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Evolution of Interbacterial Antagonism in Bee Gut Microbiota

Reflects Host and Symbiont Diversification

Margaret I. Steele,? 2’ Nancy A. Moran?®
aThe University of Texas at Austin, Department of Integrative Biology, Austin, Texas, USA

ABSTRACT Gram-negative bacteria frequently possess type VI secretion systems
(T6SSs), protein complexes that are able to inject toxic proteins into nearby cells.
Many aspects of T6SS structure and function have been characterized for model spe-
cies, but less is known about the evolutionary processes that shape T6SS and effec-
tor (toxin) diversity in host-associated microbial communities. The bee gut micro-
biota is a simple community that has codiversified with bees for >80 million
years. This study investigated how complements of T6SSs and effectors within the
bee microbiota changed as bacteria and their hosts diversified into isolated spe-
cies. We used protein homology to survey 198 isolate genomes of 9 Gram-nega-
tive species for genes encoding T6SS structural components; Rhs toxins, which are
common T6SS effectors; and VgrG proteins, which are structural components asso-
ciated with specific toxins. T6SS loci were present in 5 species clusters found only
in bees, namely Apibacter spp., Gilliamella spp., Frischella perrara, “Candidatus
Schmidhempelia bombi,” and Snodgrassella alvi. The distribution of T6SS loci sug-
gests that at least 3 were present in the microbiota of the common ancestor of
social bees and that loss of these genes in some bacterial lineages was linked to
both host and bacterial speciation. Isolates differed enormously in repertoires of
Rhs and VgrG proteins. We found that bacterial species employ different mecha-
nisms for toxin acquisition and diversification and that species and strains some-
times lose the T6SS entirely, likely causing shifts in competitive dynamics within
these communities.

IMPORTANCE Antagonistic interactions between bacteria affect diversity and dynam-
ics of host-associated communities, including gut communities that are linked to
host health. In many bacterial communities, including human and honey bee gut
microbiotas, antagonism is mediated by type VI secretion systems (T6SSs) that
deliver lethal toxins to competing strains. In this study, we explored how T6SSs and
associated toxins have evolved in the simple, host-specific gut microbiota of honey
bees and bumble bees. Using comparative genomics, we explored the conservation,
recombination, horizontal transfer, and loss of T6SSs and effectors during 80 million
years of evolution of this bee-associated community. We find that that patterns of
T6SS loss and retention are linked to differences in biology across host species, while
trends in effector diversification are mostly specific to bacterial lineages.

KEYWORDS T6SS, bumble bee, honey bee, microbiota

acteria that live within host-associated communities often have mechanisms for

killing potential competitors. Many Gram-negative bacteria employ type VI secre-
tion systems (T6SSs)—protein complexes that deliver toxic proteins into the periplasm
or cytoplasm of target cells—against other Gram-negative bacteria (1). T6SSs play im-
portant roles in host-associated microbial communities, including the human gut
microbiota (2-4), and influence strain competition (5, 6). Secreted components of
T6SSs include a needle-like tube of Hcp proteins, a trimeric VgrG spike at the end of
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FIG 1 Gram-negative bacteria found in the guts of social bees. (A) Bacteria are spatially organized in the bee gut.
Parasaccharibacter apium (Pa; Alphaproteobacteria) and Bartonella apis (Ba; Alphaproteobacteria) are found sporadically
in the honey bee crop (70). Frischella perrara (Fp; Gammaproteobacteria) is found in many honey bees and specifically
colonizes the pylorus (71, 72). Gilliamella spp. (Ga; Gammaproteobacteria) and Snodgrassella alvi (Sa; Betaproteobacteria)
cocolonize the ileum in Apis and Bombus spp. (22, 43). Apibacter spp. (Api; Flavobacteria) are found in Apis and Bombus
spp. but are uncommon in Apis mellifera (21, 32). “Candidatus Schmidhempelia bombi” (Sb; Gammaproteobacteria) is
found in Bombus spp. (73). The location of Apibacter spp. and “Candidatus Schmidhempelia bombi” within the gut is
unknown. Gram-positive bacteria associated with the bee gut are not shown. (B) Bee gut symbionts have codiversified
with their hosts for more than 80 million years.

the needle, a tip protein containing a PAAR domain, and any protein toxins (effectors)
attached to these components. Nonsecreted components include a membrane com-
plex, baseplate, and a contractile sheath that provides the force needed to expel the
needle and effectors from the cell (1, 7-12). T65Ss can deliver a diverse range of effec-
tors, which have different cellular targets, enzymatic activities, and mechanisms of
associating with the T6SS (13-15). Immunity genes, usually located immediately down-
stream of their cognate toxin gene, encode proteins that protect the cell against the
activity of each toxin. T6SS effectors and immunity genes are sometimes exchanged
between bacteria through horizontal gene transfer (16, 17). Additionally, some T6SS
effectors, including Rhs-family toxins and VgrG proteins, can diversify through recom-
bination (18-20). Gain, loss, and exchange of effector and immunity genes may there-
fore determine which strains can coexist within hosts.

