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Abstract

RNA-Seq has become increasingly popular in transcriptome profiling. The major challenge in RNA-Seq data analysis is the
accurate mapping of junction reads to their genomic origins. To detect splicing sites in short reads, many RNA-Seq aligners
use reference transcriptome to inform placement of junction reads. However, no systematic evaluation has been performed
to assess or quantify the benefits of incorporating reference transcriptome in mapping RNA-Seq reads. In this paper, we
have studied the impact of reference transcriptome on mapping RNA-Seq reads, especially on junction ones. The same
dataset were analysed with and without RefGene transcriptome, respectively. Then a Perl script was developed to analyse
and compare the mapping results. It was found that about 50–55% junction reads can be mapped to the same genomic
regions regardless of the usage of RefGene model. More than one-third of reads fail to be mapped without the help of a
reference transcriptome. For ‘‘Alternatively’’ mapped reads, i.e., those reads mapped differently with and without RefGene
model, the mappings without RefGene model are usually worse than their corresponding alignments with RefGene model.
For junction reads that span more than two exons, it is less likely to align them correctly without the assistance of reference
transcriptome. As the sequencing technology evolves, the read length is becoming longer and longer. When reads become
longer, they are more likely to span multiple exons, and thus the mapping of long junction reads is actually becoming more
and more challenging without the assistance of reference transcriptome. Therefore, the advantages of using reference
transcriptome in the mapping demonstrated in this study are becoming more evident for longer reads. In addition, the
effect of the completeness of reference transcriptome on mapping of RNA-Seq reads is discussed.
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Introduction

In recent years, RNA-Seq has become a popular and powerful

approach for transcriptome profiling [1–6]. RNA-Seq not only has

considerable advantages for examining transcriptome fine struc-

ture–for example, in the detection of novel transcripts, allele-

specific expression, and alternative splicing–but also provides a far

more precise measurement of levels of transcripts than that of

other methods such as microarray [7–10]. Previously we had

performed a side by side comparison of RNA-Seq and microarray

in investigating T cell activation, and demonstrated that RNA-Seq

is superior in detecting low abundance transcripts, differentiating

biologically critical isoforms, and allowing the identification of

genetic variants [7]. In addition, RNA-Seq also has a much

broader dynamic range than microarray, which allows for the

detection of more differentially expressed genes with higher fold-

change. Furthermore, RNA-Seq avoids technical issues in

microarray related to probe performance such as cross-hybridiza-

tion, limited detection range of individual probes, and nonspecific

hybridization. And thus, RNA-Seq delivers unbiased and unpar-

alleled information about the transcriptome and gene expression

[10]. Currently, RNA-Seq is becoming an attractive approach in

the profiling of gene expression and in evaluating differential

expression [11].

However, RNA-Seq poses novel algorithmic and logistical

challenges for data analysis and storage [12–15]. Despite the fact

that many computational methods have been developed for

alignment of reads, quantification of gene and/or transcripts, and

identification of differentially expressed genes, there is great

variability in the maturity of these available computational tools.

In recent years, a large number of mapping algorithms [16–19]

have been developed, and most recently, Engström et al [19] had

performed a comprehensive assessment of the performance of 26

mapping protocols based on 11 programs and pipelines available,

and found major performance differences between methods on

numerous benchmarks, including alignment yield, basewise

accuracy, mismatch and gap placement, exon splicing discovery

and suitability of alignments for transcript reconstruction. They

demonstrate that choice of alignment software is critical for

accurate interpretation of RNA-Seq data, and identify aspects of

the spliced-alignment problem in need of further attention.
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The first step and a major challenge in RNA-Seq data analysis is

the accurate mapping of sequencing reads to their genomic origins

including the identification of splicing events. However, accurate

alignment of high-throughput RNA-Seq data is a challenging and

yet unsolved problem because of exon-eon spanning junction

reads, relatively short read lengths and constantly increasing

throughput of the sequencing technologies. Two key tasks make

these analyses computationally intensive. The first task is an

accurate alignment of reads that contain mismatches, insertions

and deletions caused by genomic variations and sequencing errors.

The second task involves mapping junction reads that span two or

more exons. Although the first task is shared with DNA

resequencing efforts, the second task is specific and crucial to the

RNA-seq. These alignment challenges are further confounded by

the presence of multiple copies of identical or related genomic

sequences, making precise mapping difficult.

To detect splicing sites in short reads, there are three

approaches published so far. The tools such as MapSplice [20]

and TopHat [21] implement a two-step approach in which initial

read alignments are analyzed to discover splicing sites; these

splicings are then used to guide final alignments of those ‘initially

unmapped reads’. However, this approach requires exons to have

sufficiently high expression and will miss splicing events that are

spanned by individual reads at a low level. The second solution for

detecting splicing in short reads has been to align them to a

reference transcriptome, possibly augmented with artificially

constructed exon–exon segments. However, such an approach

will identify only known or predicted combinations of exons, but

not unexpected exon pairs that occur through exon skipping,

cryptic splicing or gene fusions. In practice, these two approaches

can be used in conjunction to improve placement of short

sequence reads. Most recently, the ‘‘seed-and-vote’’ approach [22]

is introduced. The new strategy uses a number of overlapping

seeds from each read, called subreads. Instead of trying to pick the

best seed, the strategy allows all the seeds to vote on the optimal

location for the read. The algorithm then uses more conventional

alignment algorithms to fill in detailed mismatch and indel

information between the subreads that make up the winning voting

block. The strategy is fast because the overall genomic location has

already been chosen before the detailed alignment is done. It is

also sensitive because no individual subread is required to map

exactly, nor are individual subreads constrained to map close by

other subreads.

Nowadays, many RNA-Seq aligners use reference transcrip-

tome to inform spliced-read placements, including GSNAP [23],

OSA [24], STAR [25], TopHat [21] and etc. In fact, this has

become a common practice in RNA-Seq data analysis. However,

no systematic evaluation has been performed to assess and/or

quantify the benefits of incorporating reference transcriptome in

mapping RNA-Seq reads. In this paper, we want to fill this gap.

The same RNA-Seq dataset were first analysed with and without

reference transcriptome, respectively, and then compared the

mapping results and demonstrated the benefits for reference

transcriptome in RNA-Seq data analysis.

Methods

The Human Body Map 2.0 Project by Illumina generated

RNA-Seq data for 16 different human tissues and can be

accessible from ArrayExpress (accession # is E-MTAB-513). We

used the 75 bp single read data from heart, liver, lung and kidney.

