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SUMMARY

Inference of gene regulatory networks from gene perturbation experiments is
the most reliable approach for investigating interdependence between genes.
Here, we describe the initial gene perturbations, expression measurements,
and preparation steps, followed by networkmodeling using TopNet. Summariza-
tion and visualization of the estimated networks and optional genetic testing of
dependencies revealed by the network model are demonstrated. While devel-
oped for gene perturbation experiments, TopNet models data in which nodes
are both perturbed and measured.
For complete details on the use and execution of this protocol, please refer to
McMurray et al. (2021).

BEFORE YOU BEGIN

We have divided this section into two parts. First, we describe the cell culture. Next, we describe the

computational setup.

Cell culture

The protocol below describes the specific steps for using young adult mouse colon (YAMC) cells

derived from the Immorto-mouse (also known as the H-2Kb/tsA58 transgenic mouse) (Jat et al.,

1991; Whitehead et al., 1993). These cells express temperature-sensitive simian virus 40 large T

(tsA58 mutant) under the control of an interferon g-inducible promoter and have been used by

our group to enable study of oncogene cooperation in colon cells. However, we have also adapted

this protocol for use in human colorectal cancer cells lines DLD-1, HT-29, SW480, SW620, human

prostate cancer cell line PC3 and human breast cell lines MCF10A and MDA-MB-231 cells, using

appropriate culture conditions for each of those cell lines.

Institutional permissions

A material transfer agreement (MTA) is required to obtain young adult mouse colon cells. We ob-

tained these cells under an MTA from R. Whitehead and A.W. Burgess, who originally derived the
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cell populations from the Immorto-mouse as described in their published manuscripts (Jat et al.,

1991; Whitehead et al., 1993).

Culture cells to be perturbed, exemplified here for young adult mouse colon (YAMC) cells

Timing: 2 h for routine passage of cells, multiple times per week for ongoing cell culture

YAMC cells expressing dominant negativemutant p53 (p53175H) and constitutively activemutant Ras

(RasV12) were derived by retroviral infection of low-passage polyclonal YAMC cells in the Land lab-

oratory (McMurray et al., 2008; Xia and Land, 2007). These cells are referred to as mp53/Ras cells in

this and related publications. Here we describe the generation of these cells.

YAMC and mp53/Ras cells are maintained at the permissive temperature (33�C) in the presence of

interferon g to allow expression and function of the temperature-sensitive SV40 large T transgene

in vitro. This permits expansion of the parental YAMC cells in tissue culture. When YAMC cells are

switched to the non-permissive temperature for large T (39�C) in the absence of interferon g, their

growth rapidly arrests followed by cell death, indicating the absence of spontaneous immortalizing

mutations in the cell population. In contrast, the expression of both p53175H and RasV12 together in

the mp53/Ras cells drives cancerous transformation, allowing them to grow long-term at the non-

permissive temperature (39�C).

Coat dishes with collagen to support YAMC cell growth

Timing: 2 h for routine passage of cells, multiple times per week for ongoing cell culture

Parental YAMC cells require extracellular matrix support for optimal growth. Thus, we routinely cul-

ture these cells on collagen-coated tissue culture (TC) dishes. Dishes are coated at 1 mg/cm2. While

not required for growth of the mp53/Ras cells, both YAMC and mp53/Ras cells were grown on

collagen-coated dishes for consistency of handling.

1. Prepare collagen stock solution at 503 in 0.25% sterile acetic acid. Prepared solution can be

stored at 4�C for up to one month.

2. Dilute collagen stock solution to 13 with sterile PBS. Add 3 mL diluted collagen to each 10-cm

dish or 6 mL to 15-cm dishes. Rock the dishes to distribute the liquid across the entire surface

of each dish. Incubate at room temperature (20�C–24�C) for 90 min.

