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Background. Pathogenic infection in broilers has become an important issue in the development of poultry industry.
Xylooligosaccharides released from xylan via xylanase and fermented polysaccharide of Hericium caputmedusae (FPHC) have
antimicrobial potential against many pathogens. Objective. We aimed to explore the effects of xylanase and FPHC on pathogenic
infection in the broilers (Gallus gallus domesticus). Methods. Three hundred and thirty 21-day male broilers were assigned into
four groups: control group (CG, basic diet), xylanase group (XG, basic diet + xylanase), FPHC group (HG, basic diet + FPHC),
and XHG group (basic diet + xylanase + FPHC). Average daily feed intake (ADFI) and daily gain (ADG) were measured.
Microflora from broiler feces was analyzed using 16S rRNA sequencing. Serum tumor necrosis factor- (TNF-) α, interleukin-1β
(IL-1β), IL-1 receptor antagonist (IL-1ra), IL-10, total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione
peroxidase (GSH-Px), and malondialdehyde (MDA) contents were detected using kits. The variables were compared using the
Student t-test between two groups. Results. Microbiological investigations showed that 75% of broilers were affected by bacterial
pathogens in the CG group, most notably by coagulase-negative staphylococci. Comparatively, 15%, 26%, and 5% of broilers
were affected by bacterial pathogens in the XG, HG, and XHG groups, respectively. Xylanase and FPHC treatment increased the
ratio of ADG to ADFI and antioxidant capacity by increasing the levels of T-AOC, SOD, and GSH-Px and reducing the levels of
MDA (P < 0 05). Xylanase and FPHC treatment improved anti-inflammatory capacity by increasing serum levels of IL-1ra and
IL-10 and reducing the levels of IL-1β and TNF-α. On the other hand, the treatment increased probiotic concentration of
Bacillus licheniformis, Bacillus subtilis, and Lactobacillus plantarum (P < 0 05), which were also proved in cell culture.
Conclusions. Xylanase and FPHC ameliorate pathogen infection by increasing antioxidant and anti-inflammatory activities of
broilers via the increase of probiotics.

1. Introduction

Avian pathogens have become an important issue in the
development of poultry industry. Antibiotic is often consid-
ered and immeasurable in poultry industry. However,
antibiotic-resistant pathogens have become a public health
issue and affect the composition of microbiota in poultry
[1] and poultry production [2, 3]. It is highly demanded to
explore antibiotic alternatives in poultry industry [4].

As emerging prebiotics, the production of xylooligosac-
charide from biomass by xylanases was also widely reported
[5–7]. The xylooligosaccharides, released from xylan via xyla-
nase, have been proved to exhibit beneficial commensals by
decreasing pathogenic bacteria and increasing bifidobacteria
[5]. Xylooligosaccharides had antibacterial potential against
many pathogens, including Klebsiella pneumoniae, Entero-
coccus faecalis [8], and Helicobacter pylori [9]. On the other
hand, xylooligosaccharide has been reported to maintain gut
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flora balance by promoting the growth of probiotics, such as
Lactobacillus spp. and Bifidobacterium spp., and eliminating
enteric pathogens, such as Clostridium perfringens [10]. Poly-
saccharide fromHericium caputmedusaewas also reported to
improve gut microflora [11].

On the other hand, the composition of intestinal probiotics
will affect broiler immune [12], intestinal microarchitecture
[13], and microbial profiles [14]. Furthermore, probiotics
have antioxidant [15] and anti-inflammatory [16] properties.
Oligosaccharide can improve probiotic effect of intestinal
flora [17], and probiotics can use xylooligosaccharides pro-
duced from xylan by xylanase [18].

