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Abstract

Functional divergence is the process by which new genes and functions originate through the modification of existing ones.
Both genetic and environmental factors influence the evolution of new functions, including gene duplication or changes in
the ecological requirements of an organism. Novel functions emerge at the expense of ancestral ones and are generally
accompanied by changes in the selective forces at constrained protein regions. We present software capable of analyzing
whole proteomes, identifying putative amino acid replacements leading to functional change in each protein and
performing statistical tests on all tabulated data. We apply this method to 750 complete bacterial proteomes to identify
high-level patterns of functional divergence and link these patterns to ecological adaptations. Proteome-wide analyses of
functional divergence in bacteria with different ecologies reveal a separation between proteins involved in information
processing (Ribosome biogenesis etc.) and those which are dependent on the environment (energy metabolism, defense
etc.). We show that the evolution of pathogenic and symbiotic bacteria is constrained by their association with the host, and
also identify unusual events of functional divergence even in well-studied bacteria such as Escherichia coli. We present a
description of the roles of phylogeny and ecology in functional divergence at the level of entire proteomes in bacteria.
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Introduction

Most new genes, functions, and activities originate through the

modification of existing ones. The evolutionary process that gives

rise to functional differences between related genes is called

functional divergence [1,2]. At the species level, functional

diversification is primarily associated with adaptive radiations,

when a single ancestor differentiates into multiple descendant

species, each adapting by natural selection to one of a new set of

ecological niches (Schluter 2000) [3]. Following this theory,

environmental variation triggers divergent natural selection,

leading to the emergence of niche specialists. In many cases,

species under the same ecological conditions differ in their ability

to adapt to new niches, even when they stem from the same

ancestor [4,5]. Therefore, other factors such as genetic constraints

also play an important role in the process of functional divergence.

The process of functional divergence, or departure of a gene

from its ancestral function, is constrained by the requirement to

maintain the original function: mutations that confer a new

function are likely to interfere with the ancestral function and

therefore are eliminated by negative selection. This constraint can

be relaxed when selection for the ancestral function is weakened,

either through gene duplication (and therefore redundancy), or

through changes to the environment inhabited by the organism or

a combination of both these factors. After gene duplication, one

copy of the gene can be free to evolve in a new direction if the

other continues to perform the ancestral function (neofunctiona-

lization). Alternatively, ancestral functions can be partitioned

between the two gene copies, potentially leading to later

specialization or subfunctionalization [1,2,6,7,8]. Major changes

in the environment or ecological niche can also lead to a relaxation

of selective constraints on ancestral functions, although this process

is less well characterized. For example, endosymbiotic bacteria

have lost many of the genes their free-living relatives need to

obtain nutrients from the environment [9], but have also

experienced functional divergence in certain genes [10,11].

Prokaryotes are extraordinarily rich in biological diversity,

whether measured in terms of number of species [12,13], habitat

range [14], or the breadth of energy sources and biochemical

pathways they can exploit in order to survive [15]. Even

photosynthesis and oxidative phosphorylation – the mainstays of

eukaryotic energy metabolism – are bacterial inventions acquired

by endosymbiosis during early eukaryote evolution [16]. How did

this prokaryotic diversity evolve, particularly when the fixation of

gene duplications appears to be somewhat more frequent in

eukaryotes [17]?

Adaptive evolution in prokaryotes is promoted by at least three

main factors: first, a high strength of selection relative to
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eukaryotes, on account of their generally large population sizes

[18]; second, their ability to obtain genes by horizontal gene

transfer (HGT), which enables the sharing of niche-relevant

functions between distantly-related microbes living in the same

environment [19]; and third, their use of stress-induced hypermu-

tation [20], which may increase the production of adaptive

variants as a ‘‘last gasp’’ response to a challenging environment.

Although we know that these processes can drive ecological

adaptation in prokaryotes, identifying the fraction of genetic

variation that is associated with these functional changes remains a

challenging problem. In the case of bacteria, whole-genome

analyses must take into account widespread HGT, which means

that different genes often disagree on the overall species tree [21].

This is a considerable problem for analyses of functional

divergence, which require a tree in order to determine the branch

upon which a particular trait arose.

The rationale for previous methods to identify functional

divergence, and indeed the new approach described here, derives

from the neutral theory of Kimura [22] (1983), which predicts that

residues important for the function of a protein will be under

strong functional constraint and therefore evolve slowly. These

considerations have motivated the development of a number of

methods for identifying changes in selective constraints on protein-

coding genes and on single amino acid sites and lineages in a

phylogenetic tree [23,24,25,26,27,28,29,30,31,32,33]. At the

protein level, Gu [34,35,36] developed a Bayesian approach to

identify functional divergence, which has become the most widely

used. Comparisons of amino acid site-specific evolutionary rate or

residue conservation between two homologous clades can

therefore be used to identify amino acid sites at which selective

constraints have changed, potentially indicating functional diver-

gence.

Recently, we have developed a new distance-based method

which explores a bifurcating phylogenetic tree, testing for

functional divergence at each node by comparing the two

downstream clades to an outgroup in order to identify sites at

which substitution rates per amino acid sites have shifted [11,37].

Similar to other methods, our approach was limited to tests of one

gene at a time, unless the phylogeny of all genes could be fixed in

advance.

Because general patterns of functional divergence and their link

to ecological changes cannot be understood by the analysis of

single genes, in the present study, we have optimised our method

to (i) handle analyses of functional divergence that include

hundreds of complete proteomes, (ii) address the fact that the

phylogenies of individual proteins do not necessarily agree with the

true phylogeny, as is often the case with organisms that acquire

genes through HGT, (iii) provide an intuitive probability

assignment for each test which takes the underlying phylogeny

of the sequences into account and (iv) explore all levels of each

gene tree, testing for functional divergence at each node.