3. At the end of this incubation, aspirate excess collagen solution. Add sterile 13 PBS. to each plate,

using 5 mL per 10 cm dish or 10 mL per 15 cm dish.

a. Plates can be used immediately or stored at 33�C or 37�C for up to 5 days. Plates should be

stored containing 10 mL sterile 13 PBS (i.e., don’t aspirate the PBS wash solution until ready

to use the plate).

Note:We have used rat tail collagen, type I (Becton Dickinson, #354236) and human placental

collagen, type IV (Sigma) with similar results in terms of cell growth.

Note: We obtain the best results with Corning TC dishes.

Prepare media for routine cell culture at 33�C

Timing: �30 min each time new bottles of media need to be prepared

4. Prepare no more media than necessary as the pH will change over time due to exposure to room

air. We generally prepare 500 mL at a time (one bottle as purchased).

5. For 33�C culture, the following should be added to RPMI 1640 medium:

ll
OPEN ACCESS

2 STAR Protocols 3, 101737, December 16, 2022

Protocol



a. �9% fetal bovine serum (FBS).

b. 13 ITS-A.

c. 2.5 mg/mL gentamycin.

d. 5 U/mL interferon g.

e. Prepared media can be stored at 4�C for up to one month.

Note: Interferon g stocks are made at 250 U/mL in 13 PBS containing 0.1% BSA. The resulting

solution is filter sterilized and stored at �20�C for up to 6 months.

Optional: Thaw frozen aliquots of YAMC cells or derivatives for routine culture at 33�C

6. Remove cell aliquots from liquid nitrogen storage.

a. Loosen tube caps to prevent explosion from escaping nitrogen, but do not remove caps

completely as this would compromise cell sterility.

i. YAMC cells and derivatives are frozen in 33�C media supplemented with 10% DMSO.

ii. Cells are never frozen from 39�C culture conditions.

iii. Aim to freeze 106 – 5 3 106 cells in 1 mL of freezing media per vial, allowing these to be

thawed onto 10 cm TC dishes.

7. Float tubes in 37�C water bath for 2 min. Remove tubes from water and pat dry.

8. Remove entire volume of cells and media and add to 10 mL media on a collagen-coated dish.

9. Place plated cells into 33�C tissue culture incubator with 5% CO2. After cells are allowed to

adhere to dishes, between 16 – 24 h after plating, aspirate media and replace with fresh 33�Cme-

dia to remove residual DMSO from thawed cells.

Note: YAMC cells and derivatives are frozen in 33�C media supplemented with 10% DMSO.

Cells are never frozen from 39�C culture conditions. Aim to freeze 106 – 5 3 106 cells per vial,

allowing these to be thawed onto 10 cm TC dishes.

Perform routine maintenance of cultured cells

10. Every 3–5 days, YAMC parental cells are split at a ratio of 1:2 to 1:4 and mp53/Ras cells are split

at a ratio of 1:8 to 1:12.

a. Determination of when to split is done by visual inspection of cell density on plates. YAMC

cells do best when kept between 40 – 90% confluent.

i. Plating too sparsely may cause YAMC cells to die.

ii. Plating toodenselymay cause YAMC cells to undergo growth arrest due to contact inhibition.

b. By virtue of having undergone malignant transformation, mp53/Ras cells are not as sensitive

to cell density on dishes. Moreover, they divide faster than YAMC cells and thus are better

handled by splitting at higher ratios.

11. To split cells, trypsinize using 13 trypsin-EDTA (Invitrogen, #25300) at room temperature for

5–10 min. Dilute with 33�C culture media to inhibit trypsin, then plate on unused, collagen

coated TC dishes at ratios described in step 10.

Note: Cells can also be counted and plated at defined densities as when temperature switch-

ing by plating the cells in media for growth at 39�C (described in step-by-step method details,

steps 12 and 13).

