAPI; blue) (400×magnification; scale bar, 50 µm). Western blotting results for (B) epithelial and mesenchymal
cell markers and (C) the Smad-dependent signaling pathway. (D) mRNA expression of Snail. (E) Immunofluorescence
staining of COL1A1 (red) with nuclear counterstaining (DAPI; blue) (400× magnification; scale bar, 50 µm). (F) mRNA
expression of COL1A1. CTL, control; TGF-β, transforming growth factor-beta 1; SB, cells treated with 1 µM SB525334; T + SB,
SB with TGF-β; α-SMA, α-smooth muscle actin; OD, optical density; p-Smad2, phospho-Smad2; p-Smad3, phospho-Smad3;
COL1A1, collagen type 1 alpha 1. Percentage for the control group is expressed as mean ± standard error (n = 6 per group
for protein level and n = 5 per group for mRNA level). * p < 0.05, compared to the corresponding group.

Trichrome staining showed that the thickness and collagen deposition of the parietal
peritoneum in the PF group were increased, but these changes were attenuated by co-
treatment with SB525334 (Figure 4A). In the PF group, the levels of fibronectin, α-SMA
and Snail were increased, while those of E-cadherin were decreased, compared to those in
the CTL group (Figure 4B). However, these changes were attenuated by treatment with
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SB525334. Immunostaining for DAPI, E-cadherin and α-SMA also showed similar trends
to those observed with Western blotting (Figure 4C). The PF group included E-cadherin
and α-SMA dual-positive cells, but the number of these cells decreased with SB525334
co-treatment. Immunohistochemical staining for COL1A1, fibronectin and TGF-β revealed
increase in all factors in the PF group; however, these changes were attenuated by co-
treatment with SB525334 (Figure 4D,E). In the liver, immunohistochemical staining with
hematoxylin and eosin and trichrome for fibronectin and COL1A1 showed similar trends
to that of the parietal peritoneum (Supplementary Figure S4).
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ity to bio-incompatible dialysate or inflammatory mediators and transformed/invaded 
cells lead to myofibroblast accumulation, submesothelial fibrosis and angiogenesis [3]. 
The TGF-β/Smad signaling pathway plays an important role in regulating these EMT 
changes in the peritoneal membrane. Previous studies have investigated the impact of 
various interventions, such as metformin, dexamethasone, tamoxifen, paricalcitol, or 
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few are used in clinical settings, except for tamoxifen and/or steroids. Even tamoxifen 
and/or steroids are not strongly recommended for the prevention or treatment of PF, in 

Figure 4. Morphological changes and Western blotting, immunofluorescence and immunohistochemical analyses of the
parietal peritoneum. (A) Masson’s trichrome staining (100× magnification; scale bar, 100 µm). (B) Western blotting of
epithelial or mesenchymal markers. (C) Immunofluorescence staining for E-cadherin (green) and α-SMA (red) with nuclear
counterstaining (DAPI; blue) in the parietal peritoneum (400× magnification; scale bar, 20 µm). Cells positive for both
E-cadherin and α-SMA are indicated by arrows. (D) Immunohistochemical staining for COL1A1 or fibronectin (200×
magnification; scale bar, 50 µm). (E) Immunohistochemical staining for TGF-β (100×magnification; scale bar, 50 µm). CTL,
control; PF, mice intraperitoneally injected with 0.1% chlorhexidine gluconate; PF + SB, PF with SB525334 administration by
oral gavage; α-SMA, α-smooth muscle actin; OD, optical density; COL1A1, collagen type 1 alpha 1; TGF-β, transforming
growth factor-beta 1. Thickness of the peritoneal membrane is expressed as mean ± standard error (n = 5 for CTL group,
n = 6 for PF group, n = 8 for PF + SB group). * p < 0.05, compared to the corresponding group.