Using this novel method to detect functional divergence, we

infer patterns of radical change for each protein individually, and

then cluster species according to the functional categories (derived

from COG [38]) in which they exhibit significant evidence of

functional divergence. We provide a fast, open source implemen-

tation of our method in the C++ program CAFS (Clustering

analysis of functional shifts). We perform an analysis of functional

divergence on 750 bacterial proteomes. This set includes bacteria

from various different ecological niches and therefore provides a

good dataset for identifying ecology-related functional divergence.

Our approach (i) reveals striking patterns of convergent evolution

in phylogenetically distinct but ecologically related groups of

bacteria, including pathogens, endosymbionts, and thermophiles,

(ii) provides additional support for the view that bacteria have a

conserved set of core functions, with a more variable metabolic

layer and (iii) provides a detailed picture of how individual species

of unusual bacteria have diverged from their closest relatives.

Results and Discussion

A conserved functional core and variable crust in the
evolution of bacterial proteomes

An obvious sign of functional divergence (also understood here

as changes in substitution rates per amino acid site in proteins)

would be a set of homologs that spans multiple COG categories. In

this study we focus only on those alignments where all sequences

have the same COG annotation. This represents the majority of

homologs and is a reflection of the relatively broad character of the

COG categories.

The kinds of functional shifts that we detect on the basis of

conserved, radical amino acid substitutions are therefore subtler

and not noticeable from simply comparing the COG classifications

across homologous sequences. We used chi-squared tests to

evaluate the differences in functional divergence between COG

gene categories in our dataset (see Figure 1). We compared the

proportion of positive tests for functional divergence within each of

the 19 COG categories to the background expectation, which was

calculated by combining all categories. If genes in different

functional categories have similar propensities to undergo

functional divergence, we would expect the proportion of positive

tests in each category to be similar to the mean, resulting in few

significant cases of enrichment. However, eighteen of the nineteen

categories were either enriched or impoverished for functional

divergence, while only one category failed to deviate significantly

from the background expectation.

To test whether this polarization of our dataset was simply due

to an artifact – for instance, the use of a non-conservative

enrichment test – we performed simulations in which the genes in

our original dataset were randomly assigned to one of the 19 COG

categories before testing for enrichment. In these simulations,

events of functional divergence were much more evenly distributed

Figure 1. Different categories of genes experience different
levels of functional divergence. Proportion (FD) is the proportion of
tested branches with at least one functionally divergent site across all
gene trees in a particular functional category. Categories are labeled
according to the COG ontology system [38,73]. Eighteen of the
nineteen categories fall into two groups: significantly enriched or
impoverished. Most information processing genes (K, J, L, A) fall into the
latter group, while metabolic functions (E,F,G,H,P,Q) and genes involved
in defense (V) or found on the cell surface (M) are enriched for radical
change. Description of COG tags can be found in Table S5.
doi:10.1371/journal.pone.0035659.g001
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among the categories, so that 93% of categories were neither

enriched nor impoverished for functional divergence relative to the

background level. This result indicates that the probability of

functional change is not evenly distributed among the real

categories: there is a stark division between enriched and

impoverished categories. This supports the idea that bacterial

proteomes comprise a relatively unchanging core (that is, genes in

impoverished categories) coupled with a set of more variable

functions (enriched categories), as previously noticed [39,40,41].

The impoverished categories are almost exclusively those

involved with information storage and processing, including

DNA replication, recombination, and repair (L); transcription

(K), ribosome biogenesis (J); and cell division (D). Metabolic genes

were among those enriched for functional divergence, including

genes involved in the metabolism of coenzymes (H), secondary

metabolites (Q), carbohydrates (G), amino acids (E) and nucleo-

tides (F). Along with these metabolic categories, cell wall and

envelope genes (M) and cellular defense mechanisms (V) were

among the most enriched categories in our analysis, highlighting

the critical role of the environment in directing lineage-specific

episodes of functional change. Taken together, our results agree

with a number of previous reports indicating that proteins involved

in information processing are more conserved across large

evolutionary distances than those involved in metabolism

[39,40,41,42].

An additional point bears emphasizing here: since our method

controls for the level of conservation at each node on the tree, the

significance of a particular substitution pattern depends on the

background evolutionary rate so that in slow-evolving proteins,

relatively conservative substitutions are detected as significant

events of functional divergence, whereas only very unusual

substitution patterns will attain significance in fast-evolving

proteins. Therefore, our results indicate that information process-

ing genes are not only more conserved than others purely in terms

of evolutionary rate, but that they also experience less functional

change even taking this low rate of sequence evolution into

account.

Why are informational genes under greater functional con-

straint than the rest of the proteome? One possibility, which

follows Crick’s concept of the ‘‘frozen accident’’ [43], is that too

many other genes depend on the basic functions of translation,

transcription, and repair: functional changes in these genes would

disrupt many other systems in the cell. This hypothesis is

supported by the observation that the COG category containing

protein trafficking and chaperones (O) is also impoverished: the

core activities of generalist chaperones such as GroEL and DnaK

are required for the proper folding of many different proteins in

bacterial cells [44].

