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Abstract

Electrochemistry is quickly entering the mainstream of synthetic organic chemistry. The diversity 

of new transformations enabled by electrochemistry is to a large extent a consequence of the 

unique features and reaction parameters in electrochemical systems including redox mediators, 

applied potential, electrode material, and cell construction. While offering chemists new means to 

control reactivity and selectivity, these additional features also increase the dimensionalities of a 

reaction system and complicate its optimization. This challenge, however, has spawned increasing 

adoption of data science tools to aid reaction discovery as well as development of high-throughput 

screening platforms that facilitate the generation of high quality datasets. In this Perspective, we 

provide an overview of recent advances in data-science driven electrochemistry with an emphasis 

on the opportunities and challenges facing this growing subdiscipline.
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Innovations in modern organic chemistry are fueled by the desire to invent synthetic 

transformations that improve upon the efficiency and sustainability of canonical 

methodologies. Amidst this widespread initiative for green chemistry, electrochemistry 

has garnered increasing attention from the synthetic community owing to its ability to 

eliminate the use of traditional oxidants and reductants [1,2]. By directly harnessing electric 

energy to promote chemical reactions, electrochemistry has not only become a vehicle for 

improving the sustainability of chemical synthesis, but it has spawned the development of 

reactivities inaccessible with traditional chemical reagents [3–5]. Furthermore, the ability 

to precisely tune parameters of potential, current, and electrode composition provides new 

opportunities for chemists to optimize the efficiency and scope of organic transformations. 

As electrochemistry enters the mainstream of organic synthesis, the deployment of 
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technologies that enable the rapid development of electrochemical transformations forms 

the next challenge in this growing field.

Data science has emerged as an increasingly valuable technique within many disciplines of 

chemistry and is poised to revolutionize synthetic electrochemistry [6–13]. Nevertheless, in 

comparison to traditional chemical methods, electrochemical reactions present inherently 

more parameters to investigate. This high dimensionality amplifies the complexity of 

optimizing electrochemical reactions, as chemists can only sample a small fraction of 

reaction space within a reasonable timeframe. Similar dilemmas in battery research are 

being tackled through the use of data science [14,15]. A key challenge in implementing 

similar strategies in synthetic electrochemistry lies in the limited availability of high 

quality methods for dataset generation. In recent years, the introduction of standardized 

electrochemical reactors such as the ElectraSyn and the IKA Screening System have 

improved the reproducibility of electrochemical methods. These technological advances 

have provided a critical first step towards producing high quality data for the implementation 

of data-driven modeling in electrochemistry. In a landscape where modeling and systematic 

dataset design is becoming increasingly common, the future of electrochemistry would 

greatly benefit from incorporating data science in discovery and optimization campaigns.

1. Data-drive approaches for electrochemical reaction optimization

Traditionally, electrochemical methods are optimized using the one variable at a time 

(OVAT) approach where all but one variable is changed while others are held constant. 

This approach, while convenient to carry out, assumes that variables are independent 

from one another and can often result in conditions corresponding to local maxima (Fig. 

1). This issue is particularly exacerbated when optimizing on a single substrate, making 

the “optimal” conditions prone to low substrate generalizability. To address these issues, 

chemists have begun to employ more complex optimization techniques [16]. At the forefront 

of these approaches is design of experiments (DOE) [17,18]. This systematic approach 

allows for interaction terms between reaction parameters to be considered, thus allowing for 

a more thorough sampling of the reaction chemical space towards finding the desired global 

maxima. However, scaling to higher dimensions can slow down the process, and expert 

domain knowledge may be required to improve the efficiency of this approach.

In an early example, the Hilt group used DOE to optimize an iodination reaction of 

trimethylsilyl-substituted arenes via anodic oxidation of iodine to generate a reactive 

iodonium intermediate (Fig. 2A) [18]. Using an OVAT approach, the authors initially 

identified a set of optimized conditions capable of delivering nearly quantitative yield 

with their model substrate phenyltrimethylsilane using a MeCN/MeOH solvent mixture. 

Nevertheless, extension of these conditions to substrates with benzylic C–H bonds resulted 

in moderate yields due to competitive methoxylation at the benzylic sites. With this side 

reaction, the authors turned to DOE for optimization, passing methanol concentration, iodide 

loading, and applied charge to their design. The resulting model suggested that low iodide 

and methanol concentrations should improve yield. The authors also identified an interaction 

term between methanol concentration and charge consumption, where higher concentrations 

of methanol required more charge to improve yield. This finding was proposed to result 
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from the competitive oxidation of methanol, which reduced the current efficiency of the 

reaction and is consistent with earlier results obtained through OVAT screening. However, 

DOE allowed the authors to sample a larger parameter space that revealed more general 

reaction conditions, which showed good yields for a range of substituted arylsilanes. Several 

works using DOE-assisted reaction optimization have since been reported in synthetic 

electrochemistry [19–26].