Furthermore, xylooligosaccharide indiets can enhance the
growth rate, modulate endocrine metabolism, and improve
immune function in poultry [19]. Nonstarch polysaccharide
was also found to improve the growth performance of poultry
[20]. More work also showed that supplementing pelleted
diets with thermoresistant multienzyme improved broiler
performance [21]. However, little data are available for
the effects of polysaccharide from H. caputmedusae and
xylanase on pathogenic infection in broilers. Poultry infec-
tion has been found to be associated with antioxidant and
anti-inflammatory activities. Therefore, the effects of xyla-
nase and polysaccharides from Hericium caputmedusae on
pathogenic infection in broiler were explored by investigating
antioxidant and anti-inflammatory activities and changes of
intestinal microbiota.

2. Materials and Methods

2.1. Broilers and Diets. Before the experiment, all procedures
were approved by the Animal Research Committee of Jilin
Agricultural University (approval no. 20150123JAUA1,
Changchun, China). H. caputmedusae was purchased from
Jilin University Pharmaceutical Factory (Changchun, China).
Xylanase was purchased from Hunan New Century Bio-
chemical Co. Ltd. (Yueyang, China). Three hundred and
thirty 21-day male broilers (Gallus gallus domesticus)
(0.9–1.0 kg) were purchased from Changchun Yongxu
Animal Husbandry and Veterinary Company (Changchun,
China), and randomly and evenly assigned into four
groups according to different treatments (Table 1): control
group (CG, the broilers received basic diet), xylanase
group (XG, the broilers received basic diet and xylanase
with activity of 1200 IU/kg), polysaccharide group (HG, the
broilers received basic diet and 0.1% fermented polysaccha-
ridesH. caputmedusae (FPHC,w/w)), and xylanase combined
with FPHC group (XHG, the broilers received basic diet,
1200 IU/kg of xylanase, and 0.1% FPHC (w/w)). Each of the
groups was assigned into three subgroups with 30 broilers in
a room (250 cm× 230 cm× 250 cm, length×width×height)
and given ad libitum access to feed and water. Each room
was controlled at 20°C. The basal diets were fed and prepared
in a feedmill. A basal diet was formulated tomeet the require-
ments by National Research Council (NRC) (Table 1, in the
CG group) [22]. All broilers were reared in natural light and
dark. Average daily gain, mortality, average daily feed intake
(ADF), and feed-to-gain ratio were measured.

2.2. H. caputmedusae Culture. H. caputmedusae was trans-
ferred from a slant medium to a PDA medium and cultured
in a 24°C incubator. After one-week culture, one cm2 of
medium with mycelia was transferred to 400mL of a liquid
medium and cultured in a shaker for 10 d at 140 rpm and
25°C. After 30-day fermentation, the mycelium was sepa-
rated from the fermentation broth and dried. The mycelium
was broken using an ultrasonic device, and polysaccharides
were isolated by adding distilled water and placed at room
temperature for 2 h. The mixture was centrifuged at
12,000g for 10min, and the supernatants were collected.
The steps were repeated for 3 times.

2.3. Preparation of Polysaccharides from H. caputmedusae.
Three-fold volume of 95% ethanol was added to the fermen-
tation broth and placed at room temperature for 36 h. Pre-
cipitates were collected via centrifugation at 12,000g for
30min. Protein was removed by adding the mixed solution

Table 1: Ingredients and chemical composition of diets among
different groups.

Ingredients (g/kg) CG XG HG XHG

Corn 595.0 595.0 595.0 595.0

Soybean meal (47% CP) 330.0 330.0 330.0 330.0

Corn oil 35.0 35.0 35.0 35.0

CaHPO4·2H2O 13.0 13.0 13.0 13.0

Limestone 13.0 13.0 13.0 13.0

Xylanase (IU/kg)∗ 0 1200 0 1200

FPHC∗ 0 0 1 1

Salt 3.0 3.0 3.0 3.0

DL-Met 1.0 1.0 1.0 1.0

Premixa 10.0 10.0 10.0 10.0

Chemical analysis (g/kg)