In order to investigate the impact of sequencing depth on results,

for each selected tissue, we sampled 10%, 30% and 60% of reads

from the corresponding raw data, and analysed the subset data in

the same protocol. The subsets are denoted as s10, s30, and s60,

respectively (Table 1).

The RefGene annotation files in GTF format was downloaded

from UCSC genome browser on December 14 2012. First go to

UCSC genome browser website (genome.ucsc.edu) and click

‘‘Table’’ menu to bring up ‘‘Table Browser’’ interface. Then set (1)

genome to ‘‘human’’, (2) assembly to ‘‘hg19’’, (3) group to ‘‘Gene

and Gene Predictions’’, (4) track to ‘‘RefSeq Genes’’, and (5)

output format to ‘‘GTF – gene transfer format’’. And then click

‘‘get output’’ button and save the text file. The RefGene model is

used in our analysis.

Primary sequencing reads were first mapped to RefGene

transcriptome and the human reference genome hg19 using

OSA (Omicsoft Sequence Aligner, http://www.omicsoft.com/osa)

[24], a super-fast and accurate alignment tool for RNA-Seq data.

Benchmarked with existing methods such as Tophat and others,

OSA improves mapping speed 4–10 fold with better sensitivity and

less false positives. We have chosen OSA in Stormbow [26], a cloud-

based pipeline we developed for large-scale RNA-Seq data

analysis. OSA white paper (http://www.omicsoft.com/

downloads/whitepaper/OmicsoftAligner.pdf) has more technical

details on its implementation. For novel splicing sites (i.e. those

junction sites not included in transcriptome), OSA uses Seed-

Extend approach to discover junctions.

There are a total of three independent runs with different

parameter settings: (1) RefGene/Unique run–aligning reads to

RefGene transcriptome first and then to the reference genome,

and only uniquely mapped reads are reported; (b) None/Unique
run– reads are mapped to genome only without using reference

transcriptome and only uniquely mapped read are kept. In this

run; (c) RefGene/Multiple run–mapping reads to RefGene

transcriptome and then to the genome, but reporting all locations

if a read can be mapped equally well to multiple genomic regions.

Next, we compared the difference of alignments for each read with

and without RefGene transcriptome. All alignments were first

exported into SAM text files [27], and then a Perl script was

written to compare the alignments. Our comparison focused on

‘‘RefGene/Unique’’ versus ‘‘None/Unique’’. For those reads

mapped in ‘‘RefGene/Unique’’, they can be divided into three

categories according to their mapping results in ‘‘None/Unique’’

run. The first category is denoted as ‘‘Identical’’ – the mapping is

exactly the same. The second is ‘‘Alternative’’ – still mapped but

differently, either to a different genomic region or with different

splicing sites. The last category is ‘‘Unmapped’’, in which a

mapped read becomes unmapped without the help of reference

transcriptome.

We are particularly interested in those junction reads that spans

two or more exons. Based upon the CIGAR [27] string for each

mapped read in SAM files, we identified junction reads from each

category, and calculated their statistical summaries. Additional

analysis was performed on ‘‘Alternative’’ and ‘‘Unmapped’’

junction reads to characterize their splicing patterns in terms of

the overlaps with exons. Furthermore, we investigated the key

reasons for ‘‘Alternative’’ and ‘‘Unmapped’’ junction reads. At

last, the ‘‘unique’’ versus ‘‘multiple’’ mapping mode was compared

and explored.

Results

The overall mapping summary for different run settings
The mapping summary with different parameter settings was

reported in Table 1. The column one corresponds to the total

number of sequence reads. Compared ‘‘None/Unique’’ with

‘‘RefGene/Unique’’ run, an average of 6,9% reads fail to be

Assessment of a Reference Transcriptome in Mapping Short RNA-Seq Reads

PLOS ONE | www.plosone.org 3 July 2014 | Volume 9 | Issue 7 | e101374

http://www.omicsoft.com/osa
http://www.omicsoft.com/downloads/whitepaper/OmicsoftAligner.pdf
http://www.omicsoft.com/downloads/whitepaper/OmicsoftAligner.pdf


T
a
b
le

2
.
Su

m
m
ar
y
o
f
m
ap

p
in
g
d
if
fe
re
n
ce

b
e
tw

e
e
n
‘‘R
e
fG
e
n
e
/U
n
iq
u
e
’’
an

d
‘‘N

o
n
e
/U
n
iq
u
e
’’
ru
n
s.

S
a
m
p
le

T
o
ta
l
m
a
p
p
e
d
re
a
d
s

Id
e
n
ti
ca

l
A
lt
e
rn

a
ti
v
e

U
n
m
a
p
p
e
d

Id
e
n
ti
ca

l
(%

)
A
lt
e
rn

a
ti
v
e
(%

)
U
n
m
a
p
p
e
d
(%

)