The gut microbiota of social bees provides a useful model for the evolution of host-
associated communities. This simple consortium, consisting of 10 or fewer species (or
closely related species clusters), is most intensively studied for the Western honey bee,
Apis mellifera (Fig. 1A) (21-24). Five core bacterial lineages also form specific associa-
tions with other honey bee species (genus Apis) and bumble bees (genus Bombus).
Phylogenetic reconstructions show that these 5 lineages were present in ancestral
hosts and that bees and their gut bacteria have undergone long-term codiversification
(21, 25-27) (Fig. 1B). We previously showed that the genomes of bee gut bacteria
Snodgrassella alvi and Gilliamella apicola encode T6SSs, as well as diverse Rhs toxins,
which are exchanged between strains and species and diversify through recombina-
tion (28). T6SS-mediated antagonism is likely to be important for intraspecific competi-
tion in the bee gut, where strains of the same species compete to dominate niches (26,
29), and may also play a role in interspecific competition.

The biology of bee host species likely affects the competitive dynamics within these
communities. New honey bee hives are founded by swarms of hundreds to thousands
of individuals, while bumble bee colonies are founded by a single female. Colonies
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founded by swarms are expected to have more strain diversity, as diversity is lower in
individual bees than in the hive as a whole (29, 30). Furthermore, microbiota diversity
in different host species correlates with both gut community size and colony size (21).
This likely explains why bacterial diversity is lower in bumble bee hosts than in honey
bee hosts, with a greater number of individual bumble bees dominated by a single
strain of each core species (21, 27). Over millions of years of evolution, these factors
could lead to dramatic shifts in T6SS function and effector diversity in the microbiotas
of different bee host species.

In this study, we examined the evolution of T6SS and toxin effectors within the gut
microbiotas of social bees. By analyzing multiple isolate genomes for all Gram-negative
symbiont species, we compared the distribution of T6SSs across bacterial species and
between gut communities restricted to different hosts. We then used a homology-
based approach to look at diversification within two T6SS-secreted protein families,
VgrG and Rhs, to better understand how effector evolution is shaped by recombination
within and between genomes and by competitive pressures at the community level.

RESULTS

Bee gut symbionts retain ancestral T6SSs. In a survey of 198 isolate genomes
from 9 bacterial species clusters (Fig. 1; see also Table S1 in the supplemental material),
we identified complete sets of genes encoding the T6SS structural components in iso-
lates of Apibacter spp., S. alvi, Gilliamella spp. G. apicola, Frischella perrara, and
“Candidatus Schmidhempelia bombi,” but not in Bartonella apis, Parasaccharibacter
apium, or Gilliamella apis. Maximum-likelihood phylogenies of conserved T6SS struc-
tural proteins TssB (Fig. 2A), TssC (see Fig. S1A in the supplemental material), and TssH
(Fig. S1B) show that the T6SSs we identified comprise 5 distantly related clusters within
previously described T6SS clades (31). Of the two T6SSs encoded by the genome of the
betaproteobacterium S. alvi (see Fig. S2A in the supplemental material), Sa-T65S-1 is not
closely related to the T6SSs in any other bee symbiont (Fig. S2B), and the nearest relatives
to Sa-T6SS-2 are T6SSs from taxa related to S. alvi and not associated with bees (Fig. S2C).
Both Sa-T6SS-1 and Sa-T6SS-2 are found in honey bee and bumble bee symbionts and
were likely present in the ancestral lineage of S. alvi prior to association with a bee host.
Ga-T6SS-1 is found within multiple bee gut-associated Gammaproteobacteria belonging
to the family Orbaceae, including Gilliamella spp.; “Candidatus Schmidhempelia bombi,” a
bumble bee symbiont; and Frischella perrara, a honey bee symbiont (see Fig. S3A in the
supplemental material). The Ga-T65S-1 phylogeny is not congruent with the Gilliamella
genome phylogeny, and it supports multiple transfers of Ga-T6SS-1 between Gilliamella
lineages (Fig. S3B). The genomes of F. perrara and a few Gilliamella isolates encode a sec-
ond T6SS locus, Ga-T6SS-2, which appears to have been transferred multiple times
between Gilliamella spp. and F. perrara (Fig. S3C). The T6SS genes of Apibacter isolates
(Api-T6S5S-1) (32) are related to T6SSs found in Apibacter strains isolated from other ani-
mals, as well as in other members of the order Flavobacteriales (see Fig. S4 in the supple-
mental material). These phylogenetic analyses indicate that most of the T6SSs of modern
bee gut bacteria were present in the ancestral lineages when they became symbionts.
Some transfers have taken place, but these are confined to related lineages within the
family Orbaceae.

Loss and retention of T6SSs in symbiont lineages. We examined the retention
and loss of T6SS loci in the context of the evolutionary history of bees and their gut
symbionts. We previously reported, based on an analysis of genomes from 28 S. alvi
strains collected from bees in North America and Southeast Asia, that honey bee S. alvi
retains at least one of two vertically inherited T6SSs (Sa-T6SS-1 and Sa-T6SS-2), which
are sometimes lost in S. alvi strains from bumble bees (28). Our updated analysis, which
includes 56 S. alvi genomes from Europe, North America, and Asia, provides further evi-
dence that T6SS genes are universal in S. alvi in honey bee guts but not in all bumble
bee hosts (Fig. 2B).