CP 209.9 209.8 209.8 209.9

Crude fiber 23.2 23.3 23.2 23.3

Ether extract 55.2 55.3 55.2 55.2

Crude ash 62.3 62.5 62.4 62.4

Ca 8.8 8.9 8.9 8.8

P 3.5 3.6 3.6 3.6

Calculated analysis

ME (MJ/kg) 13.3 13.3 13.3 13.3

Lys (%) 1.10 1.10 1.10 1.10

Thr (%) 0.78 0.78 0.78 0.78

TSAA (%) 0.83 0.83 0.83 0.83

Note: xylanase was added at 1200 IU/kg. FPHC: fermented polysaccharides
of Hericium caputmedusae. aPremix provided the following per kilogram of
diet: vitamin A (retinyl palmitate), 9000 IU; vitamin D3, 2000 IU; vitamin E
(DL-α-tocopheryl acetate), 10.0mg; vitamin K, 0.5 mg; vitamin B1, 1.8 mg;
vitamin B6, 3.5 mg; vitamin B12, 0.01mg; riboflavin, 3.6 mg; niacin,
35.0 mg; pantothenic acid, 10.0mg; folic acid, 0.55mg; biotin, 0.15 mg;
choline chloride, 250mg; Mn, 60.0mg; Zn, 40.0mg; Fe, 80.0 mg; Cu,
8.0 mg; I, 0.35mg; and Se, 0.15mg. CG: the broiler received basic diet; XG:
the broiler received basic diet and 1200 IU/kg xylanase (Hunan New
Century Biochemical Co. Ltd., Yueyang, China); HG: the broiler received
basic diet and 0.1% polysaccharides from the fermentation extract of
Hericium caputmedusae (FPHC, w/w); XHG: the broiler received basic diet,
1200 IU/kg of xylanase, and 0.1% FPHC (w/w). ∗P < 0 05 among four groups.
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(n-butanol : chloroform volume, 1 : 4) at 1 : 10 w/v. Finally,
purified polysaccharide was obtained.

2.4. Sample Collection.On the days 21 and 42, eight broilers in
each group were slaughtered by severing the jugular veins.
Small intestinal contents were harvested immediately and
transported to the laboratory for counting microbial colonies.
Intestinal mucosa was nipped by forceps and rinsed in 0.85%
saline solution. Mucosa was scraped by blunt side of surgical
knife blades, collected in microtubes immediately, frozen in
liquid nitrogen, and stored at −80°C until the next steps.

2.5. Biochemical Analysis. Approximately two-milliliter
blood was taken from per broiler, and serum was prepared
via centrifugation at 1500 rpm for 10min. The levels of
superoxide dismutase (T-SOD) [23], total antioxidant capac-
ity (T-AOC) [24], glutathione peroxidase (GSH-Px) [25],
and malondialdehyde (MDA) [26] have been reported as
the biomarkers of oxidative stress. Therefore, the levels of
all these molecules were measured in serum samples using
the kits from Beyotime Institute of Biotechnology (Jiangsu,
China). Inflammation is closely associated with the changes
of the distribution of intestinal flora. Therefore, inflamma-
tory situation was detected by measuring serum (tumor
necrosis factor) TNF-α, (interleukin) IL-1β, IL-1 receptor
antagonist (IL-1ra), and IL-10 via chicken ELISA Kit from
Cusabio (College Park, MD, USA).

2.6. Amplification of 16S rRNA. Ten-milligram feces were
collected from intestine of each broiler and diluted in water
by 100-fold. Genomic DNA was extracted from the sample
using a DNA Isolation Kit (Promega, Madison, WI, USA).
DNA samples were analyzed using an ND-2000 spectropho-
tometer (NanoDrop Inc., Wilmington, DE, USA).