h
e
ar
t.
s1
0

5
,6
9
3
,4
8
3

5
,1
9
0
,1
8
8

1
0
0
,1
0
5

4
0
3
,1
9
0

9
1
.1
6

1
.7
6

7
.0
8

h
e
ar
t.
s3
0

1
7
,0
7
3
,1
4
6

1
5
,5
6
3
,6
1
8

3
0
0
,5
7
2

1
,2
0
8
,9
5
6

9
1
.1
6

1
.7
6

7
.0
8

h
e
ar
t.
s6
0

3
4
,1
4
2
,5
5
2

3
1
,1
2
4
,0
6
5

6
0
0
,0
1
8

2
,4
1
8
,4
6
9

9
1
.1
6

1
.7
6

7
.0
8

h
e
ar
t

5
6
,9
0
2
,2
2
7

5
1
,8
7
1
,1
5
9

9
9
9
,9
1
4

4
,0
3
1
,1
5
4

9
1
.1
6

1
.7
6

7
.0
8

ki
d
n
e
y.
s1
0

6
,2
9
4
,3
7
7

5
,6
7
4
,2
3
1

1
3
4
,5
0
7

4
8
5
,6
3
9

9
0
.1
5

2
.1
4

7
.7
2

ki
d
n
e
y.
s3
0

1
8
,8
6
3
,1
5
8

1
7
,0
0
4
,0
2
2

4
0
2
,6
7
6

1
,4
5
6
,4
6
0

9
0
.1
4

2
.1
3

7
.7
2

ki
d
n
e
y.
s6
0

3
7
,7
4
8
,6
3
9

3
4
,0
2
6
,3
8
6

8
0
5
,3
0
0

2
,9
1
6
,9
5
3

9
0
.1
4

2
.1
3

7
.7
3

ki
d
n
e
y

6
2
,9
1
0
,7
4
1

5
6
,7
0
8
,3
6
9

1
,3
4
2
,8
5
3

4
,8
5
9
,5
1
9

9
0
.1
4

2
.1
3

7
.7
2

liv
e
r.
s1
0

5
,6
5
0
,9
2
8

4
,9
4
6
,7
6
7

1
2
6
,3
3
9

5
7
7
,8
2
2

8
7
.5
4

2
.2
4

1
0
.2
3

liv
e
r.
s3
0

1
6
,9
2
6
,1
8
1

1
4
,8
2
0
,3
8
7

3
7
8
,0
2
3

1
,7
2
7
,7
7
1

8
7
.5
6

2
.2
3

1
0
.2
1

liv
e
r.
s6
0

3
3
,8
6
9
,6
7
2

2
9
,6
5
4
,3
2
5

7
5
6
,3
0
0

3
,4
5
9
,0
4
7

8
7
.5
5

2
.2
3

1
0
.2
1

liv
e
r

5
6
,4
4
8
,6
6
7

4
9
,4
2
0
,2
7
1

1
,2
6
1
,0
0
5

5
,7
6
7
,3
9
1

8
7
.5
5

2
.2
3

1
0
.2
2

lu
n
g
.s
1
0

6
,9
1
0
,5
4
3

5
,9
5
9
,2
7
2

2
1
1
,0
3
3

7
4
0
,2
3
8

8
6
.2
3

3
.0
5

1
0
.7
1

lu
n
g
.s
3
0

2
0
,7
3
2
,1
8
7

1
7
,8
7
9
,8
7
7

6
3
1
,7
8
7

2
,2
2
0
,5
2
3

8
6
.2
4

3
.0
5

1
0
.7
1

lu
n
g
.s
6
0

4
1
,4
6
3
,5
6
3

3
5
,7
6
2
,1
0
1

1
,2
6
3
,2
9
5

4
,4
3
8
,1
6
7

8
6
.2
5

3
.0
5

1
0
.7
0

lu
n
g

6
9
,1
1
2
,2
9
4

5
9
,6
0
6
,5
9
6

2
,1
0
5
,5
5
6

7
,4
0
0
,1
4
2

8
6
.2
5

3
.0
5

1
0
.7
1

d
o
i:1
0
.1
3
7
1
/j
o
u
rn
al
.p
o
n
e
.0
1
0
1
3
7
4
.t
0
0
2

Assessment of a Reference Transcriptome in Mapping Short RNA-Seq Reads

PLOS ONE | www.plosone.org 4 July 2014 | Volume 9 | Issue 7 | e101374



T
a
b
le

3
.
Su

m
m
ar
y
o
f
m
ap

p
in
g
d
if
fe
re
n
ce

fo
r
ju
n
ct
io
n
re
ad

s
b
e
tw

e
e
n
‘‘R
e
fG
e
n
e
/U
n
iq
u
e
’’
an

d
‘‘N

o
n
e
/U
n
iq
u
e
’’
ru
n
s.

S
a
m
p
le

T
o
ta
l
ju
n
ct
io
n
re
a
d

Id
e
n
ti
ca

l
A
lt
e
rn

a
ti
v
e

U
n
m
a
p
p
e
d

Id
e
n
ti
ca

l
(%

)
A
lt
e
rn

a
ti
v
e
(%

)
U
n
m
a
p
p
e
d
(%

)