Interestingly, host-specific trends in T6SS loss and retention across Gilliamella spp.
(112 genomes) are similar to the trends seen for S. alvi (Fig. 2C). Among honey bee
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FIG 2 The genomes of bee gut symbionts encode multiple conserved T6SSs. (A) A maximume-likelihood phylogeny of the TssB protein, a conserved
structural component of T6SSs, shows evolutionary relationships between the T6SSs of bee gut symbionts and previously described T6SS subfamilies. Leaf
colors indicate the bacterial class from which each TssB sequence was extracted (further described in Table S2 in the supplemental material). Labeled
circles represent TssB proteins associated with T6SS loci found in bee symbionts, as follows: Sa-T6SS-1, Sa-T65S-2, Ga-T6SS-1, Ga-T6SS-2, Fp-T6SS-2, and Api-
T6SS-1. Gray points on branches indicate >70% support with 1,000 bootstraps. (B) S. alvi genome phylogeny constructed from 719 single-copy gene trees.
Each leaf represents a single sequenced isolate genome. The color of the ring around the phylogeny indicates the host species from which each strain was
isolated: White, Apis mellifera (Western honey bees); light gray, Apis spp. (other honey bees); dark gray, Bombus spp. (bumble bees). Colored triangles at the
outer edge of each strain name indicate that the strain genome encodes one or more T6SS loci. (C) Gilliamella spp. genome phylogeny, constructed from
927 single-copy gene trees, with Frischella perrara and “Candidatus Schmidhempelia bombi” as outgroups. (D) Apibacter spp. genome phylogeny
constructed from 1,279 single-copy gene trees. Shading of phylogenies highlights different species within each genus.
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isolates, the genomes of 32 of 33 G. apicola strains encode a single highly conserved
T6SS (Ga-T6SS-1). In contrast, Gilliamella spp. isolated from bumble bees differ in
whether they retain T6SS genes. Ga-T6SS-1 has been lost multiple times from bumble
bee Gilliamella strains; in some cases, it has been replaced with the distantly related
Ga-T6SS-2 locus. G. apis isolates, which cooccur with G. apicola in honey bee guts, lack
T6SS loci entirely. Unlike the T6SSs of other bee symbionts, Api-T6SS-1 is present in
Apibacter spp. isolated from both bees and mammalian hosts (Fig. 2D). Api-T6SS-1
appears to have been lost in some isolates from Apis cerana. These trends suggest that
differences in host biology can determine whether selective pressures favor loss or
retention of T6SSs in multiple symbiont species.

Bee gut bacterial species have distinctive repertoires of Rhs toxins. Rhs toxins
are common T6SS effectors that are easily identified by a conserved core motif (18).
Diversification of rhs genes through recombination has been reported in multiple bac-
terial species (18, 19, 33), but the bee microbiota presents an opportunity to examine
this process within the context of a coevolved bacterial community. Because rhs genes
can exchange toxin domains through recombination, we performed separate analyses
for core and toxin domains of Rhs proteins. Core domains are defined here as the
amino acid sequence between the N terminus and a conserved DPxG motif (18) in an
alignment of Rhs proteins, which includes a conserved core region and sometimes an
N-terminal secretion domain. Toxin domains consist of the sequence between the
DPxG motif and the C terminus. We searched the genomes of 198 bee gut isolates for
proteins containing conserved Rhs core motifs, and, after filtering and clustering the
sequences, we identified 208 representative C-terminal toxin domains. 64 of these
toxin domains share homology with previously characterized toxin domains (Table S1).
Within the bee gut isolate genomes, we found 1,528 proteins containing regions ho-
mologous to the representative toxin domains, including putative orphaned toxin
domains not detected in our initial search.

Within the bee microbiota, all species that carry T6SSs also carry genes encoding
Rhs toxins, though the number of toxin domains per genome varies (Fig. 3A). We
found that each species utilizes only 1 to 4 distinct core domains, but a single core do-
main is often associated with many different toxin domains (Fig. 3B). Rhs proteins in
Gilliamella spp. and F. perrara—both members of the family Orbaceae—contain similar
core domains, which is consistent with the shared ancestry of these species. Full-length
Rhs toxins with related core domains (Rhs core cluster 08) are present in S. alvi,
Gilliamella spp., and F. perrara strains, suggesting that horizontal transfer of full-length
toxin genes is possible, though transfer and retention of full-length genes appears to
be rare. In a few cases, a single toxin domain was associated with multiple core
domains, but only when the toxin was present in multiple species. Most toxins were
found with only one core domain or were orphans that could not be assigned a core
domain. Indeed, for 103 of the 208 toxin domain clusters identified, only orphaned
toxin domains were present (Fig. 3C).