Isolated DNA was used as a template to amplify 16S
rRNA gene regions using universal primers: forward primer,
5′-AGRGTTYGATYMTGGCTCAG-3′, and reverse primer,
5′-TTACCGCGGCTGCTGGCAC-3′. PCR mixture con-
sisted of 39μL ddH2O, 1μL DNA genome, 5μL 10x buffer,
0.5μL Taq DNA polymerase (Takara, Dalian, China), 0.5μL
forward and reverse primers (20μM), and 4μL dNTP, in total
of 50μL. PCR was performed with the following condition:
95°C for 5min, 30 cycles of 95°C sec for 20 sec, 55°C for
30 sec, 72°C for 1min 30 sec, and 72°C for 5min for final
extension. PCR products were determined on 1% agarose gel
and gel-purified.

2.7. Microbiota Analysis. Sample for bead-based sequencing
was set up according to an earlier report [27] and sequenced
using Roche 454 GS FLX platform on GS FLX instruments
from Roche (Roche, Nutley, NJ, USA) [28]. The heat map of
16S rRNA gene sequences on the 21st day and 42nd day was
created using Genomics Viewer at http://www.broad
institute.org/igv. The R packages stats were used to perform
statistical analysis. Simpson index and Shannon index were
used to analyze the community diversity among different
groups [29].

2.8. Microorganism. Bacillus licheniformis, Bacillus subtilis,
and Lactobacillus plantarum were purchased from Institute

of Microbiology, Chinese Academy of Sciences (Beijing,
China). The seed was transferred to 100mL of a basal
medium with glucose 10.0 g/L, peptone 10.0 g/L, K2HPO4
1.0 g/L, MgSO4 0.2 g/L, and Na2CO3 5.0 g/L (pH7.0) in a
250mL Erlenmeyer flask. 1200 IU/kg of xylanase or 0.1%
FPHC was added to the medium. The strains were cultured
in a thermostatic orbital shaker for 48h, at 37°C and
200 rpm. Samples were withdrawn at regular intervals, and
probiotics were counted by serial dilution of the material in
sterile distilled water and plating on a LB agar plate. The
bacterial numbers were counted by observing the colony on
the plate after one-day culture at 37°C.

2.9. Statistical Analysis. All data were presented as mean
value± S.D. The Student t-test was used to compare the var-
iables between two groups using SPSS software version 20.0
(SPSS Inc., Chicago, IL, USA). There is a significant differ-
ence if P < 0 05.

3. Results

3.1. Growth Performance. The statistical difference of the
ratio of feed to gain was insignificant among four groups
before the 21st day (Table 2, P > 0 05). Compared with CG,
Table 2 showed that the broilers had a higher ratio of feed
to gain when they received xylanase or FPHC (P < 0 05).
The ratio was highest when the broilers received both xyla-
nase and FPHC (P < 0 05). Nomortality was observed during
the whole experimental period.

3.2. Xylanase and FPHC Treatment Increases the Numbers of
Intestinal Bacterial Species of Broilers. The numbers of bacte-
rial species of broilers were similar among four groups before
the 21st day (Figure 1(a), P > 0 05). Xylanase and FPHC
treatment increased the numbers of bacterial species of
broilers while the number was reduced significantly in the
control group on the 42nd day when compared with other
groups (Figure 1(b), P < 0 05).

3.3. Xylanase and FPHC Treatment Increases the
Concentration of Probiotics. Heat map analysis showed that
xylanase and FPHC treatment increased the concentration
of probiotics, including Lactobacillus and Bacillus species.

Table 2: Effects of xylanase and FPHC on growth performance of
broilers (n = 8).