Collect necessary perturbagens, exemplified here by production of retroviral vectors

harboring cDNA or shRNA molecules

Timing: �1 week
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12. Thaw and culture FNX-E viral packaging cells (also known as Phoenix-ECO cells, available from

ATCC) in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% FBS, 50 mg/mL

kanamycin and 2.5 mg/mL gentamicin.

a. These cells are derivatives of HEK293T and contain stably integrated plasmids to allow

mouse-infectious retroviral vector production.

b. Moreover, they are amenable to transfection with lipid-based transfection reagents or with

calcium phosphate. The latter is our preferred protocol, outlined below.

13. Prepare DNA for each perturbation that will be performed in a given experiment.

a. A simple experiment would include two plasmids, each used to transfect and infect an inde-

pendent plate of cells. For example, you would use a pBabe construct containing cDNA for a

gene of interest and an empty vector control (i.e., pBabe with no insert).

b. Plasmid DNA encoding retroviral constructs, such as pBabe vectors encoding selected cDNA

or pSuper-retro vectors expressing selected shRNA, should be obtained by carrying out the

manufacturer’s protocol (QIAGEN) for maxi-prep of recombinant E. coli carrying the appro-

priate plasmids.

c. Once prepped, plasmid DNA can be stored at �20�C and utilized for multiple experiments

for up to one year.

14. To generate virus for infection of YAMC or mp53/Ras cells, plate FNX-E on a 10 cm dish at a

density of 2.53 106 cells in 5 mL of media, at least 6 and no more than 24 h prior to transfection.

a. Set up individual plates for each population of virus to be generated (i.e., make separate

plates for vector controls and for each perturbation vector that will be generated).

15. Prepare fresh stock solutions of 2 M CaCl2 and 23 HBS (recipe below). Filter sterilize both solu-

tions. Do not store or re-use excess.

a. 23 HBS contains 250 mM NaCl, 50 mM HEPES, pH 8.0 and 1.5 mM Na2HPO4.

b. Adjust pH to between 7.1 to 7.3 by adding 1 N NaOH dropwise until desired pH is achieved.

CRITICAL: Correct pH of this solution is key to transfection efficiency.

16. For 10 cm dishes, mix 20 mg DNA, 25 mL of 2 M CaCl2 and H2O to a final volume of 200 mL.

a. This makes the final CaCl2 concentration 0.25 M.

17. Dilute 23 HBS to 13 (1:1 v/v) with the DNA/CaCl2/H2O mix from step 17.

a. CRUCIAL: Add DNA solution to the HBS by blowing air bubbles into mix or vortexing gently

as you add DNA solution dropwise.

b. For example, with 200 mL DNA mix, add 200 mL 23 HBS.

18. Incubate at room temperature for 15 min.

a. The solution should become cloudy as precipitate forms in the tubes.

19. Add CaCl2/DNA/HBS mix dropwise to FNX-E plates.

20. Incubate at 37�C overnight (12–16 h). Changemedia, replacing with freshmedia (as in step 12) in

5 mL volume per 10 cm dish.

21. At 40 and 43–46 h post-transfection (�1 day after changing the media), collect the supernatant

that will contain viral particles.

a. Virus can be used immediately for infection of YAMC or mp53/Ras cells, our preferred method.

i. If using fresh virus, you MUST filter the virus through 0.45 mm cellulose acetate filters (Pall)

to remove potentially contaminating FNX-E cells.

b. Virus can also be aliquoted and frozen at �80�C to store. No special measures are necessary

in this case, as the process of freezing will kill anyFNX-E cells thatmay be in the supernatants.

Computational setup

We nowdescribe the steps necessary to install the software packages used by the TopNet algorithm.

Install the ternarynet R/Bioconductor package used by TopNet for network modeling

Timing: <1 h
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The TopNet network modeling algorithm is distributed as part of the ternarynet package in Bio-

conductor (see https://bioconductor.org/packages/release/bioc/html/ternarynet.html). The ternar-

ynet package contains a serial algorithm, that uses simulated annealing, and a parallel algorithm,

that uses replica exchange Monte Carlo. Either of these algorithms can be used by the

TopNet algorithm for network modeling.