h
e
ar
t.
s1
0

9
1
3
,3
4
3

4
9
5
,3
0
3

9
9
,9
7
3

3
1
8
,0
6
7

5
4
.2
3

1
0
.9
5

3
4
.8
2

h
e
ar
t.
s3
0

2
,7
4
1
,5
6
0

1
,4
8
7
,1
9
7

3
0
0
,2
0
8

9
5
4
,1
5
5

5
4
.2
5

1
0
.9
5

3
4
.8
0

h
e
ar
t.
s6
0

5
,4
8
0
,4
8
3

2
,9
7
1
,6
9
4

5
9
9
,2
9
9

1
,9
0
9
,4
9
0

5
4
.2
2

1
0
.9
4

3
4
.8
4

h
e
ar
t

9
,1
3
8
,2
6
3

4
,9
5
5
,5
2
9

9
9
8
,7
2
8

3
,1
8
4
,0
0
6

5
4
.2
3

1
0
.9
3

3
4
.8
4

ki
d
n
e
y.
s1
0

9
7
7
,7
0
8

5
1
8
,7
4
0

1
3
4
,1
2
0

3
2
4
,8
4
8

5
3
.0
6

1
3
.7
2

3
3
.2
3

ki
d
n
e
y.
s3
0

2
,9
3
0
,6
4
8

1
,5
5
4
,5
7
7

4
0
1
,4
8
5

9
7
4
,5
8
6

5
3
.0
5

1
3
.7
0

3
3
.2
5

ki
d
n
e
y.
s6
0

5
,8
6
5
,9
5
2

3
,1
1
0
,6
5
6

8
0
2
,9
3
5

1
,9
5
2
,3
6
1

5
3
.0
3

1
3
.6
9

3
3
.2
8

ki
d
n
e
y

9
,7
7
5
,0
4
6

5
,1
8
2
,9
5
7

1
,3
3
8
,8
7
6

3
,2
5
3
,2
1
3

5
3
.0
2

1
3
.7
0

3
3
.2
8

liv
e
r.
s1
0

1
,2
2
7
,0
0
1

6
4
0
,2
9
0

1
2
6
,1
8
0

4
6
0
,5
3
1

5
2
.1
8

1
0
.2
8

3
7
.5
3

liv
e
r.
s3
0

3
,6
7
6
,2
8
6

1
,9
2
1
,4
6
4

3
7
7
,5
7
1

1
,3
7
7
,2
5
1

5
2
.2
7

1
0
.2
7

3
7
.4
6

liv
e
r.
s6
0

7
,3
5
4
,5
2
7

3
,8
4
2
,9
4
1

7
5
5
,4
0
9

2
,7
5
6
,1
7
7

5
2
.2
5

1
0
.2
7

3
7
.4
8

liv
e
r

1
2
,2
6
2
,3
4
0

6
,4
0
6
,5
6
8

1
,2
5
9
,5
1
1

4
,5
9
6
,2
6
1

5
2
.2
5

1
0
.2
7

3
7
.4
8

lu
n
g
.s
1
0

1
,4
1
8
,0
3
9

7
2
5
,7
8
9

2
1
0
,7
4
6

4
8
1
,5
0
4

5
1
.1
8

1
4
.8
6

3
3
.9
6

lu
n
g
.s
3
0

4
,2
5
1
,0
5
5

2
,1
7
5
,1
5
6

6
3
0
,8
5
9

1
,4
4
5
,0
4
0

5
1
.1
7

1
4
.8
4

3
3
.9
9

lu
n
g
.s
6
0

8
,5
0
6
,0
3
6

4
,3
5
6
,5
4
3

1
,2
6
1
,4
4
6

2
,8
8
8
,0
4
7

5
1
.2
2

1
4
.8
3

3
3
.9
5

Lu
n
g

1
4
,1
7
6
,5
0
5

7
,2
6
0
,2
4
5

2
,1
0
2
,4
4
4

4
,8
1
3
,8
1
6

5
1
.2
1

1
4
.8
3

3
3
.9
6

d
o
i:1
0
.1
3
7
1
/j
o
u
rn
al
.p
o
n
e
.0
1
0
1
3
7
4
.t
0
0
3

Assessment of a Reference Transcriptome in Mapping Short RNA-Seq Reads

PLOS ONE | www.plosone.org 5 July 2014 | Volume 9 | Issue 7 | e101374



aligned. Clearly, with the help of RefGene model, more reads can

be mapped, especially for junction reads as we demonstrated

below. With respect to unique-mapping mode, roughly 5–10%

more reads can be mapped in multiple-mapping mode, as we can

see from the comparison of ‘‘RefGene/Multiple’’ with ‘‘RefGene/

Unique’’. We do not see much difference in mapping summary

when a same sample is sequenced at varying depth in Table 1.
Take the heart sample as an example; its uniquely mapped

percentage in ‘‘RefGene/Unique’’ run is 80.76%, nearly identical

to the results from its subsets in which 10%, 30% or 60% reads are

randomly sampled, respectively.

As described above, all mapped reads in ‘‘RefGene/Unique’’

run can be divided into three categories with reference to their

corresponding mappings in ‘‘None/Unique’’ run. After comparing

the mapping results, the number of ‘‘Identical’’, ‘‘Alternative’’ and

‘‘Unmapped’’ reads and their corresponding percentages are

detailed in Table 2. While the majority of reads are not affected,

7.1 to 10.7% of mapped reads fail to be aligned without the help of

RefGene model. Additionally, a small portion (ranging from 1.76

to 3.05%) of reads remain mapped but differently. As we

demonstrate below, the alternative mapping is usually worse than

its original mapping in ‘‘RefGene/Unique’’ run. It is noted that

the impact of RefGene model on read mapping is sample

dependant. As gene expression is very tissue specific, as a result, it

is expected that each sample has its own unique gene expression

profile. For the same sample, the effect of sequencing depth on the

difference between ‘‘RefGene/Unique’’ and ‘‘None/Unique’’ runs

is minimal or can be ignored according to Table 2.

The summary in Table 3 is similar to Table 2 but with a focus

on junction reads only. According to Table 3, more than one

third of junction reads cannot be aligned, and 10–15% reads are

mapped in an alternative way when aligning reads without

RefGene model. The ‘‘Identical’’ junction reads are only a little

more than 50%. Once again, we do not see much effect of

sequencing depth. Compared Table 2 with Table 3, it is clear
that junction reads are more vulnerable to mapping failure

without the help of a gene model. In other words, reference

transcriptome mainly impacts spliced-read placements.

To highlight the impact of reference transcriptome on the

mapping of junction reads, we calculated the percentages of

junction reads over the total reads in each category (Figure 1)
based upon the summary in Table 2 and Table 3. Overall,

junction reads account for about 20% of all mapped reads in

‘‘RefGene/Unique’’ run. However, the percentages jump up to

nearly 100% for ‘‘Alternative’’ and 65–80% for ‘‘Unmapped’’

reads (Figure 1), respectively. This means nearly all ‘‘Alterna-

tively’’ mapped and the majority of ‘‘Unmapped’’ in Table 2 are

junction reads. It is confirmed from Figure 1 and Table 3 that a

reference transcriptome affects mainly the mapping of junction

reads.

A junction read can span two or more exonic regions.

Conceptually, the more exons a junction read spans, the harder

it is to align it correctly without the help of a reference

transcriptome. For those junction reads in Table 3, we further

divided them into sub-groups according to the number of exons

they span (see Table 4, Figure 2). On average, 55% two-exon

junction reads can be aligned to the same genomic regions

regardless of the usage of a gene model when mapping reads. For

those junction reads spanning 3 exons, the percentage drops to less

than 7%. And the percentage continues to drop to nearly zero for

those junction reads spanning 4 or more exons. Obviously, the

more exons a junction read spans, the less likely it can be mapped

correctly without prior knowledge on junction sites in a gene

model (Figure 2).

The splicing patterns for ‘‘Identical’’, ‘‘Alternative’’ and
‘‘Unmapped’’ reads
As we conclude above, a reference transcriptome mainly affects

the mapping of junction reads. For a junction read spanning more

than two exons, it is hard to align it correctly without a reference

transcriptome. One interesting question is what kind of junction

reads tend to be mapped identically, alternatively or unmapped.

According to Table 4, about 98% junction reads span only 2

exons. In order to characterize the splicing pattern, we focus on

only two-exon junction reads. For each junction read in

‘‘RefGene/Unique’’ run, we calculate the number of overlapping

nucleotide bases with its left exon (OL) and right exons (OR),

respectively. Then the minimum of OL and OR is chosen for

histogram analysis (Figure 3). Since the full read length is 75 bp

long, the MOE (Minimum Overlap with an Exon, MOE=min

(OL, OR)) ranges from 1 to 37 for any junction read. For

‘‘Identical’’ junction reads, the typical MOE ranges from 15 to 37,

and the frequency drops to nearly 0 when MOE is less than 10.

For ‘‘Alternative’’ junction reads, the most dominant MOE is 1,

representing an average of one third of cases. In general, those

‘‘Alternative’’ reads have very small MOE. For those junction

reads with MOE of 1, 2 and 3, it is virtually impossible to map

them ‘correctly’ without the prior knowledge on transcripts. The

MOE for ‘‘Unmapped’’ reads has a much broader range with

peaks from 4 to 12. In order to map a junction read without a

reference transcriptome, the read should have sufficient overlaps

with exons at both ends. The majority of ‘‘Identical’’ reads meet

this requirement (left panels in Figure 3). However, if the overlap

with one end is too short, let’s say 1 or 2 nucleotide bases, this read

will be more likely mapped to only a single exon with the

remaining couple of bases mapping to the intron region adjacent

to the exon (middle panels in Figure 3). Otherwise, such junction

reads become either unmapped or mapped to different genomic

regions as non-junction reads if the overlap is something between

(right panels in Figure 3).