The application of DOE in flow electrochemistry has also been demonstrated [27–29]. Wirth 

and coworkers disclosed the decarboxylative alkoxylation of chiral N-aryloyl amino acids 

to generate enantiomerically enriched N,O-acetals in flow (Fig. 2B). In this reaction, the 

stereochemistry of the substrate is retained in the trapping of the incipient acyliminium 

ion. The authors used a two-level fractional factorial design that included four continuous 

variables (concentration, flow rate, charge, and temperature) and one categorical variable 

(electrode material) with yield and enantiomeric excess (e.e.) as outputs. Due to the 

complexity of this parameter space, a second DOE optimization was explored after 

identifying parameters with the highest dependencies. The authors ultimately were able to 

achieve high yield and moderate e.e., demonstrating the amenability of DOE to optimizing 

an enantioselective electrochemical reaction in flow.

While single and multivariate linear regressions are powerful tools for understanding 

and correlating experimental data [11], these approaches tend to only represent gradients 

of chemical reactivity but do not describe the implicit complex reaction surface. Non-

parametric algorithms are typically invoked in modeling complex relationships and have 

seen increasing use in electrochemistry [7,10,30–32]. In 2019, Modestino and coworkers 

demonstrated that an artificial neural network (ANN) could improve yield and selectivity in 

the electrochemical synthesis of adiponitrile via the hydrodimerization of acrylonitrile (Fig. 

3A) [33]. Controlling mass transport in this process is extremely important in maintaining 

high selectivity for dimerization and preventing the formation of undesired side products 

such as acrylonitrile oligomers. To this end, the authors cleverly employed alternating 

current (AC) electrolysis, which helped mitigate mass transport by restricting the time that 

the cathode acts on a substrate. The authors then systematically tuned the applied square 

waveform to improve the rate of adiponitrile formation by 20% and increase the selectivity 

by 250%. Subsequently, an artificial neural network was built using 16 data points, which 

allowed for identification of further improved conditions resulting in a 30% increase in 

adiponitrile production and a 325% increase in product selectivity. It is important to point 

out that neural networks typically require large quantities of data, and that further validation 

of this model with additional data points would help qualify its robustness.

Recently, Ding and coworkers described an electro-descriptor-diagram to identify regions 

of high reactivity using overpotential, Tafel slope, and effective voltage (Fig. 3B) [34]. 

The last term was defined as the voltage required for a given substrate to produce the 

same current as the model substrate used for optimization. The authors suggested that this 

parameter can help discriminate substrates that have similar onset potentials but different 

kinetics for charge transfer. These data were used to identify areas of high reactivity for 

several reactions including a phosphonylation of secondary amines, a dehydrogenation of 

N-heterocycles using TEMPO, and an aziridination of alkenes. The authors constructed 
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a decision tree and a k-nearest neighbors model on their largest datasets. It is worth 

mentioning that in as early as the 1970’s, Perone and coworkers demonstrated the power 

of clustering analysis on both simulated and experimental voltametric data using a k-

nearest neighbors classification algorithm [35–38]. Ding’s approach creatively incorporates 

experimental kinetic and thermodynamic measurements into modeling in the context of 

synthetic electrochemistry. However, as the authors pointed out, the effectiveness of this 

approach was hampered by a lack of sufficient data, which could potentially be validated by 

comparison to baseline models. Indeed, as non-parametric algorithms are incorporated into 

synthetic electrochemistry, maintaining high validation metrics is essential in ensuring the 

robustness of predictive models [39–43].

Electrode material intimately influences the kinetics and selectivity of electrochemical 

reactions. However, parametrizing electrode material is challenging due to heterogeneity of 

surface properties and activities between different electrodes and between different regions 

of the same electrode [44]. In addition, limited access to supercomputers may impede costly 

featurization of electrode materials using density functional theory (DFT). Nevertheless, 

Sargent and coworkers recently applied active machine learning to extend DFT simulations 

using a random forest regressor to identify electrodes capable of reducing CO2 (Fig. 4) [45]. 

The authors first mined electrode materials from The Materials Project database [46] and 

generated automated scripts to calculate their CO adsorption energies. In their workflow, the 

authors conducted DFT simulations on a subset of materials, which were used to train the 

regressor. The regressor then predicted adsorption energies for the whole dataset from which 

new materials with optimal predicted values were selected for additional DFT calculations. 