Host interactions constrain functional change in
pathogenic and symbiotic bacteria

Does the ecological niche of an organism influence the pattern

of functional change it experiences? To answer this question, we

evaluated the enrichment of functional divergence in each species

relative to the others in our dataset. To calculate the enrichment

status of each species, we used the same statistical strategy as

employed for enrichment by functional category: we calculated a

background proportion of successful tests for functional divergence

over all species, and then compared this to the proportion for each

species individually using chi-squared tests (a full table of these

results can be found in Table S1). We also used chi-squared tests to

identify associations between these three enrichment patterns

(enrichment, impoverishment, or neither) and organism lifestyle,

as is summarized in Table 1. While there was no statistically

significant difference between psychrophiles and mesophiles in

terms of functional divergence (chi-squared = 0.9762, P = 0.6138),

nor indeed was there significance when comparing thermophiles

to free living bacteria.

Thermophiles did however present a contrasting pattern of

functional divergence in comparison to the general pattern, with

two COG categories being enriched for functional divergence in

thermophiles while being impoverished in general. These

categories are directly related with the survival of cells under heat

stress: category K, which comprises mostly transcription factors,

and category L, which is involved in DNA replication,

recombination and repair. Above certain temperature threshold,

molecular pathways undergo dramatic temperature induced

alterations that drive to cytotoxicity, radiosensitization and

thermotolerance [45,46]. Among all the responses that take place

in the cell under high temperatures, inhibition of DNA, RNA and

protein synthesis is the response that involves a complex and fine-

tuning of regulation mechanisms, mainly orchestrated by tran-

scription factors [46]. One such important regulated mechanism is

the induction of heat-shock proteins, particularly involved in

Table 1. Effect of organism lifestyle on functional divergence.

Lifestyle Comparison Enriched Neither Impoverished Significance

Psychrophile Mesophile 2/61 6/433 1/66 N.S.

Thermophile Mesophile 7/61 22/433 1/66 N.S.

Pathogen Non-pathogen 22/77 272/294 47/38 *** (2)

Intracellular pathogen Other pathogen 0/22 26/246 4/43 N.S.

Symbiont Non-symbiont 4/95 36/530 13/72 *

*Intracellular endosymbiont All others 4/224 14/360 15/133 *** (2)

All interactors Free-living 44/55 410/156 70/15 *** (2)

Associations between lifestyle and enrichment for functional divergence: the numbers of genomes in each category are given in the form Lifestyle/Comparison.
Significance was assessed with Yates-corrected chi-squared tests, or Fisher tests when the expected count was lower than 5 for any one cell in the contingency table.
Significance codes: N.S. = P.0.05;
* = P,0.05,
** = P,0.01,
*** = P,0.001.
If an association was significant, ‘‘+’’ or ‘‘2’’ denote the direction of the shift associated with the lifestyle being tested. For instance, interactors are significantly
impoverished (2) compared to free-living bacteria.
doi:10.1371/journal.pone.0035659.t001
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mitigating the cytotoxic effects due to the non-specific aggregation

of unfolded and denatured proteins [47,48].

Interestingly, we found that all bacteria that interact with a host

as an integral part of their lifestyle (including pathogens, parasites,

symbionts and commensals) were significantly impoverished for

functional divergence in comparison to their free-living relatives

(see Table 1). This result is somewhat surprising because

pathogens and symbionts generally experience higher rates of

evolution than free-living bacteria, although much of the increase

can be attributed to heightened genetic drift [9]. Our results

suggest that once the overall conservation level of proteins is

accounted for, these bacteria have undergone less functional

change than their free-living relatives. This result can be explained

by greater ecological constraints on host-associated bacteria, which

must adapt to the highly specific environment of their host. In

particular, pathogenic and symbiotic bacteria preferentially lose

metabolic genes as they no longer require the capacity to exploit as

wide a range of nutrient sources as free-living bacteria [9].

Since these are precisely the kind of genes that are most

amenable to functional change (Figure 1), their loss from host-

associated bacteria explains the relative impoverishment of

functional divergence in these proteomes. The remaining genes

are also under strong constraints imposed by the specialized

environment they are in, limiting therefore any opportunity for

functional divergence (Toft and Fares 2008, 2009). However,

variability in genome size is a complicating factor in this analysis

because host-associated bacteria tend to have smaller genomes

than their free-living relatives. For instance, endosymbiotic

bacteria of insects underwent substantial reduction in the gene

content, with genomes sizes ranging between 144 kb and 792 kb

depending on the host (in comparison, E. coli K12 has a genome

size of 4.639 Mb) (See for example [49,50,51,52,53,54,55]. Since

functional divergence often follows gene duplication [1], it might

be expected that larger genomes would be enriched for new

functions in comparison to smaller ones.

Does genome size alone account for the observed differences

between host-associated and free-living bacteria? To test this

possibility, we modeled genome enrichment and impoverishment

for functional divergence as a function of lifestyle (host-associated

vs. free-living) and genome size (in nucleotides) using a generalized

linear model, a saturated model was fit using the glm function in R

(R Development Core Team, 2010), with enrichment or

impoverishment for functional divergence as the response variable

(binomial errors), and genome size (continuous, bp) and lifestyle

(categorical, free-living or host-associated) as the explanatory

variables. This was simplified to a minimal adequate model using

the step function. The interaction between genome size and

lifestyle was non-significant and was removed during model

simplification (see Table S2). Both lifestyle and genome size were

significant, with host-associated bacteria significantly more likely

to be impoverished (P = 1.28610213) and, perhaps surprisingly, a

modest tendency towards impoverishment in larger genomes

(P = 0.03). Therefore, variation in genome size does not account

for the observed differences in functional divergence between host-

associated and free-living bacteria.