4. Discussion

PF is a well-known, important pathologic change in patients with PD; previous
studies have investigated various mechanisms and interventions for the attenuation of
PF [2]. Peritoneal mesothelial cells can be damaged by various conditions, which leads to
EMT of these cells as a classic pathogenesis of PF. The EMT of peritoneal mesothelial cells
is associated with morphological and functional changes, such as loosening of intercellular
tight junctions between mesothelial cells and invasion into the submesothelial space.
Loosening of intercellular tight junctions is associated with increased vulnerability to
bio-incompatible dialysate or inflammatory mediators and transformed/invaded cells
lead to myofibroblast accumulation, submesothelial fibrosis and angiogenesis [3]. The
TGF-β/Smad signaling pathway plays an important role in regulating these EMT changes
in the peritoneal membrane. Previous studies have investigated the impact of various
interventions, such as metformin, dexamethasone, tamoxifen, paricalcitol, or tranilast, on
TGF-β-induced EMT and shown favorable results [12–14,19,20]. However, few are used
in clinical settings, except for tamoxifen and/or steroids. Even tamoxifen and/or steroids
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are not strongly recommended for the prevention or treatment of PF, in clinical practice
guidelines [4]. Most interventions consist of conservative care, such as modality switching
or nutritional support. The unmet needs for prevention or treatment of peritoneal fibrosis
necessitate further investigation of this process in peritoneal mesothelial cells.

SB525334 was originally characterized as a novel TβRI inhibitor and was firstly
shown to attenuate fibrotic changes in an acute puromycin aminonucleoside nephropathy
model [21]. SB525334 can inhibit the activity of TβRI and activin receptor-like kinase
(ALK) 4; however, it does not inhibit other kinases, such as ALK3, or ALK6. In addition, in-
hibitory activity is greater against TβRI than ALK4. After the elucidation of TβRI inhibition
by SB525334, the drug was evaluated using various pathological models, such as cancer
or fibrosis, which are associated with the TGF-β signaling pathway. Higashiyama et al.
investigated its protective effect in a bleomycin-induced pulmonary fibrosis model [22]. An
in vitro study using rat chondrocytes showed that SB525334 decreased collagen production
through downregulation of the extracellular signal-regulated kinase 1/2 (ERK1/2) and
Smad signaling pathways [23]. A study investigating a Fabry disease model showed that
SB525334 can attenuate the globotriaosylsphingosine and globotriaosylceramide-induced
EMT of renal tubular cells, which results in protection from renal fibrosis [24]. Other studies
have shown favorable results with SB525334 in liver treatments. Studies have investigated
the anti-fibrotic effects of SB525334 using high-glucose and succinate-induced hepatic
stellate cell activation or parasite infection models [25,26]. Huang et al. used a precision-cut
liver tissue slice model that included all major cell types of liver parenchyma and showed
anti-fibrotic effects of SB525334 in liver cells after bile duct ligation [27]. Other studies
evaluated the influence of SB525334 on cancer models and revealed its inhibitory effects
on the migration, invasion and EMT of cancer cells in the esophagus, liver, ovary and
pancreas [8–11]. Furthermore, SB525334 attenuates the collagen production by reducing
NADPH oxidase 4 in myoblasts [28].

Considering the importance of TGF-β-induced EMT in PF and the inhibitory effect
of SB525334 on the EMT in various models, SB525334 may be useful in attenuating the
fibrotic process in the PF model. In our study, we first induced EMT using TGF-β-treated
HPMCs and found that these pathological changes were reversed by co-treatment with
SB525334. These effects included morphological changes, cell migration and invasion
and EMT markers. Finally, collagen synthesis was evaluated using immunofluorescence
staining and qRT-PCR for COL1A1. Co-treatment with SB525334 attenuated all TGF-β-
induced changes in EMT. We next performed an in vivo study using a CG induced PF
model. CG injection was associated with an increase in PF and thickness, which functionally
resulted in a decrease in the D/D0 ratio. Co-treatment with SB525334 attenuated these
changes. The levels of EMT protein markers and immunohistochemical staining for fibrosis
showed similar trends. Immunofluorescence staining for EMT markers showed induction
of transformed cells with both epithelial and mesenchymal cell markers, which decreased
upon co-treatment with SB525334. PF or thickness was also observed in the visceral
peritoneum on the liver surface. These results were consistent with those from the parietal
peritoneum. In addition, we performed immunohistochemical staining for TGF-β, which
revealed that the CG-induced PF was associated with the TGF-β signaling pathway.