22. To install the serial implementation of ternarynet, which uses simulated annealing, install R

version 4.1 or later and enter:

Optional: The parallel (replica exchange) implementation of ternarynet requires openMPI

(version 1.x, from https://www.open-mpi.org), the R packages Rmpi and snow (available

from https://cran.r-project.org/), and BiocParallel (from BioConductor). First, verify that you

have autoconf installed or install it from https://www.gnu.org/software/autoconf/. Second,

the ternarynet package source code should be downloaded and unpacked. Then the

following commands should be given at the command line, where 1.x is replaced with the

actual version of openMPI used:

This will allow the parallelFit function in ternarynet to use replica exchange Monte Carlo for network

estimation. Since parallelFit uses MPI, R must be launched at the command line using mpirun. For

example:

where the script network_fit.R contains a call to parallel fit.

KEY RESOURCES TABLE

if (!require("BiocManager", quietly = TRUE))

install.packages("BiocManager")

BiocManager::install("ternarynet")

autoconf

R CMD build ternarynet

R CMD INSTALL –clean ternarynet_1.38.0.tar.gz –configure-args=’–with-mpi=/path/to/mpi-1.x

–with-Rmpi-type=OPENMPI’

mpirun -n 1 R –vanilla < network_fit.R

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

pBabe retroviral vector containing either puromycin
or hygromycin resistance genes

Addgene pBabe-puro (#1764)
pBabe-hygro (#1765)

pSuper retroviral vector containing puromycin resistance gene Oligoengine pSuper.retro.puro (VEC-pRT-0002)

pLKO lentiviral vector containing puromycin resistance gene Addgene pLKO.1 puro (#8453)

pLenti/UbC/V5 lentiviral vector containing puromycin
resistance gene

Invitrogen pLenti6/UbC/V5 (V49910)

Chemicals, peptides, and recombinant proteins

RPMI 1640 media Invitrogen 11875119

Fetal bovine serum HyClone SH30071

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ITS-A Invitrogen 51300044

Gentamycin Invitrogen 15750060

Interferon gamma R&D Systems 485MI

Rat tail derived collagen IV Corning 354236

Polybrene Sigma-Aldrich H9268

Puromycin Sigma-Aldrich P7255

Hygromycin Invitrogen 10687010

Blasticidin Invitrogen R21001

Critical commercial assays

RNeasy Mini Kit with on-column DNase digestion QIAGEN 74106

High Capacity cDNA Reverse Transcription Kit Applied Biosystems 4368814

iQ SYBR Green qPCR Master Mix Bio-Rad 1708884

TaqMan probe detecting murine Death-associated
protein kinase 1 (Dapk1)

Applied Biosystems Mm00459400_m1

TaqMan probe detecting murine DNA fragmentation
factor, beta subunit (Dffb)

Applied Biosystems Mm00432822_m1

TaqMan probe detecting murine Fas (TNF receptor
superfamily member 6) (Fas)

Applied Biosystems Mm00433237_m1

TaqMan probe detecting murine Homeobox C13 (HoxC13) Applied Biosystems Mm00802798_m1

TaqMan probe detecting murine Inhibitor of DNA binding 2 (Id2) Applied Biosystems Mm00711781_m1

TaqMan probe detecting murine Inhibitor of DNA binding 4 (Id4) Applied Biosystems Mm00499701_m1

TaqMan probe detecting murine Jagged 2 (Jag2) Applied Biosystems Mm00439935_m1

TaqMan probe detecting murine Notch 3 (Notch3) Applied Biosystems Mm00435270_m1

TaqMan probe detecting murine Phorbol-12-myristate-
13-acetate-induced protein 1 (Noxa, also known as Pmaip1)

Applied Biosystems Mm00451763_m1

TaqMan probe detecting murine Par-6 family cell
polarity regulator gamma (Pard6g)

Applied Biosystems Mm00474139_m1

TaqMan probe detecting murine PERP, TP53 apoptosis
effector (Perp)

Applied Biosystems Mm00480750_m1

TaqMan probe detecting murine Phospholipase A2,
group VII (Pla2g7)