To better define the effect of lifestyle on functional divergence,

we identified the functional categories with the greatest consistent

differences in enrichment status between host-associated and free-

living bacteria. Interestingly, genes involved in vesicular transport

and secretion systems (U) were enriched for functional divergence

in host-associated bacteria but neither enriched nor impoverished

in free-living bacteria, while signal transduction genes (T) were

impoverished in host-associated bacteria but enriched in their free-

living relatives (Table S3). This pattern can be readily understood

in terms of the lifestyles of host-associated bacteria, as pathogens

use elaborate secretion systems for delivering toxins and other

virulence factors to their host [56], while symbionts provision their

hosts with nutrients as part of their mutually beneficial relationship

[57,58]. In addition, the impoverishment in host-associated signal

transduction genes reflects their adaptation to a relatively constant

host environment, which is considerably more stable than the

fluctuating conditions experienced by their free-living relatives.

What is the relative importance of genome size variation

compared to functional divergence in bacterial adaptation? This

question is difficult to answer because both of these evolutionary

phenomena are at work in the process of ecological bacterial

adaptations. Therefore, micro-evolutionary processes, such as

functional divergence, necessarily accompany macro-evolutionary

processes, such as genome shrinkage or HGT, during bacteria

adaptation to different ecological conditions. The timing and

relative importance for each of these phenomena is, nevertheless,

varied over the different stages of adapting to a new environment.

Taking the example of symbiotic bacteria of insects, these bacteria

are characterized by a dramatic genome streamlining, high

mutation rates and the functional divergence of genes involved

in an endosymbiotic lifestyle. When did these processes occur? We

predict that HGT was important for the free-living ancestor of

these bacteria to acquire pathogenic genes and invade the

eukaryotic cells of the host. Dramatic gene loss in these invading

bacteria may have become the next important evolutionary leap,

making bacteria dependent upon the host. Finally, functional

divergence may have contributed importantly to the refinement of

the adaptation of these bacteria to the novel ecological conditions.

From proteome-wide to residue-level functional
divergence

In order to visualize the results of our functional divergence

analysis, we performed two-dimensional hierarchical clustering on

the enrichment status (enriched, impoverished, or neither)

associated with each species and functional category – that is,

we clustered species according to similarities in their enrichment

status across the 19 functional categories, resulting in the heatmap

and dendrogram in Figure 2a (complete dendogram and heatmap

is available in Figure S1). This is a powerful and intuitive way to

represent our results because it reveals the overall patterns in the

data – such as the extreme conservation among informational

genes, particularly those involved in ribosome biogenesis (J) - while

also highlighting individual, lineage-specific exceptions to the

general trends. In this section, we demonstrate the utility of this

approach by using the heatmap to identify species that have

undergone major functional shifts.

Although top-level bacterial groups (such as the divisions of the

proteobacteria, the Firmicutes, Actinobacteria, and so on) are not

resolved in our dendrogram of functional divergence (Figure 2),

family and genus-level relationships often are, presumably because

of close phylogenetic relatedness, shared gene content, and

similarity of ecological niche. This allows us to identify individual

species with atypical patterns of functional divergence. A

particularly striking case is that of the Bartonella genus (Figure

2b), which are a group of intracellular parasites that infect and

replicate in erythrocytes [59]. Of the four Bartonella species in our

dataset, only one – Bartonella bacilliformus – is enriched for

functional divergence in cell motility genes (N), with the others

being impoverished (2 species) or neither enriched nor impover-

ished (1 species).

Remarkably, this is the only member of the genus that possesses

flagella [60]. Since erythrocytes lack an active cytoskeleton, they

cannot be induced to take up external bacteria by invagination

Functional Divergence Mediates Adaptations
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[61]. Instead, erythrocyte invasion by Bartonella species is an active

process [62]. The mechanism employed by Bartonella bacilliformus

involves the use of its flagella [63] and is more efficient than that of

other Bartonella species, with up to 80% of erythrocytes infected

[62,64]. This appears to be a clear case where our approach has

identified an interesting, lineage-specific case of adaptation to a

specialized ecological niche.

Figure 2. Visualizing high-level patterns of functional divergence. We used hierarchical clustering to reveal the main patterns of functional
divergence in our dataset of 750 bacterial proteomes. (a) The complete heatmap, with a dendrogram corresponding to category clustering, and
species clustering along the left hand side. Visualizing the data in this way reveals the extreme impoverishment of proteins involved in ribosome
biogenesis (J), as well as the enrichment of categories involved in interaction with the environment (E, M, G, H, C, P) across all species. (b) Lineage-
specific events of functional divergence picked out from the heatmap (dendrogram colors denote the regions expanded upon – a larger version of
the complete heatmap is available as Figure S1). Unlike other Bartonella species, B. bacilliformus is impoverished for divergence in cell motility genes
(N), and is unique among Bartonella species in using a flagellum to infect erythrocytes. (c) Two strains of E. coli – SMS 3–5 and UMN026 – have
phylogenetically atypical patterns of functional divergence: the constraints on cell motility (N) are among those that have relaxed relative to the other
strains in SMS 3–5, while UMN026 is uniquely enriched for secretion system (U) genes.
doi:10.1371/journal.pone.0035659.g002
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PLoS ONE | www.plosone.org 5 April 2012 | Volume 7 | Issue 4 | e35659



Our heatmap turns up surprises even among relatively well-

characterized species (Figure 2c). As expected, closely related E.

coli and Shigella strains cluster together at the bottom of the

dendrogram (Figure 2a). E. coli SMS 3–5, a multidrug-resistant,

heavy-metal tolerant strain isolated from a polluted industrial

environment [65] is distinguished from other E. coli strains on the

basis of a relaxed functional constraint in the category of cell

motility (N); most others are impoverished for functional

divergence, while SMS 3–5 is enriched. This profile correlates

well with what is known about the biology of this strain, which is

unique among sequenced E. coli genomes in possessing a second,

intact lateral flagellar system called Flag-2, in addition to the

normal peritrichious flagella found in other E. coli strains [65,66].