Our in vivo study revealed a positive association between chow intake and body
weight. Intraperitoneally injectedCG, which results in peritoneal inflammation or fibrosis,
was associated with a decrease in chow intake, which led to a decrease in body weight. Our
in vivo study showed that, despite the lack of a significant difference in both chow intake
and body weight between the PF and PF + SB groups, the trend showed that cotreatment
with SB did not completely recover chow intake and body weight compared with those
in the CTL group. This may be associated with two issues. First, the PF model using CG
may be a very strong fibrosis model, which did not fully prevent injuries byCG, despite
SB treatment. Second, PF by intraperitoneally injected CG can be developed through
other pathways, such as NF-κB via advanced glycation end products, or IL-1β, or ERK
1/2 via IL-6, or angiotensin, beyond TGF-β and its signaling pathways [29–31]. SB525334
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can attenuate TGF-β and its downstream pathways, but may not completely prevent
changes through other pathways than TGF-β and its signaling pathways. The incomplete
attenuation of peritoneal inflammation or fibrosis may not lead to full recovery of chow
intake and body weight compared to those in the CTL group.

Our study has some limitations. First, in the in vitro study, EMT in HPMCs was
induced by TGF-β, while EMT in the in vivo model was induced by CG injection. However,
PF in PD is mainly caused by peritoneal dialysate with high glucose levels. In both in vitro
and in vivo studies, the high glucose solution-induced EMT may be more equivalent to a
human model of either TGF-β- or CG-induced EMT. In addition, the in vivo study was not
performed under true uremic conditions. Second, human data for SB525334 are lacking
owing to insufficient safety information, such as whether the drug is metabolized by the
kidney. These can be important hurdles in developing clinical applications. However, as
TβRII is a key mediator for EMT, targeted inhibition using SB525334 may have fewer side
effects than other interventions, such as paricalcitol, metformin, or tranilast, which were
originally developed for other purposes. Further preclinical studies regarding the safety of
SB525334 should be considered to overcome these limitations.

5. Conclusions

SB525334, an orally available potent TβRI inhibitor, effectively attenuated the TGF-β-
induced EMT in HPMCs. Cotreatment with SB525334 improved peritoneal thickness and
fibrosis and recovered peritoneal membrane function in a PF mouse model.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomedicines9070839/s1, Figure S1. Cytotoxic effects of SB525334 on human peritoneal
mesothelial cells (HPMCs). HPMCs were treated with SB525344 (0 µM, 0.1 µM, 1 µM, 10 µM, 100 µM
and 200 µM) for 24, 48, or 72 h. SB525334 showed no significant toxicity up to 10 µM. Cell viability is
expressed as mean ± standard error (n = 5 per group). * p < 0.05, compared to the corresponding
group. Figure S2. Changes in body weight. CTL, control; PF, mice intraperitoneally injected with
0.1% chlorhexidine gluconate; PF + SB, PF with SB525334 administration by oral gavage. Data are
expressed as mean ± standard error (n = 5 for CTL group, n = 6 for PF group, n = 8 for PF + SB
group). * p < 0.05, compared to the CTL group. Figure S3. Peritoneal equilibrium test. CTL, control;
PF, mice intraperitoneally injected with 0.1% chlorhexidine gluconate; PF + SB, PF with SB525334
administration by oral gavage; D/D0 glucose, the ratio of dialysate glucose level at 2 h after dialysate
infusion per the level at 0 h. Data are expressed as mean ± standard error (n = 5 for CTL group, n = 6
for PF group, n = 8 for PF + SB group). * p < 0.05, compared to the CTL group. # p < 0.05, compared
to the PF group. Figure S4. Morphologic changes in the liver peritoneum immunohistochemical
staining with H&E, Masson’s trichrome, fibronectin, and COL1A1 (100× magnification; scale bar,
50 µm). CTL, control; PF, mice intraperitoneally injected with 0.1% chlorhexidine gluconate; PF + SB,
PF with SB525334 administration by oral gavage; H&E, hematoxylin and eosin; COL1A1, collagen
type 1 alpha 1.
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