Groups ADG (g) ADFI (g) Feed/gain

CG
21 d 35.8± 3.6 72± 8 1.85± 0.16
42 d 71.0± 6.5 151± 13 2.13± 0.18b,c,d

XG
21 d 35.1± 3.3 70± 9 1.79± 0.15
42 d 76.8± 6.1 148± 15 1.93± 0.17a,d

HG
21 d 36.1± 3.4 73± 7 1.90± 0.18
42 d 77.5± 7.3 146± 12 1.88± 0.15a,d

XHG
21 d 35.5± 3.5 70± 6 1.87± 0.14
42 d 81.9± 7.8 142± 12 1.73± 0.16a,b,c

Note: ADFI: average daily feed intake; ADG: average daily gain. Xylanase and
FPHC were added from days 22 to 42. aP < 0 05 vs. a CG group; bP < 0 05 vs.
a XG group; cP < 0 05 vs. a HG group; dP < 0 05 vs. a XHG group.
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For other species, Anaerotruncus, Candidatus Arthromitus,
Pseudomonas, Lachnospiraceae, Enterococcus, Stenotropho-
monas, and Acinetobacter were increased in the control
group while Lactococcus, Blautia, Subdoligranulum, Flavoni-
fractor, and Lachnoclostridium were increased in xylanase
and FPHC groups.

The concentration of L. plantarum [30], B. licheniformis
[31], and B. subtilis [32] was measured in the intestine of
broilers and compared on the 21st day and 42nd day using
feces among four groups (Table 3). The statistical difference
for the concentration was insignificant among four groups

before the 21st day (Table 3, P > 0 05). Compared with the
broilers in the control group, the concentration of these pro-
biotics was higher in the xylanase or FPHC group on the
42nd day (P < 0 05). These results suggest that xylanase and
FPHC treatment increases the concentration of probiotics.

3.4. Xylanase and FPHC Treatment Increases Antioxidant
Activities of Broilers. The antioxidant properties were
measured by investigating the activities of T-AOC, SOD,
GSH-px, and MDA in the intestine of broilers among four
groups. Before xylanase and FPHC treatment, there was no
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Figure 1: The effects of xylanase and FPHC treatment on the numbers of intestinal bacterial species of broilers. (a) The numbers of bacterial
species of broilers among four groups before the 21st day. (b) The numbers of bacterial species of broilers among four groups on the 42nd day.
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Table 3: Effect of xylanase and FPHC on the intestinal microbiota of broilers (n = 8).

Item Lactobacillus plantarum Bacillus licheniformis Bacillus subtilis

CG
21 d 5.34± 0.39 2.68± 0.32 2.35± 1.29
42 d 6.26± 0.83b,c,d 3.51± 0.57b,c,d 5.39± 0.64b,c,d

XG
21 d 5.05± 0.26 2.51± 0.30 2.89± 1.36
42 d 7.04± 0.76a,c,d 3.00± 0.69a,c,d 5.58± 0.52a,c,d

HG
21 d 5.58± 0.31 2.55± 0.28 2.47± 1.15
42 d 7.96± 0.75a,b,d 5.44± 0.61a,b,d 5.62± 0.49a,b,d

XHG
21 d 5.16± 0.35 2.62± 0.34 2.46± 1.21
42 d 6.58± 0.87a,b,c 4.73± 0.75a,b,c 5.01± 0.32a,b,c

Note: From days 0 to 21, all groups received basal diets. Xylanase and FPHC were added from days 22 to 42. Bacterial numbers were represented as log10 cfu per
gram of tissues. aP < 0 05 vs. a CG group; bP < 0 05 vs. a XG group; cP < 0 05 vs. a HG group; dP < 0 05 vs. a XHG group.
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Figure 2: The effects of xylanase and FPHC on antioxidant activities of broilers. (a) The effects of xylanase and FPHC on T-AOC activities of
broilers. (b) The effects of xylanase and FPHC on SOD activities of broilers. (c) The effects of xylanase and FPHC on GSH-PX activities of
broilers. (d) The effects of xylanase and FPHC on MDA activities of broilers.
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significant difference for antioxidant activities among four
groups (Figure 2, P > 0 05). Compared with the broilers in
the CG group, the activities of T-AOC (Figure 2(a)), SOD
(Figure 2(b)), and GSH-PX (Figure 2(c)) were increased in
XG, HG, and XHG groups while the activity of MDA
(Figure 2(d)) was reduced in XG, HG, and XHG groups after
xylanase and FPHC treatment (P < 0 05). These results sug-
gest that xylanase and FPHC treatment increases the antiox-
idant activities of broilers.