This system was originally characterized in a different strain, 042,

where it has been rendered nonfunctional by a frameshift

mutation in one of the component genes [66], although it appears

to be complete in SMS 3–5 [65].

Another E. coli proteome with an unusual pattern of functional

divergence is O17:K52:H18 (strain UMN026), a multidrug-

resistant strain that causes urinary tract infections [67]. Unique

among E. coli and Shigella species, this strain is enriched for

functional divergence among genes involved in secretion (U).

Investigation of the genes underlying this enrichment revealed

functional divergence in the VirB8 and VirB9 genes, which

encode core proteins in a Type IV secretion system found only in

two E. coli strains – UMN026 and 018 (ED1a), although the latter

species is not enriched in this category. In other bacteria, Type IV

systems are involved in the exchange of DNA with the

environment, as well as the delivery of effector proteins to host

cells [68]. Since these two proteins are important components of

the Type IV secretion systems of other bacteria, functional

divergence in these genes may be involved in adapting the system

to an UMN026-specific role (see Figure 3).

To gain further insight into the possible implications of the

UMN026-specific changes in these proteins, we mapped the

specific residues under functional divergence in VirB8 (also output

by CAFS) onto the Agrobacterium tumefaciens crystal structure [69]. Of

the 14 sites under functional divergence (see Table S4), 5 could be

mapped onto the crystallized region of the protein. Of these 5, 4

are at or close to positions previously shown to be of functional

importance. Thr-196(residues numbered according to the A.

tumefaciens sequence), which CAFS detected as being under

functional divergence in UMN026, is directly involved in the

stabilization of the VirB8 homodimer [69], as is Leu-211, another

functionally divergent site. Additionally two sites identified by our

approach are at positions that suggest they may have an indirect

role in dimerization. Val-218 is located between two other residues

(Leu-217 and Val-219) that are involved in dimer formation, while

Phe-127 is adjacent to Ser-128, a conserved residue that stabilizes

the interaction surface on VirB8. The function of the other site

detected under functional divergence, Val-183, is currently

unknown. Taken together, these results indicate that functional

divergence in E. coli UMN026 VirB8 has occurred at residues

important in forming the homodimer, which may have important

implications for the overall structure and function of the complex.

With no crystal structure available for VirB9, it is more difficult to

evaluate the functional significance of the sites detected there.

Further, we detected functional divergence on 19 branches of the

VirB9 tree, suggesting that this protein experiences a more general

pattern of radical change.

Methods

Design and implementation
Our analysis of functional divergence, the individual steps of

which are detailed below, is summarized in Figure 4.

Figure 3. Amino acid residues under functional divergence in E. coli UMN026 VirB8. Right: the structure of a Type IV secretion system
found only in two strains of E. coli. CM = cytoplasmic membrane, OM = outer membrane. The complex structure is based on that of Baron (2006) [84].
In UMN026, the central complex proteins VirB8 and VirB9 are under functional divergence. Left: Of the five sites detected by CAFS that could be
mapped to the VirB8 crystal structure [69], there is evidence that four are involved in forming the VirB8 homodimer, suggesting that functional
divergence at these positions is involved in altering the quaternary structure of the complex.
doi:10.1371/journal.pone.0035659.g003
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Sequences, orthology, and alignment
The first step in a whole-proteome analysis of functional

divergence is the grouping of orthologs within the species of

interest. We leave orthology assignment for which a number of

tools are already in use [70], to the users’ choice according to their

own needs. For the present analysis, we retrieved pairwise

orthology assignments for 750 completely-sequenced bacterial

genomes from the OMA database [71,72], representing all

bacterial data in the October 2009 revision of the database.

We chose the OMA project for its very broad phylogenetic

coverage, as well as the favourable performance of its algorithm

against other current orthology assignment methods [70]. In

addition to providing pairwise orthology calls, the OMA algorithm

assembles strict orthologous groups in which every member is

directly orthologous to every other. The rationale for this strict

approach to grouping is the exclusion of paralogs, which is

important for a number of potential applications of the OMA

database, such as phylogenetic analysis. Unfortunately, these

groups are unsuitable for functional divergence analysis across

large phylogenetic distances because lineage-specific gene dupli-

cations tend to break up genuine orthologs into multiple,

overlapping groups (that is, clustering problems arise because

pairwise orthologies are not necessarily transitive). Using these

groups in our analysis would result in multiple testing of the same

clade, each time with overlapping but incomplete sampling of

downstream sequences. The inclusion of both orthologs and

lineage-specific paralogs in the same group is, however, of no

concern in our per-species comparison of divergence between

different functional categories of genes, because our method relies

on individual gene trees and not a single ‘‘species tree’’ to detect

functional divergence (see below).

Therefore, we decided to build our own groups from the

pairwise homology assignments in OMA, with the less stringent

requirement that any sequence in a group be connected to at least

one other sequence by pairwise homology. This strategy produces

Figure 4. CAFS program workflow. After alignments have been built for each gene in the analysis, the alignments are sorted by functional
category. In this case, the COG system was used [38], but any other ontology can be used as well. Trees are built for each gene using BIONJ [76] and
the JTT substitution model [77], and sites are scored for functional divergence on each branch. Significance is assessed by simulating a distribution of
test scores under a model of neutral evolution, taking the real phylogeny into account and using the False Discovery Rate approach to correct for
multiple testing. For each species and functional category, we use chi-squared tests to evaluate whether the species is enriched or impoverished for
functional divergence in that category, and then cluster species according to similarities in their profile across all 19 categories. This approach enables
us to account for HGT while identifying interesting and atypical patterns of functional change in the data, as discussed in the main text.
doi:10.1371/journal.pone.0035659.g004
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groups containing all orthologs and paralogs for a given gene, as

appropriate for analysis of functional divergence. However, the

approach is vulnerable to erroneous homology calls in the original

database, because a single false call will cause two unrelated

groups of sequences to be merged.