Comparison of the mappings of ‘‘Alternative’’ reads
Note that all the examples and illustrations below are from

sample Heart.s10, and only unique reads are shown in genome

browser. Since ‘‘Alternative’’ reads are mapped to either different

genomic regions or splicing sites, we are more interested in the

mapping difference in detail and the main reasons for alternative

mapping. As shown in Figure 4, those 19 unique junction reads

Figure 1. The percentages of junction reads over the total read
in each category. Overall, about 20% mapped reads are junction
ones. However, the percentages are nearly 100% and 65–80% for
‘‘Alternative’’ and ‘‘Unmapped’’ reads, respectively. RefGene transcrip-
tome mainly influences the mapping of junction reads.
doi:10.1371/journal.pone.0101374.g001
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are nearly perfectly mapped to gene HSP90AB1 in ‘‘RefGene/

Unique’’ run. Without a reference transcriptome, four reads

indicated by red arrow remain mapped to the same gene

HSP90AB1 but with mismatches at one end of the read. A few

bases previously mapped to another exon are now mapped to the

intron region, and accordingly the junction reads become non-

junction ones now. The remaining 15 junction reads are aligned to

pseudogene gene HSP90AP3P as non-junction reads instead. The

comparison reveals that the original mappings to HSP90AB1 for

those 15 reads are nearly perfect, while they all have more

mismatches when mapped to HSP90AP3P. Clearly, the alterna-

tive mapping for those junction reads in Figure 4 is getting worse

without a reference transcriptome. In a sense, those 15 junction

reads indicated by blue arrow in Figure 4A are ‘‘forced’’ to be

mapped to a different genomic region without the help of

reference transcriptome. Usually, such ‘forced’ mappings have

mismatches, and quite often unusual coverage pattern is seen, as

we will see later.

The impact of ‘Alternative’ junction reads on gene quantifica-

tion is demonstrated and further illustrated in Figure 5. With the

help of RefGene model, these 38 junction reads in Figure 5A are

uniquely mapped to 8 splicing regions in gene PDIA3, and the

alignments are nearly perfect. None of them is mapped to

PDIA3P. However, all those 38 reads are uniquely mapped to

retrotransposed pseudogene PDIA3P instead as non-junction

reads without a gene model. Note in Figure 5B no other reads

are mapped to PDIA3P. All alignments in Figure 5B have 1 or

two mismatches (indicated by red dots in alignment profile). The

island-like read coverage pattern in Figure 5B also indicates those

mapped reads are false positives. If gene PDIA3P is truly highly

expressed, ideally we should see mapped reads along exons evenly.

Another sign for false mapping is mismatch, as indicated by those

tiny red dots in alignment profile in Figure 5B. Each dot

Table 4. Summary of mapping difference between ‘‘RefGene/Unique’’ and ‘‘None/Unique’’ for junction reads grouped by the
number of exons spanned.

Sample Exon number Total Junction Identical Alternative Unmapped

heart 2 8,790,698 4,933,717 (56.1%) 934,175 (10.6%) 2,922,806 (33.2%)

3 337,724 21,798 (6.5%) 64,205 (19.0%) 251,721 (74.5%)

4+ 9,841 14 (0.1%) 348 (3.5%) 9,479 (96.3%)

kidney 2 9,459,854 5,163,154 (54.6%) 1,263,588 (13.4%) 3,033,112 (32.1%)

3 311,641 19,775 (6.3%) 74,858 (24.0%) 217,008 (69.6%)

4+ 3,551 28 (0.8%) 430 (12.1%) 3,093 (87.1%)

liver 2 11,984,777 6,389,808 (53.3%) 1,205,425 (10.1%) 4,389,544 (36.6%)

3 274,034 16,747 (6.1%) 53,904 (19.7%) 203,383 (74.2%)

4+ 3,529 13 (0.4%) 182 (5.2%) 3,334 (94.5%)

lung 2 13,686,975 7,225,169 (52.8%) 1,980,637 (14.5%) 4,481,169 (32.7%)

3 479,948 35,040 (7.3%) 120,301 (25.1%) 324,607 (67.6%)

4+ 9,582 36 (0.4%) 1,506 (15.7%) 8,040 (83.9%)

doi:10.1371/journal.pone.0101374.t004

Figure 2. The relationship between the relative abundance for ‘‘Identical’’, ‘‘Alternative’’ and ‘‘Unmapped’’ reads and the number
of splicing sites. Evidently, the more exons a junction read spans, the less likely it can be mapped correctly in ‘‘None/Unique’’ run.
doi:10.1371/journal.pone.0101374.g002
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represents a single mutation or mismatch with respect to its

nucleotide base in reference genome.

Those 38 sequence reads in Figure 5A and 5B are interesting.

They are junction reads in the transcriptome when mapping them

with the help of RefGene model (Figure 5A), but all become non-

junction ones in the genome without a gene model (Figure 5B).

The scenario illustrated in Figure 5A and 5B occurs when a gene

has a retrotransposed pseudogene copy elsewhere in the genome.

This is the case of PDIA3 (parent gene) and PDIA3P (retro-

transposed pseudogene). Retrotransposed pseudogene is generated

by reverse transcription of an mRNA transcript with subsequent

reintegration of the cDNA into the genome, and the processed

Figure 3. The distribution of MOE (Minimum Overlap with an Exon) for junction reads. The typical MOE for ‘‘Identical’’ junction reads
ranges from 15 to 37. For ‘‘Alternative’’ junction reads, the most dominant MOE is 1, representing an average of one third of cases. In contrast, the
MOE for ‘‘Unmapped’’ reads has a much broader range with peaks from 4 to 12. Note the scale for y-axis is not uniform.
doi:10.1371/journal.pone.0101374.g003
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pseudogenes can also accumulate random disablements such

mutations over the course of evolution. That’s why those mapped

reads in Figure 5B have mismatches. The island pattern we

observe in Figure 5B corresponds to the reads that should have

been mapped to the junctions of the parent gene PDIA3, but have

wrongly been mapped to the retrotransposed pseudogene

PDIA3P. As a result, those falsely mapped reads in Figure 5B
can give rise to misleading information on the expression of

pseudogene PDIA3P. In the meantime, we also underestimate the

expression of the parent gene PDIA3.

Similarly, for all those genes shown in Figure 5C, neither read
remains mapped to them in ‘‘RefGene/Unique’’ run. Like

Figure 5B, the sporadic island-like coverage patterns in

Figure 5C do not support that those mapped reads truly

originate from there either. As a matter of fact, ANXA2P2 is a

processed pseudogene, and its parent gene is ANXA2.