Among bee gut isolates, full-length Rhs proteins are approximately 1,400 amino acids
in length and consist of a conserved core domain, a C-terminal toxin domain, and a N-ter-
minal secretion domain. In many bacteria, recombination between rhs genes with similar
5’ ends and different 3’ ends can result in displacement of the original 3’ end. This pro-
cess, known as “C-terminal displacement,” sometimes forms long arrays of orphaned 3’
ends and immunity genes downstream of an intact gene (18, 19, 33) (see Fig. S5 in the
supplemental material). Most bee gut taxa with rhs genes encode a mixture of full-length
Rhs proteins and orphaned toxin domains (Fig. 4). On average, the genomes of S. alvi
strains encode more full-length and orphaned Rhs toxins than other bee symbionts
(Fig. 3A). The genomes of S. alvi isolates with the most orphaned toxin domains—particu-
larly strains App2-2, App4-8, and App6-4—also encode more full-length Rhs proteins
than other S. alvi strains (Fig. 4). The larger number of full-length genes in these isolates
may boost the number of orphaned toxin domains by presenting more sites for recombi-
nation. Like S. alvi, Gilliamella spp. and F. perrara genomes encode both full-length toxins
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FIG 3 Rhs toxin diversity within bee gut symbionts. (A) Number of Rhs toxin domains per genome for each species cluster. C-terminal toxin domains were
extracted from proteins containing Rhs repeat motifs and clustered. Final counts represent the number of proteins with =40% homology to representative
toxin domains. (B) Network diagram showing relationships between Rhs toxin domains and core domains. Gray hexagons represent core domain clusters,
with the size proportional to the number of proteins within the cluster. Circles represent toxin domain clusters, which are colored based on the bacterial
species in which they are most often found. Edges connect core and toxin domains from the same protein. Not all toxin domains are shown, as many
orphaned toxin domains do not include a large enough core domain to be assigned to a cluster. (C) Network diagram illustrating the composition of 208
toxin domain clusters. Each node represents a protein sequence from an isolate genome. Node color, shape, and size represent the bacterial species, the
host from which it was isolated, and the protein length, respectively. Clusters are arranged based on whether they are found in multiple species clusters or
restricted to one genus. Edges represent =40% amino acid identity over a minimum of 90 amino acids, as determined through all-versus-all protein BLAST.

and orphaned toxin domains. However, unlike other Gilliamella spp., the genomes of G.
apicola isolates encode only orphaned toxin domains, suggesting that Rhs toxins in G.
apicola serve a purpose that does not require an N-terminal secretion domain to interact
with the T6SS. Furthermore, most bee gut bacteria genomes encode a mixture of toxin
domains found only within a single species cluster and toxin domains present in multiple
genera. G. apicola is a notable exception, in that its genome encodes no Rhs toxins exclu-
sive to Gilliamella. Instead, most of the Rhs toxins encoded by the genomes of G. apicola

May/June 2021 Volume 6 Issue3 e00063-21 msystems.asm.org 6


https://msystems.asm.org

T6SS Evolution in Bee Microbiota @SYSfemSG

< 30001
=)
c
2 20001
£
2L
© 10001
o

0

Strain

= 30001 — Taxa: Length:
‘é‘, o au Apibacter spp. ® 1000
D 5000+ Gilliamella apicola ® 2000
= — "
5 Gilliamella apis ® 3000
© 10001 Gilliamella spp.
o

Frischella perrara
Candidatus “S. bombi”
Snodgrassella alvi

FIG 4 The genomes of bee gut microbes encode full-length Rhs toxins and orphaned C-terminal toxin domains. Each point represents a protein encoded
by the genome of a bee gut isolate (x axis) containing a toxin domain homologous (=40% identity over =90 amino acids) to a representative sequence
from one of 208 toxin clusters. The size and color of each point represent the length of the protein and the species in which it is present. Full-length Rhs
proteins are approximately 1,400 amino acids in length (indicated by the dashed line) and often include secretion domains. Smaller proteins are generally
orphaned toxin domains. Proteins larger than 1,400 amino acids often contain Rhs repeat motifs similar to T6SS effectors but have N-terminal domains
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strains are orphaned toxin domains that are also found in S. alvi (Fig. 3C). In contrast,
Apibacter spp. genomes encode few Rhs proteins that are also found in other genera.
Surprisingly, many G. apis strains, which do not carry T6SS structural genes, carry genes
encoding multiple Rhs toxins (Fig. 3A). Some of these toxin domains were identified in
proteins with features that are not characteristic of T6SS effectors, discussed in more
detail in the following section.

As is the case for many T6SS effectors (4, 15, 34-37), immunity genes located near
the 3’ end of each rhs gene encode proteins that protect bee symbionts from the
effects of their own cognate toxins (28). Furthermore, many strains carry immunity
gene homologs that may protect them from toxins produced by other members of the
microbiota (Fig. 5). The genomes of G. apicola strains frequently encode toxin and im-
munity pairs homologous to those found in S. alvi, while other Gilliamella spp. tend to
have many orphaned immunity genes without their cognate toxins.