To assess the possible effect of false OMA homology

assignments on our dataset, we used the relevant genomic data

at NCBI to assign COG ontology tags to each sequence [38,73].

We then calculated the frequency of the modal COG tag in each

group (see Figure 5). The largest group (4,788 alignments)

contained only one COG tag each, validating our approach to

grouping homologs (since COG categories are relatively broad,

related sequences are expected to be annotated with the same tag).

To avoid ambiguity in the clustering of functional categories, we

only analyzed these single-tag alignments. We then filtered out

poorly-characterized groups (annotated with the ambiguous R or

S COG categories) and any group containing less than 9 sequences

(one outgroup and 4 sequences downstream of the inner nodes),

which we chose as the minimum number required for analysis

(both as a requirement for stringency and also comparison to

similar software Gu 1999). The final dataset comprised 3,813

groups, which were then analyzed with our novel approach

(CAFS: Clustering Analysis of Functional Shifts). Other functional

classifications such as Gene Ontology (GO) can also be used.

However, caution is required because GO contains overlapping

categories and alignments with multiple tags can lead to

ambiguous results.

Sequence alignments were built for each group with MUSCLE

[74], using the default parameters. Data on the ecological niches

occupied by the species included in the analysis was retrieved from

HAMAP [75] and from the Genome database at NCBI.

A typical alignment of 78 sequences takes 2 minutes and

40 seconds to analyze for functional divergence using CAFS on a

standard desktop computer, including NJ tree-building. At the

other extreme, the large-scale analysis reported below (44,416 tests

of functional divergence/3,813 alignments) took 92 hours on a 40-

node cluster.

Building gene trees
When analyzing entire proteomes for functional divergence, the

use of a species tree to infer events on each branch is problematic:

extensive horizontal gene transfer (HGT), particularly among

prokaryotes, means that genomes may not be related in a tree-like

way [21]. We therefore calculated a tree for each gene (set of

homologous sequences) in the dataset using BIONJ [76] (see Text

S1 and Table S6 for a justification of the use of BIONJ and

comparison with the use of maximum-likelihood trees), under the

JTT model of protein sequence evolution [77] along with a

gamma distribution(n = 4, alpha = 1.0) to correct for among sites

variation of evolutionary rates(a fixed alpha value was used

because of the time constraints involved in assessing alpha and

other parameters for all alignments). Calculations for that gene

were then made exclusively using the resulting tree.

Scoring functional divergence
We here define functional divergence as the potential departure

of the derived protein function from its ancestral one as a result of

amino acid changes at important functional sites. Therefore

functional divergence is detected on the basis of shifts in

substitutution rates per amino acid site in proteins. This analysis

of functional divergence can be used to provide a list of candidate

genes for further experimental testing. Our method identifies

amino acid sites within a protein, which have radical substitutions

between clades and are statistically significant. This is carried out

in each of the lineages of a tree, with each lineage being a cluster of

4 or more sequences.

The method steps through the phylogenetic tree and calculates

functional divergence scores at each of the inner nodes. For each

site of the protein, our approach compares the amino acid

composition between two clades to that of an outgroup. This

comparison is performed using BLOSUM62 amino acid substi-

tution matrix [78], indeed any substitution matrix can be used.

BLOSUM62 and related matrices provide an empirical measure

of the likelihood of the transition of one amino acid to any of the

other 20 (including its conservation). Scores of functional

divergence (FDscore) for each column are given by:

FDscore~
�XX 1{ �XX 2

SX1{X2

ð1Þ

where �XX1,2 are the mean substitution scores for the transition from

clades on either side of the bifurcation in the phylogenetic tree

relative to the outgroup and SX1{X2
, the standard error for

unequal sample sizes with unequal variances, is given by:

SX1{X2
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1

n1
z

s2
2

n2

s
ð2Þ

Figure 5. Number of COG assignments (tags) for each group of
homologous sequences. We included both orthologs and paralogs
in our sequence groups, because we are interested in functional
divergence. The majority of groups consisted of sequences that had all
been assigned to the same COG category, suggesting our grouping
strategy did not lump together unrelated sequences due to spurious
orthology calls. Since COG categories are relatively broad, we do not
generally expect functional divergence to cause a sequence to shift
from one category to another, an hypothesis that is also borne out by
the clustering of related sequences within the same category. In our
study, to avoid ambiguity we only use alignments in the group with a
single COG tag.
doi:10.1371/journal.pone.0035659.g005
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Significance testing
To test the significance of functional divergence events, we

simulated multiple sequence alignments of the same size as the real

alignment but in which proteins were evolved under a neutral

evolution model. Because functional divergence was tested in

protein alignments, the seed ancestral sequence was protein based

and this evolved under the JTT model.

For our simulations, we used the gene-specific tree topology and

branch lengths calculated above. We built at least 1000 such

simulated alignments (more simulations are created if mean and

standard deviation have not converged within a difference of

1*1026 after 1000), in each of which we searched for functional

divergence and calculated a score according to equation (1). To

allow for the gaps in the sequences we simulated alignments with

the number of columns equal to the length of the input alignment

minus the average number of gaps in each species. This search

resulted in a null distribution of the test score against which P-

values for the real data were calculated. These values were then

corrected for multiple testing by the False Discovery Rate method

[79] using an alpha value of 5% as the threshold of significance.