3.5. Xylanase and FPHC Treatment Increases Anti-
Inflammatory Activities of Broilers. The anti-inflammatory
properties were measured by investigating the serum con-
centrations of IL-1β, IL-1ra, TNF-α, and IL-10 in the
intestine of broilers among four groups. Before xylanase
and FPHC treatment, there was no significant difference
for the concentrations of the cytokines among four groups
(Figure 3, P > 0 05). Compared with the broilers in the

control group, the concentrations of IL-1ra (Figure 3(b))
and IL-10 (Figure 3(d)) were increased in XG, HG, and
XHG groups while the concentrations of IL-1β (Figure 3(a))
and TNF-α (Figure 3(c)) were reduced in the three groups
after xylanase and FPHC treatment (P < 0 05). These results
suggest that xylanase and FPHC treatment increases the
anti-inflammatory activities of broilers.

3.6. Xylanase and Polysaccharide Reduce Pathogen Infection
Rates of Broilers. Microbiological investigations demon-
strated that 75% of broilers were affected by bacterial patho-
gens in the CG group, most notably by coagulase-negative
staphylococci (Table 4). Comparatively, 15%, 26%, and 5%
of broilers were affected by bacterial pathogens in the XG,
HG, and XHG groups, respectively. These findings suggest
that coagulase-negative staphylococci are prevalent in the
local area. FPHC and xylanase can control and prevent
bacterial pathogen prevalence.

0

50

100

150

Se
ru

m
 co

nc
en

tr
at

io
n 

of
 IL

-1
�훽

(p
g/

m
L)

21 42

CG
XG

HG
XHG

(Days)

⁎

⁎
⁎

(a)

0

20

40

60

80

21 42

CG
XG

HG
XHG

(Days)

Th
e e

co
nc

en
t r

at
io

n 
of

 IL
-1

ra
(p

g/
m

L)

⁎

⁎ ⁎

(b)

21 42

CG
XG

HG
XHG

(Days)

0

100

200

TN
F-
�훼

 co
nc

en
tr

at
io

n 
(p

g/
m

L)

300

(c)

0

20

40

60

80
⁎

⁎

⁎

21 42

CG
XG

HG
XHG

(Days)

Se
ru

m
 co

nc
en

tr
at

io
n 

of
 IL

-1
0

(p
g/

m
L)

(d)

Figure 3: The effects of xylanase and FPHC on anti-inflammatory activities of broilers. (a) The effects of xylanase and FPHC on the
concentration of IL-1β of broilers. (b) The effects of xylanase and FPHC on the concentration of IL-1ra of broilers. (c) The effects of
xylanase and FPHC on the concentration of TNF-α of broilers. (d) The effects of xylanase and FPHC on the concentration of IL-10 of broilers.
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3.7. Xylanase and FPHC Treatment Promoted the Growth of
Probiotics. The growth-promoting properties of xylanase
and FPHC were measured using B. licheniformis, B. subtilis,
and L. plantarum via cell culture. At 0-hour culture, there
was no significant difference for cell concentration among
three species (Figure 4, P > 0 05). At 24-hour culture, xyla-
nase and FPHC treatment increased the cell concentrations
of B. licheniformis (Figure 4(a)), B. subtilis (Figure 4(b)),
and L. plantarum (Figure 4(c)) when compared with the con-
trols (P < 0 05). At 48-hour culture, xylanase and FPHC
treatment also further increased more cell concentrations
than controls (Figure 4, P < 0 05). These results suggested

that xylanase and FPHC treatment promoted the growth of
these probiotics.