With these new computational outputs, the model was re-trained, and the process was 

continued until an optimal catalyst was identified. After many iterations, this approach 

allowed the authors to identify and experimentally test a Cu–Al alloy with exceptionally 

high Faradaic efficiency for CO2 reduction to ethylene. An analogous strategy could also be 

applied to synthetic electrochemistry to facilitate the optimization of electrode materials.

2. High-throughput experimentation vs directed optimizations

Data science relies on large data sets for training and adequate validation. In this regard, 

high-throughput experimentation (HTE) will be vital for dataset generation in synthetic 

electrochemistry (Fig. 5) [47]. HTE allows researchers to efficiently explore chemical space 

by systematically running and analyzing experiments in parallel rather than through a 

traditional, OVAT approach. However, the establishment of HTE technologies specific to 

a synthetic subdiscipline is a key bottleneck in the realization of these benefits. Indeed, 

the introduction of standardized high-throughput platforms for photochemistry [48,49] 

and biocatalysis [50,51] have substantially accelerated the pace of research in these 

areas in recent years. The development of widely available platforms for high-throughput 

electrochemistry is advantageous in two respects: to enable the efficient development of 

new reactions as well as to provide electrochemists with high-quality datasets for modeling 

efforts.

Currently, large datasets in electrochemistry that vary multiple parameters like electrode 

type, electrolyte, and additives are non-existent [52]. Notwithstanding this limitation, 
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pioneering efforts in the late 1990’s and early 2000’s made headway towards a simple 

HTE setup for electrochemistry [53]. More recently, the Waldvogel, Baran, and Lin 

groups have independently contributed to the development of electrochemical screening 

platforms that attempt to address this limitation [54,55]. In particular, HTE electrochemistry 

platforms including e-Hive and HTeChem have recently been commercialized. The potential 

scalability of these reactors offers electrochemists a more reliable method for obtaining 

high-quality datasets. Parallel efforts in flow chemistry have also laid the foundation 

for promoting HTE electrochemistry, opening another direction for data-driven reaction 

optimization [56–58]. In the future, the ability to perform such screening in a continuous 

flow system with tandem NMR or MS analysis would provide a powerful tool for rapid 

data collection [59,60]. We anticipate that the union of these emerging technologies with 

data science techniques has the potential to greatly accelerate the pace at which new 

electrochemical reactions are discovered. Trade-offs between implementation of HTE versus 

an optimization algorithm in electrochemistry will have to be considered to balance the 

benefits each approach offers.

3. Future directions: training and collaboration

The merger of data-driven modeling with synthetic electrochemistry—two prominent 

emerging technologies in modern organic synthesis—presents new challenges and 

opportunities. With the deployment of standardized parallel electrochemical reactors and 

their integration with well-established screening infrastructures, data shortages facing 

electrochemistry will be addressed. Meanwhile, in comparison to rapid technological 

innovation at the forefront of electrochemistry and data science, training and education 

efforts in these areas have lagged behind in most traditional chemistry graduate programs. 

Improvement in this regard will play critical roles in the future advancement of these 

areas as well as their integration. Furthermore, initiatives that promote interdisciplinary 

collaborations such as the NSF Center for Synthetic Organic Electrochemistry, NSF 

Molecule Maker Lab Institute, and the Electrolyte Genome Project [61] will be crucial in 

facilitating knowledge transfer between chemists and data scientists. Collaborative projects 

between these areas of expertise will launch synthetic electrochemistry into a new data-rich 

era.
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DOE design of experiments
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AC alternating current

DFT density functional theory

HTE high-throughput experimentation

ML machine learning
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Fig. 1. 
Graphical overview of current optimization strategies in synthetic electrochemistry: a one 

variable at a time approach and design of experiments. Each strategy attempts to locate a 

maximum in yield.
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Fig. 2. 
Examples of electrochemical reactions optimized using DOE. (A) Development of an 

electrochemical iodination of silyl arenes using a combination of OVAT and DOE 

optimization. (B) Development of an enantioselective decarboxylative alkoxylation in flow 

using two phase DOE optimization.
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Fig. 3. 
(A) Use of an artificial network for optimizing an electrochemical synthesis of adiponitrile 

under alternating current conditions. (B) Integration of intrinsic properties of a substrate to 

map the reactivity of an electrochemical phosphorylation. Regression models incorporating 

experimental kinetic and thermodynamic data were used to identify conditions for yield 

prediction.
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Fig. 4. 
Schematic workflow depicting design of CO2 reduction catalysts aided by DFT 

computations and machine learning. Optimized Cu–Al catalyst was identified and 

experimentally tested in the electrochemical conversion of CO2 to ethylene.
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Fig. 5. 
Future directions for reaction optimization aided by data science. Approaches using high-

throughput experimentation or delineated optimization algorithms provide viable strategies 

for the identification of desired maxima.
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