Similar toxin domains are associated with different types of secretion systems.
While Rhs toxins are common T6SS effectors, some proteins containing Rhs repeat
motifs serve other functions. Many Rhs proteins encoded by Apibacter spp. genomes
have N-terminal SpvB and TcdB domains instead of the PAAR domain characteristic of
Rhs proteins secreted by T6SSs. Furthermore, the majority of rhs genes carried by
Apibacter spp. are adjacent to genes encoding type A sorting-domain proteins of type
IX secretion systems (T9SSs). Therefore, it seems probable that most, if not all, of the
Rhs proteins in Apibacter spp. are associated with a T9SS and are not T6SS effectors.
T9SSs allow gliding motility in Bacteroidetes spp. and are virulence factors for some
pathogens (38). T9SSs may also secrete antibacterial polymorphic toxins (39), and it is
possible that the Rhs proteins encoded by Apibacter spp. genomes play a role in inter-
bacterial antagonism. However, this aspect of T9SS biology is not well understood and
warrants further investigation.

In a few cases, we identified proteins containing filamentous hemagglutinin repeat
domains and an extended signal peptide characteristic of type V secretion systems
(T5SSs) that had C-terminal domains homologous to toxin domains of Rhs proteins.
These proteins may be autotransporters used in contact-dependent growth inhibition.
Toxin cluster 164 provides an example of this (see Fig. S6 in the supplemental mate-
rial). Based on a maximum-likelihood phylogeny of these proteins, toxin domain 164 is
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associated with an autotransporter-like N-terminal domain in S. alvi, which has been
horizontally transferred to Gilliamella spp. In other Gilliamella strains and in one F. per-
rara strain, this toxin domain is associated with an N-terminal domain containing Rhs
repeats and is likely to have been horizontally transferred between Gilliamella and F.
perrara. Toxin domain clusters 118 and 166 are also present as putative autotransport-
ers in S. alvi genomes and as Rhs toxins in Gilliamella spp. As related toxin domains are
found in bacteria not associated with bees, it is not clear whether this exchange of a
toxin domain between an autotransporter and a Rhs family T6SS effector occurred
within the bee gut microbiota. However, transfer of toxin domains between different
polymorphic toxin systems illustrates one mechanism for acquiring novel effectors.

Patterns of VgrG diversification are lineage specific. While Rhs proteins are com-
mon T6SS toxins, many other effectors are secreted by T6SSs. VgrG is a structural com-
ponent of T6SSs and provides a loading site for many T6SS effectors (40-42). The VgrG
C terminus is required for effector transport and is typically associated with a specific
effector and its cognate immunity gene (19, 40-42). Like Rhs toxins, vgrG genes can
diversify through C-terminal displacement. Thus, we used VgrG diversity as a proxy for
the diversity of effectors that bind to VgrG. We identified 977 proteins with VgrG motifs
in our set of bee gut isolate genomes, which clustered into 13 groups. 663 proteins
were greater than 500 amino acids in length and shared at least 40% amino acid iden-
tity with a representative sequence from one of the 13 clusters.

The average number of VgrG proteins differs among species. S. alvi strain genomes
encode only one VgrG protein per T6SS, whereas Apibacter and Gilliamella spp.
genomes frequently encode multiple VgrG proteins (Fig. 6A and Fig. S5). Furthermore,
the number of vgrG genes per Gilliamella strain differs among isolates from different
host species, suggesting that host factors that allow loss of T6SSs in bumble bee—but
not honey bee—microbiotas may also allow reductions in effector diversity.

VgrG proteins are a structural component of the T6SS and are therefore likely to
share an evolutionary history with other structural genes. S. alvi VgrG proteins form
two clusters, which are associated with Sa-T6SS-1 and Sa-T6SS-2, respectively (Fig. 6B).
The genes that encode these proteins are associated with the T6SS loci. VgrG proteins
found in Gilliamella spp., F. perrara, and “Candidatus Schmidhempelia bombi” form
four clusters that are likely derived from a common ancestor associated with Ga-T6SS-
1. Most vgrG genes in members of the family Orbaceae occur in satellite loci, far from
the genes encoding the structural components of the T6SS. In some strains, one copy
of vgrG is located within the Ga-T6SS-1 locus (Fig. S3). While F. perrara and “Candidatus
Schmidhempelia bombi” resemble Gilliamella spp. in VgrG diversity, they differ in
which VgrG cluster is most abundant, suggesting expansion of different VgrG families
in different lineages (Fig. 6A and C). Two VgrG clusters are associated with Ga-T65S-2;
one is found only in Gilliamella spp., and one, like Ga-T6SS-2, shows evidence of hori-
zontal transfer between Gilliamella spp. and F. perrara (Fig. 6B). Four VgrG clusters are
associated with a T6SS in Apibacter spp. and also appear to share an ancestor. The
Apibacter spp. vgrG genes are found in satellite loci. Surprisingly, there is a conserved
VgrG-like protein in some G. apis strains, whose genomes encode no other T6SS struc-
tural components. These G. apis strains, including isolates from two different host pop-
ulations, carry multiple copies of vgrG, which are located in clusters of genes similar to
the auxiliary VgrG clusters found in other Gammaproteobacteria. Fragments of this
vgrG-like gene are also present in the genomes of two S. alvi isolates (Fig. 6B).