HSP90AB3P is a retrotransposed pseudogene as well, and it

parent gene is HSP90AB1. Those sequences mapped to

HSP90AB3P should have been mapped to HSP90AB1 as junction

reads, as shown in Figure 4. Without the usage of a reference

transcriptome, we get misleading expressions for those genes in

Figure 4. The impact of a reference transcripotome on the mapping of junction reads. (A) In ‘‘RefGene/Unique’’ run, 19 unique junction
reads are mapped to gene HSP90AB1 nearly perfectly. Four of them remain mapped to the same gene but differently and with mismatches without
the usage of RefGene model. In fact, the four junction reads become non-junction ones with a few bases mapped to the intron region; (B) The rest 15
reads (indicated by the blue arrow) are alternatively aligned to gene HSP90AP3P in ‘‘None/Unique’’ run, but with worse mismatches and alignment
scores compared to their mappings in gene HSP90AB1 (Figure 4A). Note the reads colored in blue are mapped to ‘‘+’’ strand, and colored in green
when mapped to ‘‘–’’ strand. The mismatch is colored in red.
doi:10.1371/journal.pone.0101374.g004
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Figure 5C as well due to ‘falsely’ mapped reads, and simulta-

neously underestimate the expression of those genes to which the

reads should have been mapped.

‘‘Alternative’’ junction reads are also likely to be mapped to the

same start and end positions but splitting at different sites. Two

cases in point are shown in Figure 6. For those junction reads

mapped to gene TCEA3 with and without RefGene model, both

mappings are equally well in terms of alignment scores and gaps

between exons. So there is no way to tell which one is right without

the assistance of reference transcriptome. Likewise, the mappings

of junction reads in gene FBXL3 are also equally well regardless of

the usage of RefGene model. Despite the minor difference in

splicing sites, the read mapped with RefGene model is considered

as fully compatible to a known gene, and thus is counted in gene

quantification. However, without a gene model, the same read is

mapped to exon-intron, and thus it is discarded at quantification

step when only fully compatible reads are counted. For some

counting packages, such as HTSeq [28], whether such reads

partially overlapping with exons are counted is dependent upon

the setting of the overlap resolution mode. When the mode is set to

intersection-strict in HTSeq, the reads mapped to exon-intron are

excluded. Thus, the alternative mappings in Figure 6 are not

equal at gene quantification step in RNA-Seq data analysis.

Figure 5. False mappings of ‘‘Alternative’’ junction reads. (A) With RefGene model, these 38 reads are uniquely mapped to 8 splicing regions
in gene PDIA3, and the alignments are nearly perfect. None of them is mapped to PDIA3P. (B) Without a gene model, however, all those 38 reads are
uniquely mapped to retrotransposed pseudogene PDIA3P as non-junction reads. All alignments have 1 or two mismatches (indicated by red dots in
alignment profile). (C) Without a gene model, all sequences mapped to these six genes are non-junction reads. They are re-mapped to elsewhere as
junction reads with the usage of RefGene model. The read coverage profiles in Figure 5B and Figure 5C are neither flat nor continuous, and those
sporadic coverage patterns are quite unusual. If these genes in Figure 5B and Figure 5C are truly expressed, we should usually see mapped reads
across the entire exon regions, not just a few sporadic and isolated islands. Due to falsely mapped reads, we get misleading information on the
expressions of these genes. Note gene CSDAP1 and its transcript is encoded in ‘‘–’’ strand, and colored in green. All the rest other genes colored in
blue since they are encoded in ‘‘+’’ strand.
doi:10.1371/journal.pone.0101374.g005
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Investigation on ‘‘Unmapped’’ reads
More than one third of junction reads fail to be aligned without

the help of RefGene model (see Table 3). As shown in Figure 3,
‘‘Unmapped’’ junction reads tend to have a short 4–14 bp overlap

with one of exons. Without the help of a reference transcriptome,

it is hard to find the right splicing sites, especially for those reads

spanning very small exons. Gene TNNT2 is a good example

(Figure 7). There are 4 annotated transcripts derived from this

gene by alternative splicing. Most exons are short, and even

shorter than the read length. Note the exon 12 in the transcript

NM_001001430 is as short as 6 bp long, and there is no way to

map a junction read to such a small exon without prior knowledge

(see bottom in Figure 7). There are a total 2,016 unique junction

reads mapped to this gene in ‘‘RefGene/Unique’’ run. Without a

gene model, 2000 of those junction reads cannot be mapped to this

gene anymore. Accordingly, the expression level for this gene is

significantly underestimated due to the mapping failure of the

majority of junction reads. This also happens for other genes such

as MYH6, MYH7, TPM1, KTN1 and RPL9, in which hundreds

or thousands of junction reads become unmapped without the

help of a reference transcriptome.

As we can see from Figure 1, about 70% ‘‘Unmapped’’ reads

are junction ones, and the rest,30% are non-junction reads. Why

is the mapping of a non-junction read affected by a reference

transcriptome? We are puzzled by this phenomenon at first sight.

After careful investigation, we realized that the main reason is

mapping mode. A read that is uniquely mapped in RefGene

model is likely to become a multi-read when mapping across the

genome, and accordingly excluded when only uniquely mapped

read is reported. In Figure 8, there are 12 reads uniquely mapped

to gene HSP90AB3P in ‘‘RefGene/Unique’’ run, unfortunately

those 12 non-junction reads become unmapped in ‘‘None/

Unique’’ run. When multiple-mapping is enabled and the

threshold for reported mapping locations is set to 2000, those 12

reads can be mapped to multiple genomic regions, ranging from

57 to 1,075. At the bottom of Figure 8, the number to the right of

each sequence is the number of genomic regions where this read

can be mapped to. Figure 8 illustrates a scenario in which a

unique read in a reference transcriptome can become a multi-read

if mapped genome wide. Therefore the usage of reference

transcriptome can reduce the mapping ambiguity for some

RNA-Seq reads.

Those ‘‘Unmapped’’ reads in Figure 7 and Figure 8 have

dramatic impacts on accurate estimation of gene expression levels.

In general, the expression is underestimated. We have quantified

the effect of those ‘‘Unmapped’’ junction reads in Table 3 on

gene expression, and it is found that there are a total 700 genes (see

Table S1) in which the read counts are reduced by 20% or more

due to the mapping failure of junction reads without the help of

reference transcriptome.