4. Discussion

Xylanase and FPHC have a beneficial effect on the physiol-
ogy, health, and productivity of broilers. Early studies
demonstrated that xylanase resulted in higher weight gain
in broilers when compared to controls without xylanase
addition [33]. The diets with xylanase will affect the animal
growth rate by improving the utilization of nutrient [34].
Xylanase prolongs the retention time of fiber in the intestinal
tract, and more nutrient can be absorbed. Furthermore,
longer duration of fiber in the intestinal tract will result in
better microbial adaptation [35].

It has been well known that the intestinal microbiota is an
important determinant for gastrointestinal health of broilers.
Probiotics have the potential to improve the beneficial
bacteria and inhibit pathogenic bacteria. Supplementation
of prebiotic will eliminate pathogenic bacteria and increase
probiotics, which have beneficial effects on broiler growth
and immune-related gene expression [12]. Probiotics also
provide protection against bacterial infection [36]. B. subtilis
supplementation in diet will affect the diversity, composition,
and functional diversity of the fecal microbiota in broiler
[37]. B. licheniformis improves the growth and antioxidant
abilities of broilers. Meanwhile, the probiotics can affect the
expression of genes associated with fatty acid synthesis and
oxidation [38]. L. plantarum can effectively replace in-feed
antibiotic and improve the intestinal health by changing
intestinal villus morphology and inhibiting the pathogenic
loading [39]. Lactobacillus species effectively absorb and
expel heavy metal toxicity from the gastrointestinal tract
of broilers [40]. The present study showed that xyla-
nase and FPHC treatment increased the concentrations of
L. plantarum, B. licheniformis, and B. subtilis in the small
intestine (Table 3). B. licheniformis and B. subtilis are aer-
obes and use oxygen in the intestine, resulting in an
oxygen-free environment for the proliferation of anaerobic
probiotics such as Lactobacillus. The probiotics will produce
more acidic environments, which control the growth of
potential pathogens.

Most diseases of broilers are associated with oxidative
damage [41]. The studies focused on antioxidant molecules
in broilers. Dietary antioxidants can minimize the negative
effect of oxidized oil on meat qualities of broilers [42]. Our
results showed that xylanase and FPHC treatment increased
the level of T-AOC, SOD, and GSH-PX and reduced the level
of MDA (Figure 2). These changes had beneficial effects on
broilers by improving their antioxidant activities.

Reducing enteric inflammation and maintaining intesti-
nal homeostasis are very important to improve the growth
of broilers. Probiotics can improve immunomodulatory
activity and are effective in controlling Salmonella coloniza-
tion, invasion, and the induced inflammation [43]. The levels
of lymphocyte phenotypes (including B and T lymphocytes)
and plasma immunoglobulin in broilers are also associated
with their infected diseases [44]. Present findings demon-
strated that xylanase and FPHC treatment increased the

Table 4: Infected bacterial pathogens in broilers (cases).

Intestinal pathogens CG XG HG XHG

Coagulase-pos.