Homologous VgrG proteins show considerable variation in length, which could
reflect degradation of unneeded copies after gene duplication or formation of dis-
placed fragments due to illegitimate recombination. VgrG fragments were far more
common in the five bee gut-associated Orbaceae (Gammaproteobacteria) spp. than in

FIG 5 Legend (Continued)

color on a single row. In the rare instances in which a toxin was detected without its cognate immunity gene,
either the immunity gene was not identified due to low homology to the reference sequence or the toxin was

located at the end of a contig, which prevented annotation of the immunity gene.
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Apibacter spp. (Bacteroidetes) or S. alvi (Betaproteobacteria) (Fig. 7A). Most of the VgrG
proteins in the Orbaceae taxa belong to one of three 40% identity clusters. The trun-
cated proteins in clusters 12 and 13 appear to be the result of pseudogenization
through a combination of nonsense mutations and insertion of mobile genetic ele-
ments into vgrG genes (Fig. 7B and C). In contrast, cluster 11, which is found in the
same bacterial genera and overlaps with cluster 13 in the homology network, is far less
variable.

VgrG proteins in S. alvi are highly conserved and show little divergence, duplication,
or fragmentation (Fig. 7A), despite cluster 10 being related to the highly diversified
VgrG found in Gilliamella spp. (Fig. 6B). As in S. alvi, VgrG proteins in G. apis vary little
in length and sequence (Fig. 7A), but this could reflect high relatedness of G. apis iso-
lates carrying vgrG genes. VgrG proteins in Apibacter spp. differ more than those in S.
alvi, but differ far less in length than do Gilliamella spp. proteins, suggesting that vgrG
genes in S. alvi and Apibacter spp. are less likely to undergo paired homologous and
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illegitimate recombination events that result in orphaned domains. If so, the frequency
of C-terminal displacement is not consistent across different effectors, as S. alvi, the
species with the highest rate of Rhs C-terminal displacement, also has the lowest rate
of VgrG diversification (see Fig. S7 in the supplemental material).

DISCUSSION

The bee gut microbiota provides interesting parallels with other host-associated mi-
crobial communities. For example, half of the Bacteroidales strains isolated from the
human gut—about one fourth of the bacteria in the intestine—carry genes encoding
T6SSs (3). In honey bees (A. mellifera), S. alvi and G. apicola typically comprise more
than half of the bacteria in the ileum (equivalent to the small intestine) (43), and almost
all strains carry genes encoding at least one T6SS. Another system with similarities to
the bee gut microbiota is the symbiotic relationship between Aliivibrio fischeri and bob-
tail squid. The diversity of A. fischeri is high in seawater, as diversity of G. apicola and S.
alvi is high in honey bee hives overall (29), but light organ crypts within individual
squid (44) and the guts of individual bees (21, 30) are dominated by single strains or
clusters of closely related strains. T6SSs help to exclude incompatible V. fischeri strains
from crypt spaces in bobtail squid (6, 45). Similarly, Bacteroides fragilis uses a T6SS to
displace competitors in the mouse gut (2, 4, 5, 34). T6SSs likely allow bacteria to domi-
nate niches in the bee gut as well.

T6SSs may have contributed to the establishment of features seen in the modern
bee gut microbiota. For example, bee gut bacteria participate in cooperative metabolic
interactions (26, 46, 47), which may be facilitated by T6SS-mediated antagonism that
excludes cheaters (48). Additionally, S. alvi and G. apicola cocolonize the bee ileum,
where they form organized layers (43). Spatial separation is likely enforced in part by
T6SSs, although environmental gradients within the gut, including concentrations of
oxygen (49) and host-produced antimicrobial peptides (50), may also contribute.

We observed similar host-specific trends in T6SS retention and toxin diversification
for both S. alvi and Gilliamella spp. Lower bacterial diversity in bumble bee hosts rela-
tive to that in honey bee hosts (21, 27) may help to explain why bumble bee isolates
sometimes lose their T65Ss and can differ drastically in the number of T6SS effectors
encoded in their genomes. A smaller population size also increases the effect of
genetic drift, allowing genotypes with potentially deleterious traits (e.g., the loss of
T6SS genes) to dominate. Pesticides and antibiotics reduce the diversity of honey bee
gut symbionts and increase vulnerability to bacterial pathogens (51, 52), and these
short-term disruptions could affect T65S-mediated antagonism within the microbiota.
Social and behavioral factors that alter microbiota diversity within human populations
(e.g., antibiotic use and diet) might similarly affect the evolution of interbacterial an-
tagonism among human gut bacteria.

Within the bee microbiota, T6SS loss and retention is connected to symbiont speci-
ation. This is most apparent in Gilliamella, which has split into multiple species in
honey bees, most notably G. apicola and G. apis. These species have very similar 16S
rRNA gene sequences but differ in their metabolic capabilities (29, 53). Here, we show
that G. apicola isolates almost always carry genes encoding a single, highly conserved
T6SS, whereas all G. apis isolates lack T6SS genes. G. apicola and G. apis cooccur within
the guts of individual bees (29) despite their apparent differences in capacity for inter-
strain antagonism, suggesting that these closely related species occupy different
niches within the gut.