Unique-mapping versus multiple-mapping
A read can be mapped to multiple locations not only across the

reference genome, but even within a reference transcriptome. For

instance, in the case of recent paralogs, reads obtained by the

sequencing of one member of the gene family will usually map to

several members. Gene AREG is an extreme example where the

gene is present in 2 copies that did not diverge (Figure 9). These
two identical transcripts are located at genomic regions Chr4:

75310853–75320726 and Chr4: 75480629–75490485, respective-

Figure 6. Alternative splicing in ‘‘RefGene/Unique’’ and ‘‘None/Unique’’ runs. All junction reads are still mapped to the same gene. The
start/end positions and intron size are exactly the same regarding of gene model, but split differently. Without the assistance of reference
transcriptome, we cannot tell which mapping is correct. Note the coverage profile corresponding to an exon and an intron are colored in red and
dark blue, respectively.
doi:10.1371/journal.pone.0101374.g006
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ly. The transcript consists of 6 exons. At the bottom of Figure 9,
introns are trimmed and the alignment profiles are shown. Note

the alignment profile on the left is exactly identical to the

alignment profile on the right. Each read in alignment profile is

colored gray, meaning it is a multi-read. In multiple-mapping

mode, the expression level for this gene is 20.23 RPKM, while in

unique-mapping mode, the expression is ZERO. Obviously,

unique-mapping mode is inappropriate for gene AREG.

Another interesting example is shown in Figure 10 to

demonstrate the impact of mapping mode on gene quantification.

In unique-mapping mode, very few reads are mapped to the

regions around exon #2 in gene UQCRH. While in multiple-

mapping mode, the read coverage profile is more like a flat terrain.

Intuitively, multiple-mapping mode works better than unique-

mapping mode in term of the pattern of coverage profile. Those

reads mapped to gene UQCRH in multiple-mapping mode but

not in unique-mapping mode turn out to be junction reads around

exon #2, as shown on the track between ‘‘Unique mapping’’ and

‘‘Multiple mapping’’ tracks in Figure 10. In addition to gene

UQCRH, those junction reads can be mapped to gene UQCRHL

equally well. Therefore, they are multi-reads in RefGene model.

That is why they fail to be mapped to gene UQCRH in unique-

mapping mode. Note in Figure 10 if we map RNA-Seq reads

without a reference transcriptome and in unique-mapping mode,

those junction reads are mapped to gene UQCRHL only (right in

Figure 10). As a consequence, gene UQCRHL is reported to

have a high expression level, and this is untrue. If gene UQCRHL

is indeed highly expressed, we should be able to see reads mapped

to other regions of this gene as well. The example is Figure 10
illustrates the importance of both a reference transcriptome and

the multiple-mapping mode in accurate mapping RNA-Seq reads.

Figure 7. Junction reads across small exons can be mapped with the help of RefGene model, but not without the assistance of a
reference transcriptome. The region around exon 12 in the transcript NM_001001430 is zoomed out (the bottom panel). This exon is too short,
only 6 bp long, and there is no way to map a junction read to so small an exon without prior knowledge on splicing sites. Note reads are colored in
blue if mapped to ‘‘+’’ strand, and green if mapped to ‘‘–’’ strand.
doi:10.1371/journal.pone.0101374.g007
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According to the mapping summary reported in Table 1,
about 5,10% more reads are mapped in ‘‘RefGene/Multiple’’

run compared with ‘‘RefGene/Unique’’ run, If we increase the

reporting threshold for multi-reads from 10 to a higher number,

let’s say 100, more non-uniquely mapped reads are expected in

Table 1. The impact of mapping mode on alignment is sample

dependent (Table 1). As we know, a significant challenge in

analyzing RNA expression of homologous genes is the large

Figure 8. The mapping of non-junction reads in different mapping mode. Twelve reads are uniquely mapped to HSP90AB2P with RefGene
model in unique mapping mode (top panel), but all fail to be mapped in ‘‘None/Unique’’ run (middle panel). It turns out these reads can be mapped
to multiple genomic regions in addition to gene HSP90AB2P, and thus discarded in ‘‘None/Unique’’ run. The total number of mapping positions
across the genome for each read is shown to the right of each sequence (bottom panel). The 7th sequence can be mapped to as many as 1,075
positions.
doi:10.1371/journal.pone.0101374.g008

Figure 9. The necessity of multiple-mapping mode for gene AREG. Transcript NM_001657 can be generated by alternative splicing from two
genomic regions. All reads mapped to one region are surely to be mapped to its twin region as well. As a result, these reads are excluded in unique-
mapping mode. In order to properly map these multi-reads to gene AREG, multiple-mapping mode is necessary.
doi:10.1371/journal.pone.0101374.g009

Assessment of a Reference Transcriptome in Mapping Short RNA-Seq Reads

PLOS ONE | www.plosone.org 13 July 2014 | Volume 9 | Issue 7 | e101374



fraction of the reads mapped to multiple locations in the reference

transcriptome and genome. In unique-mapping mode, all multi-

reads are discarded, and this is too stringent and not ideal for those

genes in Figure 9 and Figure 10. As previously noted [1], if the

multi-reads are discarded, the expression levels of genes with

homologous sequences will be artificially deflated. Our research

has demonstrated the necessity of multiple-mapping, and thus, in

conjunction with reference transcriptome, multiple-mapping mode

is strongly recommended for RNA-Seq data analysis. When a read

is mapped to multiple locations, report all locations instead of

randomly pick one of the locations. The tools for downstream gene

quantification can decide whether to include or how to assign

multiple-mapping reads to those mapped genes or transcripts.

The impact of a reference transcriptome on differential
analysis
Usually, RNA-Seq differential analysis requires replicates.

However, we have a single sample in each different tissue. To

Figure 10. The impact of mapping mode on gene quantification: unique-mapping versus multiple-mapping mode. Those junction
reads on the track between ‘‘Unique mapping’’ and ‘‘Multiple mapping’’ tracks are mapped to the junction regions around exon #2 in gene UQCRH,
as well to gene UQCRHL. As a result, these reads are excluded in unique-mapping mode. Consequently, we have a very shallow read coverage around
exon #2 in gene UQCRH when aligning reads in unique-mapping mode. In contrast, in multiple-mapping mode, those reads are mapped, and
accordingly, the read coverage profile for gene UQCRH significantly improves (left bottom).
doi:10.1371/journal.pone.0101374.g010

Figure 11. The correlation of the calculated Log2(Fold Change) between heart and liver samples with and without the usage of
RefGene transcriptome in mapping. The points were colored in blue and red, respectively, if the corresponding absolute difference between the
two Log2(Fold Changes) was greater than 2 or 3.3. Although the majority of genes had highly consistent expression changes, there were quite a few
genes that were dramatically affected by the choice of using transcriptome reference or not.
doi:10.1371/journal.pone.0101374.g011
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demonstrate the impact of a reference transcriptome on differen-

tial analysis, we calculated the fold change between heart and liver

samples with and without the usage of RefGene transcriptome in

mapping. The correlation of the calculated Log2(Fold Change)

was shown in Figure 11. Ideally, we should get a straight line if

the reference transcriptome has no impact on differential analysis.