Following this procedure, branches on the tree that still possess at

least one significant amino acid site were considered to be under

functional divergence for the purposes of enrichment and

clustering.

Enrichment analysis
Once all alignments were analyzed, we performed three

different enrichment tests to ask three different biological

questions. These are based on a chi-squared test:

x2~
Xn

i~1

Oi{Eið Þ2

Ei

ð3Þ

Where Oi is the observed frequency of genes/alignments under

functional divergence, Ei is the expected frequency and n is the

number of possible outcomes of each event. We used the

enrichment tests to identify (i) species and (ii) categories of genes

that experienced significantly more (enriched: Oi – Ei.0) or

significantly less (impoverished: Oi – Ei,0) functional divergence

when compared to the background level (that is, P,0.05 in a chi-

squared test). We then calculated (iii) the enrichment status of each

category within each species, in order to identify lineage-specific

shifts in the pattern of functional divergence. It should be noted

that the chi-squared test used scales for the size of each of the

groupings considered in our results.

Hierarchical clustering
We created a heatmap from the enrichment status of functional

categories within species to help visualize the structure in our large

dataset. To do this we used the heatmap.2 function from the gplots

library in R (R Development Core Team, 2010). This function

performs two-dimensional hierarchical clustering according to

Euclidean distance and outputs a heatmap together with a

corresponding dendrogram. Visualizing the results of the analysis

in this way allows identifying unusual patterns of functional

divergence in particular functional categories or convergent

functional divergence among phylogenetically unrelated sequenc-

es.

Implementation
CAFS was implemented in C++ and is available under the

GNU General Public License v.3 for Linux, Mac and Windows.

The code was written using the GNU Scientific Library and the

Bio++ libraries [80]. The program is accompanied by full

documentation and enables the user to perform several different

kinds of analyses, including the identification of lineage-specific

functional divergence in a gene-of-interest (such as that reported

by Williams et al. (2010) [37]) and the kind of multi-proteome

investigation reported here. The latest version of the code and

documentation is available at http://bioinf.gen.tcd.ie/,faresm/

software/software.html.

Comparison to other applications and assessment of
Error

As mentioned previously many programs have been developed

to predict putative sites of functional divergence in a multiple

sequence alignment. Of those, the most commonly used method is

DIVERGE [81], therefore we used this as a benchmark. We found

that our method could analyze large alignments, automate

proteome scale analyses and performs analyses on tagging systems

which DIVERGE does not (Also see Table S7, Text S2, Table S8

and Text S3 for a detailed comparison of our method with

Diverge). Our method also performs simulations, which scales the

cutoff value for each alignment, this scaling allows us to analyze all

homologs and hence is not limited to orthologs. Our program

automates the building of trees with a more detailed model of

evolution and better tree building algorithm. Given that the tree

building algorithm is distance based we performed a comparison

to trees built using RaxML [82], 92% of the sites identified using

the distance based trees were identical to those using the

maximum likelihood method. Given the differences between our

software and that of DIVERGE it is very difficult to make

comparisons in terms of the sites reported by each program.

DIVERGE compares two clades after a duplication event and our

software compares two clades and an outgroup. We do so in order

to assess events of functional divergence at any testable node on a

tree and also because we feel it provides stronger evidence of

functional divergence. Another widely used software to identify the

strength of selection in protein-coding genes is PAML. This

package employs the programs yn00 and codeml for testing the

Dn/Ds ratio. This means PAML works on nucleotide level while

CAFS uses protein sequences, which gives it the ability to assess

divergences of greater magnitude. An additional feature of our

program is the ability to easily automate and carry out large

analyses, as shown in this study. Another philosophical difference

between both approaches is that, to detect positive selection, using

programs like PAML a strong signal is required, which would

make it difficult to detect episodic positive selection. CAFS only

requires an amino acid substitution fixed by positive selection in a

functionally important region of the protein followed by strong

purifying selection.

Given the difficulty of finding definitive positive controls for an

analysis of this nature we felt it important to demonstrate that

there would not be a large false positive rate. We simulated 20

alignments under a codon model with neutral evolution (non-

synonymous, Ka, to synonymous, Ks, rates ratio v= Ka/Ks = 1)

using the evolver package in PAML [83]. These alignments were

converted to amino acids and analysed with CAFS under the

default alpha value of 0.05, with this value the expectation would

be 5% of sites being reported as functionally divergent. Our

software reported an average of 2.3% of sites as functionally

divergent. Given this percentage we are confident that our

methodology of significance testing and implementation of false

discover rate is not susceptible to a large number of false positives.

Further details of this section can be found in Text S1 and S2 and

Tables S6 and S7.
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In conclusion, The identification of functional divergence and

ecological adaptation from sequence data is an interesting and

important goal in evolutionary biology, with the potential to

deepen our understanding of the evolution of individual traits and

species, as well as the processes of evolution as a whole. Bacteria

display an astonishing capacity for adaptation to different lifestyles

and ecological niches, but investigating the evolution of these traits

is problematic because their phylogenetic context is often unclear.

Here, we have circumvented this problem by evaluating

functional divergence on gene trees and then clustering species

by gene functional category. Our approach revealed the overall

patterns that have characterized functional change during the

evolution of bacteria, including strong constraint on information

storage and processing genes and also constraints induced by the

host on pathogenic and symbiotic bacteria. It also identified

lineage-specific events of atypical functional divergence, such as

the use of flagella by Bartonella bacilliformus to invade host

erythrocytes and residue-level changes in the VirB8 protein of E.

coli UMN026. This is, to our knowledge, the first method that can

be used to identify functional divergence at the level of entire

proteomes. Although used here to perform a large-scale analysis

on bacteria with the use of COG categories, our CAFS software is

extremely flexible and can be applied to individual genes, lineages,

or groups of proteomes using any ontology system in order to

investigate functional divergence at every level of biological

organization.