While host-specific selective pressures may affect the retention of T6SS structural
genes, effector diversity seems to be driven by factors specific to bacterial lineages.
T6SS genes are not transferred between cooccurring members of different phyla, but
Rhs toxin domains—and presumably their cognate immunity genes—are exchanged
among S. alvi (Betaproteobacteria) and Gilliamella (Gammaproteobacteria) isolates. As
we reported previously (28), S. alvi strains carrying genes encoding Sa-T65S-1—with or
without Sa-T6SS-2—tend to have many Rhs toxins, while strains lacking Sa-T6SS-1
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have few or none. In contrast, no strong relationship is apparent between T6SS loci
and Rhs diversity in G. apicola. Furthermore, the genomes of G. apicola strains encode
only orphan toxin domains that are homologous to proteins found in multiple species
clusters. As these proteins lack secretion domains necessary to associate with the T6SS,
acquisition of orphaned toxin domains along with linked immunity genes may be a de-
fensive strategy in G. apicola, similar to that used by Bacteroidales species in the human
gut (34). The genomes of many S. alvi, Gilliamella spp., and F. perrara isolates encode a
mixture of full-length Rhs proteins and orphaned C-terminal domains, indicating that
Rhs diversification through C-terminal displacement occurs in multiple bacterial line-
ages. In species with full-length Rhs proteins, orphaned toxin domains may serve as a
reservoir of toxin diversity, potentially becoming reattached to a secretion domain
through homologous recombination in the future (20).

Diverse sets of effector proteins provide multiple advantages. In Pseudomonas aeru-
ginosa, T6SS effectors work synergistically to kill target cells, but also have different
optimal environmental conditions, allowing cells to remain competitive in a range of
environments (54). For microbes in more constant (e.g., host) environments, acquisi-
tion of novel toxins provides a way to overcome the immunity of sister cells or commu-
nity members that have acquired immunity genes. Although S. alvi, Gilliamella spp., F.
perrara, and “Candidatus Schmidhempelia bombi” have T6SSs belonging to the same
subtype (T655) (31), they have different modes of toxin diversification. Diversification
of VgrG and Rhs proteins through C-terminal displacement in Gilliamella spp., F. per-
rara, and “Candidatus Schmidhempelia bombi” resembles that described previously for
other Gammaproteobacteria (19). Furthermore, these species carry genes encoding
related VgrG proteins, but different VgrG clusters have diversified in each genus. The
extensive diversification of Rhs proteins in S. alvi suggests selective pressure to acquire
and deploy novel toxins (28), but S. alvi vgrG genes do not undergo C-terminal dis-
placement. Further comparison of T6SS effector diversification across species may pro-
vide insight into the genetic factors that promote or constrain the expansion of partic-
ular effector families, which could have significant ramifications for how T6SSs
participate in the evolution of bacterial communities.

Conclusion. A small number of bacterial species are present within the guts of
honey bees and related social bee species and have codiversified with their hosts. In
this study, we used comparative genomics to examine how community-wide evolu-
tionary pressures affect the diversification of T6SSs and T6SS effectors within multiple
members of the bee gut microbiota. Many bee gut bacteria carry genes encoding
highly conserved T6SSs, present at the onset of their association with bee hosts and
retained by most, but not all, strains. T6SS loss is connected to both host and bacterial
speciation. Additionally, gut bacteria carry genes encoding numerous effector proteins
and demonstrate lineage-specific mechanisms for effector diversification. Future work
is likely to identify many ways in which T6SS-mediated antagonism has influenced the
bee microbiota, including effects on strain diversity, speciation, spatial organization,
and cooperation.

MATERIALS AND METHODS

TssB, TssC, and TssH phylogenies. Phylogenies of TssB, TssC, and TssH proteins, which have previ-
ously been used for inferring phylogenetic relationships of distantly related T6SSs (31), were used to
assign T6SSs from bee gut isolates to previously described T6SS subfamilies (T6SS'!, T6SS?, T6SSS,
T6S5“2, T655P, T6SS™, and T6SS), excluding T6SS", which is found only on the Francisella pathogenicity
island (1, 55). The SecReT6 database (56) was used to identify representative T6SSs from each subfamily,
and the corresponding protein sequences were downloaded from the NCBI RefSeq database (see
Table S2 in the supplemental material). Proteins were aligned using the MUSCLE extension in Geneious
v10.1.3 (57), and protein phylogenies were generated using RAXML v8.2.12 (58) with the LG likelihood
model of amino acid substitution and 1,000 bootstraps. The phylogenies were visualized using the
Interactive Tree of Life (iTOL) viewer (59).

Genome phylogenies. Genomes analyzed in this study are listed in Table S3 in the supplemental
material. Snodgrassella alvi, Gilliamella spp., Bartonella apis, Parasaccharibacter apium, and Apibacter spp.
protein and genomic nucleotide sequences were downloaded from the NCBI RefSeq database.
OrthoFinder v2.3.7 (60, 61) was used to identify orthogroups for S. alvi, Gilliamella spp., and Apibacter
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spp. isolate genomes and to build species phylogenies for each from single-copy gene trees, which
were visualized using the iTOL viewer (59).