Obviously, this is not true. Although the majority of genes had

highly consistent or comparable expression changes, there were

quite a few genes that are dramatically affected by the choice of

using transcriptome reference or not. The points were colored in

blue and red, respectively, if the corresponding absolute difference

between the two Log2(Fold Changes) was greater than 2 or 3.3.

Some genes were found to have an expression change greater than

32-folds (2‘5) in one analysis, but was found not to change in the

other analysis. Clearly, using reference transcriptome in read

mapping has an impact on the downstream differential expression

analysis.

Discussion

Short reads generated by RNA-Seq experiments must ultimate-

ly be aligned, or ‘‘mapped’’ to a reference genome or

transcriptome assembly. The general objective when mapping a

collection of sequencing reads to a reference is to discover the true

location (origin) of each read with respect to that reference. Read

alignment to a reference provides biological information in two

basic ways. First, it generates a dictionary of the genomic features

represented in each RNA-Seq sample. Second, the number of

reads aligned to each feature approximates abundances of those

features in the original sample. Such measures of digital gene

expression are then subject to comparison among samples or

treatments in a statistical framework. Despite several years of

ongoing improvements, alignment of the junction RNA-Seq reads

to a reference genome is not a solved problem yet, owing both to

its intrinsic complexity and rapid advances in the sequencing

technologies. Thus the accuracy of read mapping and gene

quantification is critical for differential analysis.

In this paper, we have studied the impact of reference

transcriptome on mapping RNA-Seq reads, especially on junction

reads. As shown in Table 3 and Figure 1, only about 50–55%

junction reads can be mapped to the same genomic regions

regardless of the usage of RefGene model. More than one third of

junction reads fail to be mapped without the help of a reference

transcriptome. For ‘‘Alternative’’ mapped reads, their mappings in

‘‘None/Unique’’ run are usually worse than their corresponding

alignments in ‘‘RefGene/Unique’’ run, as we demonstrated in
Figure 4, 5 and 6. For those junction reads spanning more than

two exons (Table 4 and Figure 2), it is less likely to correctly

align them without the help of reference transcript.

All sequence reads in our dataset are 75 bp long. It is noted that

the results in this paper will be different if the same tissue sample

are sequenced at other different read lengths. The impact of the

read length on the mapping of junction reads remains an

interesting question for our exploration in the future. Nowadays,

most providers, including BGI (the largest sequence service

provider in the world), offer RNA-Seq sequencing service to

customers by delivering 50–150 bp short reads. As the sequencing

technology evolves, the read length is becoming longer and longer.

For instance, the newest MiSeq desktop sequencer from Illumina

and its MiSeq Reagent Kits v3 can generate reads of 300 bp long.

Read length certainly has a remarkable effect on the detection of

exon-exon junction and on the mapping of exon-exon spanning

reads. When reads become longer, they are more likely to span

multiple exons, and thus the mapping of long junction reads is

actually becoming more and more challenging without the

assistance of reference transcriptome. Thus, the need to have

reference transcriptome included in the mapping is greatly

increased. Therefore, the advantages of using reference transcrip-

tome in the mapping demonstrated in this study are becoming

more evident for longer reads. Indeed, long read lengths increase

read uniqueness in mapping, but make alignment of junction reads

more difficult without the prior knowledge on transcripts.

However, when the reference transcriptome used to guide the

mapping of reads is incomplete or inaccurate, some biases or

errors can be introduced as well. Pyrkosz et al [29] has explored

the issue of ‘‘RNA-Seq mapping errors when using incomplete

reference transcriptome’’ in detail. They used simulated reads

generated from real transcriptomes to determine the accuracy of

read mapping, and measured the error resulting from using an

incomplete transcriptome. When 10% increments of the chicken

reference transcriptome are missing, the true positive rate

decreases by approximately 6–8%, while the false positive rate

remains relatively constant until the reference is more than 50%

incomplete. The number of false positives grows as the reference

becomes increasingly incomplete. For model organisms such as

human and mouse, their transcriptome models are relatively more

complete compared to non-model organisms. The human

RefGene transcriptome used in our analysis is a collection of

non-redundant, curated mRNA models. It is a relatively stable

reference for genome annotation, gene identification and charac-

terization, mutation and polymorphism analysis, expression

studies, and comparative analyses. Admittedly, RefGene tran-

scriptome is not 100% complete and accurate, but its quality is

constantly improving. For transcriptome guided mapping of RNA-

Seq reads, the more complete and accurate the transcriptome, the

better.

Pyrkosz et al [29] also notice that the completeness of the

reference transcriptome interacts significantly with the mapping

mode. The true positive rate for multiple-mapping mode is

dependent solely on the correct transcript being in the reference,

while the unique-mapping mode has substantially lower true

positive rates. This is consistent with our results. In conjunction

with reference transcriptome, it is highly recommended to map

RNA-Seq reads in multiple-mapping mode for both junction and

non-junction reads, as we have demonstrated in Table 1,
Figure 9 and Figure 10.

In addition, Seok et al [30] have demonstrated that incorpo-

rating transcript annotations from reference transcriptome signif-

icantly helps the de novo reconstruction of novel transcripts from

short sequencing reads for transcriptome research. The prior

knowledge helped to define exon boundaries and fill in the

transcript regions not covered by sequencing data. As a result, the

reconstructed transcripts were much longer than those from

de novo approaches that assume no prior knowledge. From the

same RNA-Seq dataset in [29], Velvet, an assembly algorithm

based on de Bruijin graphs [31], reconstructed transcripts with a

median length of 207 bases, and Trinity [14], another de novo

algorithm that does not rely on aligning reads to a reference

genome, reported a median length of transcripts of 173 bases,

which are much shorter than the median length 1,553 bases from

the algorithm developed by Seok et al with transcript annotations

in RefSeq as prior knowledge. These results corroborate the

usefulness of leveraging reference transcriptome not only in

mapping of junction reads, but also in the reconstruction of novel

mRNA transcripts from sequencing data.
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Supporting Information

Table S1 A total 700 genes in which the read counts are
reduced by 20% or more due to the mapping failure of
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transcriptome.
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