S. aureus 5 3 4 1

S. intermedius 2 1 1 0

Coagulase-neg. 0

S. lentus 19 4 3 2

S. simulans 16 5 2 1

S. cohnii 10 3 2 1

S. gallinarum 5 3 3 2

S. capitis 4 2 1 0

S. xylosus 1 1 0 0

S. hominis 1 0 1 0

S. auricularis 1 1 1 0

S. carnosus 2 0 0 0

S. caseolyticus 2 0 0 0

S. kloosi 1 0 0 0

S. epidermidis 1 0 0 1

S. arlettae 1 0 1 0

S. piscifermentans 1 0 0 1

Gram-positive

Corynebacterium sp. 3 1 1 1

Stomatococcus sp. 4 1 1 1

Micrococcus sedentarius 2 0 1 0

Micrococcus varians 1 0 0 0

Micrococcus luteus 2 0 1 0

Streptococcus sp. 1 0 0 0

Gram-negative

Escherichia coli 6 1 2 1

Moraxella sp. 4 1 1 0

Proteus mirabilis 1

Acinetobacter sp. 2 2 1 1

Pseudomonas sp. 6 0 2 1

Yersinia sp. 2 1 1 0

Note: CG: the broiler received basic diet; XG: the broiler received basic diet
and 1200 IU/kg xylanase; HG: the broiler received basic diet and 0.1%
polysaccharides from the fermentation extract of Hericium caputmedusae
(FPHC, w/w); XHG: the broiler received basic diet, 1200 IU/kg of xylanase,
and 0.1% FPHC (w/w). CG: basic diet; XG: basic diet + xylanase; HG: basic
diet + FPHC; and XHG: basic diet + xylanase + FPHC.
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anti-inflammatory activities of broilers by increasing the
levels of IL-1ra and IL-10 and reducing the levels of IL-1β
and TNF-α (Figure 3). Furthermore, cell culture showed that
xylanase and FPHC treatment also promoted the growth of
probiotics (Figure 4).

T-AOC is the antioxidant capacity of the body’s defense
system and can fully reflect the antioxidant capacity of both
enzyme and nonenzymatic systems. Although it does not
clearly represent the activity of an antioxidant or antioxidant
enzyme, it reflects antioxidant capacity better than a single
indicator. SOD, one of the members of the enzymatic system,
specifically and efficiently scavenges superoxide radicals. It is
the only enzyme known to directly eliminate O2− and protect
cells. This study showed that xylanase +FPHC treatment
increased serum T-AOC levels, SOD, and GSH-PX activity
and reduced the serum MDA level. MDA is one of the most

toxic lipid peroxides, and it can not only destroy the mem-
brane structure and membrane protein function and affect
the function and metabolism of nucleic acids but also cause
autoimmune disorders. Therefore, the determination of
MDA can reflect the degree of lipid peroxidation and help
to understand damage degree of tissue and cells. Xylanase
and FPHC not only have a wide range of activity and diver-
sity but also have abundant sources, low costs, and good
safety. They have a good application prospect in animal
husbandry production.

There are some limitations of the present work: (1) the
changes for tissue morphology and intestinal barriers were
not investigated here. The work only reflected the changes
for inflammatory and infection situations in broilers; (2)
the functions of most species of the microbiota in broilers
were not analyzed in the present study; (3) the effects of
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Figure 4: The effects of xylanase and FPHC treatment on the growth of probiotics. (a) The effects of xylanase and FPHC treatment on the
growth of Bacillus licheniformis. (b) The effects of xylanase and FPHC treatment on the growth of Bacillus subtilis. (c) The effects of
xylanase and FPHC treatment on the growth of Lactobacillus plantarum. ∗P < 0 05 vs. a control group.
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xylanase and HPFC on antioxidant and anti-inflammatory
signaling pathway were not explored either. Thus, further
work is still needed to perfect present results in the future.

5. Conclusions

Xylanase and FPHC can effectively increase the serum
T-AOC, SOD, and GSH-PX activity and reduce the MDA
content to improve the broiler’s antioxidant activities. Xyla-
nase and FPHC treatment also maintained intestinal species
in a healthy situation. Meanwhile, the addition of xylanase
and FPHC in diet increased broiler’s anti-inflammatory
capacity by increasing the levels of IL-1ra and IL-10 and
reducing the levels of IL-1β and TNF-α. Broilers were affected
by bacterial pathogens, most notably by coagulase-negative
staphylococci. Xylanase and FPCH treatment ameliorated
pathogen infection of broilers by increasing the amounts of
probiotics B. licheniformis, B. subtilis, and L. plantarum. For
poultry, because of its special digestive tract structure charac-
teristics, the role of the antioxidant effect of xylanase and
FPHC may be different and remains to be studied.
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