Supporting Information

Figure S1 Visualizing high-level patterns of functional
divergence. We used hierarchical clustering to reveal the main

patterns of functional divergence in our dataset of 750 bacterial

proteomes. The complete heatmap, with a dendrogram corre-

sponding to category clustering, and species clustering along the

left hand side. Visualizing the data in this way reveals the extreme

impoverishment of proteins involved in ribosome biogenesis (J), as

well as the enrichment of categories involved in interaction with

the environment (E, M, G, H, C, P) across all species.

(TIFF)

Table S1 Enrichment of COG gene categories for
functional divergence. The annotation for each COG category

was retrieved from http://www.ncbi.nlm.nih.gov/COG/. Enrich-

ment was evaluated with Chi-squared tests. ‘‘Not enriched’’

indicates there was no significant association between the number

of lineages under functional divergence and the COG category.

Impoverishment and Enrichment denotes the direction of a

significant association.

(DOCX)

Table S2 Enrichment status of 750 bacterial species.
Enrichment status was calculated with a Chi-squared test based on

the number of testable branches on our gene trees where a

particular species was under functional divergence.

(DOCX)

Table S3 Effect of bacterial lifestyle and genome size on
functional divergence. We used a generalized linear model

with binomial errors to assess the impact of lifestyle and genome

size on the enrichment and impoverishment of genomes for

functional divergence. The saturated model was fit with the glm

function in R, and simplified to a minimal adequate model with

the step function, which determined that the interaction was not

significant. Both lifestyle and genome size have a significant impact

on enrichment status, with host-associated bacteria and bacteria

with larger genomes more likely to be impoverished for functional

divergence.

(DOCX)

Table S4 Enrichment status of gene categories in host-
associated and free-living bacteria. Categories U and T

show different levels of enrichment for functional divergence when

the analysis is run on these groups of bacteria independently.

(DOCX)

Table S5 Sites under functional divergence in VirB8.
The left column shows the sites found in E.coli UMN026, the sites

on the right show the homologous sites in Agrobacterium tumefaciens.

Sites without a value for Agrobacterium tumefaciens represent sites,

which have not been crystalised.

(DOCX)

Table S6 Detecting functional divergence using BioNJ
trees. The number of FD sites predicted at the 0.05 p-value level

using BioNJ trees is consistently smaller. This indicates a stricter

scoring scheme, which potentially reduces false positives. It can be

seen from the last column, that the percentage of the FD sites

detected through BioNJ trees that are also detected through ML

trees increases with larger number of sequences in the alignment

and approaches 100%. Only the smaller alignments show

noticeable discrepancies but some of these can already be

explained by the effect of different tree topologies. Overall, the

above results confirm the suitability of BioNJ for tree construction,

particularly for alignments with a large number of sequences.

(DOCX)

Table S7 Comparison of runtime for two methods of
functional divergence. The most widely used program for

detection of functional divergence is DIVERGE [81]. Even

though it is well-suited for individual analyses, it can not be used

for a large-scale study such as the one presented here. This is

because the size of alignments dealt with exceeds the limits of the

data that DIVERGE can handle. It is also not designed to be run

automatically.

(DOCX)

Table S8 Functionalities of CAFS in comparison with
DIVERGE.
(DOCX)

Text S1 Justification for use of BioNJ and Comparison
of results performed with Maximum Likelihood trees vs
BIONJ trees.
(DOCX)

Text S2 A Note about testable alignments and compu-
tation time for functional divergence detection. It should

be noted that since DIVERGE could not run the 4 largest

alignments in this subset of our dataset, we predict that at least half

of the alignments in our full dataset can not be analysed by the

DIVERGE software. Indeed we were unable to run analysis on

any alignment over 86 sequences long, however DIVERGE would

read alignments up to 100 sequences long. Another further

problem about the calculations performed with DIVERGE2.0 is

the impossibility to perform analyses collected in Gu2001 which

pertains to the method in [81]. This analysis did not work for any

of the alignments above. All alignments failed with the error

‘‘Please recheck input sequence data and tree information’’, for

which we could not find documentation. In addition to the times

stated above we would like to add that DIVERGE works on an

alignment by alignment basis and as such the user must manually

chose files to be analysed and also the trees to be input and the

nodes to be tested. This makes proteome level analyses prohibitive.
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The runtimes given in the table above do not include the time it

takes for the user to choose nodes for functional divergence testing

with DIVERGE.
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Text S3 Conclusion of Comparisons of the methods to
identify functional divergence. We conclude that whilst we

understand and acknowledge the value of building maximum

likelihood trees we feel that one of the biggest assetts of our

program is speed and automation. With this in mind, we wish to

demonstrate to the user that whilst BioNJ trees are calculated

within the program the results recieved are ,92% comparable to

those returned after the maximum likelihood analysis. Given the

high level of similarity between the maximum likelihood built trees

and those built with BioNJ we feel that the conclusions drawn in

the manuscript would hold in either circumstance. We also feel

that analyses on the scale of those detailed in the main text are not

possible for many who have limited computational resources. In

reference to the DIVERGE comparisons we feel justified in our

calculations that DIVERGE is not ideal for large scale analyses

and can be troublesome to the user for even relatively small

alignments. In addition to the tests run above we would like to say

that on large scale analyses all of the information about the sites

tested are collected and automatically analysed according to any

tagging system applied to the dataset.

(DOCX)
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