T6SS phylogenies. Nucleotide sequences for representative T6SS loci were extracted from genomic
sequences of S. alvi wkB2, Gilliamella apicola wkB1, Gilliamella sp. Choc5-1, Apibacter adventoris wkB180,
Frischella perrara PEB0191, and “Candidatus Schmidhempelia bombi” Bimp. Proteins encoded by genes
within each locus were identified by using NCBI BLAST+ v2.6.0 tblastx to search protein sequences for
each genome assembly using the nucleotide sequence as a query, and then NCBI BLAST+ v2.6.0
blastdbcmd was used to extract the corresponding protein sequences (62).

A list of taxonomically diverse genomes encoding potential homologs to T6SS proteins from bee gut
isolates was obtained by searching for homologous nucleotide sequences within the NCBI
Representative Prokaryote Representative Genomes Database (283,128 sequences, last updated 28
October 2019). Genomes were included if they had matches (minimum 70% coverage and 40% identity)
to at least three proteins from a representative T6SS locus. NCBI Batch ENTREZ was used to locate
RefSeq protein files for each genome assembly. Bee gut isolate and outgroup proteins were converted
into two BLAST databases. NCBI BLAST+ v2.6.0 blastp (62) was used to identify possible homologs to
the representative bee gut T6SS proteins with a minimum 20% coverage and 20% amino acid identity.
MUSCLE v3.8.31 (63) was used to make alignments for each set of homologs. Alignments were concaten-
ated and manually curated in Geneious v10.1.3 (57). RAXML v8.2.12 was used to identify the optimal
amino acid replacement model for each alignment and to generate maximum-likelihood phylogenies
with 1,000 bootstraps. Phylogenies were visualized using the iTOL viewer (59).

In our analysis, bacterial genomes were considered to encode a T6SS if genes encoding all 13 of the
T6SS structural proteins were present, with the following exceptions. T6SS loci with one missing gene
were considered complete if the missing gene was located at the end of a contig. The Apibacter T6SS,
which belongs to the T6SS" clade and is not as well characterized as the T6SSs found in Proteobacteria,
was considered complete despite the absence of homologs to tssQ and tssR. From our observations,
T6SS loss on the evolutionary timescale relevant to this study typically involves deletion of the entire
T6SS locus or loss of part of the locus followed by pseudogenization of the remaining genes (28).

Effector clustering. A database of protein sequences was prepared that included all of the anno-
tated proteins from each bee gut isolate genome. HMMER v3.1 (64) was used to identify proteins that
matched either the TIGRFAM hidden Markov model (HMM) profile TIGR03696 or an HMM profile pre-
pared from an alignment of previously identified Rhs core domains from S. alvi proteins. The TIGR01646
HMM profile was used to identify VgrG proteins. Protein sequences were extracted using blastdbdmd
and aligned using MUSCLE v3.8.31. Rhs alignments were visually inspected in Geneious v10.1.3, and the
conserved DPxG motif, which is present at the end of the conserved core region of Rhs proteins (15, 18),
was used to identify C-terminal toxin domains. Protein sequences lacking this conserved region were
removed from the alignment. C-terminal toxin domains were extracted from the alignment and
exported for clustering. This was preferable to using the whole Rhs protein in analyses, as rhs genes are
known to undergo recombination (18).

VgrG proteins and Rhs C-terminal domains were clustered into protein families using CD-HIT v4.6.8 (65)
with a 40% identity cutoff. Representative sequences were selected for each cluster, and blastp was used to
search for homologous proteins with =40% amino acid identity and an amino acid alignment length of
=90 for Rhs toxin domains and =300 for VgrG proteins in bee gut isolate genomes. To avoid inclusion of
partial sequences, 179 VgrG proteins located at the ends of contigs were excluded from analysis of VgrG
length. A custom bash script was used to evaluate the abundance of each toxin domain and to join these
data to isolate metadata. All-versus-all blastp searches were performed to generate homology networks,
which were visualized in Cytoscape v3.3.0 (66). RAXML was used to generate maximum-likelihood phyloge-
nies for individual effector clusters, which were visualized using the iTOL viewer. VgrG loci were compared
using Mauve v2.3.1 (67, 68). Diagrams of VgrG loci in S. alvi wkB2 and G. apicola wkB7 were generated using
Geneious. Conserved domains were identified using the NCBI Conserved Domains Database search tool (69).

To examine the cooccurrence of Rhs toxin and immunity genes in the bee microbiota, representative
proteins were chosen for 18 of the 208 toxin domain clusters identified in this study. Putative immunity
genes were identified based on proximity to the 3’ end of the toxin gene. For each toxin and immunity pro-
tein, protein BLAST was used to identify homologs with =40% amino acid identity and =90% coverage
within a database comprised of all protein sequences from the 198 isolate genomes included in this study.

Scripts created to assist in these analyses are available at https://github.com/misteele/bee-gut-T65S
-scripts.
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