Applied Biosystems Mm00479105_m1

TaqMan probe detecting murine Placenta-specific
8 (Plac8)

Applied Biosystems Mm00507371_m1

TaqMan probe detecting murine Rab40B, member
RAS oncogene family (Rab40b)

Applied Biosystems Mm00454800_m1

TaqMan probe detecting murine Regulator of G-protein
signaling 2 (Rgs2)

Applied Biosystems Mm00501385_m1

TaqMan probe detecting murine Reprimo, TP53 dependent
G2 arrest mediator candidate (Rprm)

Applied Biosystems Mm00469773_s1

TaqMan probe detecting murine Secreted frizzled-related
protein 2 (Sfrp2)

Applied Biosystems Mm00485986_m1

TaqMan probe detecting murine Spermine synthase (Sms) Applied Biosystems Mm00786246_s1

TaqMan probe detecting murine Wingless-type MMTV
integration site family, member 9A (Wnt9a)

Applied Biosystems Mm00460518_m1

TaqMan probe detecting murine Zinc finger protein 385A (Zfp385) Applied Biosystems Mm00600201_m1

Experimental models: Cell lines

Young adult mouse colon cells derived from the H-2Kb /
tsA58 transgenic mouse

Gift of R. Whitehead and
A.W. Burgess

YAMC cells

‘‘Phoenix’’ cells producing murine ecotropic virus
(FNX-ECO or Phoenix-ECO)

ATCC Phoenix-ECO

Human embryonic kidney 293 cells expressing SV40 T antigen ATCC HEK 293T

Experimental models: Organisms/strains

Crl: CD-1-Foxn1nu female mice Charles River Laboratories Crl: CD-1-Foxn1nu

Oligonucleotides

Dapk1 Forward Primer IDT GGAGACACCAAGCAAGAAA

Dapk1 Reverse Primer IDT ACAAGGAGCCCAGGAGAT

Dffb Forward Primer IDT ACCCAAATGCGTCAAGTT

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Dffb Reverse Primer IDT GCTGCTTCATCCACCATA

Fas Forward Primer IDT CCGAGAGTTTAAAGCTGAGG

Fas Reverse Primer IDT CCAGGAGAATCGCAGTAGAAGTCTGG

HoxC13 Forward Primer IDT GCTAAGGAGTTCGCCTTCTACC

HoxC13 Reverse Primer IDT CCAGCCATTGGAAAGAGCC

Id2 Forward Primer IDT CGGTGAGGTCCGTTAGGAAAA

Id2 Reverse Primer IDT CATGTTGTAGAGCAGACTCATCG

Id4 Forward Primer IDT CAGTGCGATATGAACGACTGC

Id4 Reverse Primer IDT GACTTTCTTGTTGGGCGGGAT

Jag2 Forward Primer IDT TGTGACGAGTGTGTCCCCTA

Jag2 Reverse Primer IDT GCGCAGAGGTATTGGTCAGG

Notch3 Forward Primer IDT CTGCCAAAGTGACATAGATGAGT

Notch3 Reverse Primer IDT GCCCTGTATAACCAAGAGGACA

Noxa (Pmaip1) Forward Primer IDT TGAGTTCGCAGCTCAACTC

Noxa (Pmaip1) Reverse Primer IDT TCAGGTTACTAAATTGAAGAGCTTGGAAATC

Pard6g Forward Primer IDT AGTGCAAACCCCTTGCTTC

Pard6g Reverse Primer IDT GCAGACCGTCATCCCTCAG

Perp Forward Primer IDT ATGGAGTACGCATGGGGAC

Perp Reverse Primer IDT GATTACCAGGGAGATGATCTGGA

Pla2g7 Forward Primer IDT ATCAAGGTCGCCTCGACAC

Pla2g7 Reverse Primer IDT GCAGGAGTTGTCAGAGAACCAT

Plac8 Forward Primer IDT GCTCAGGCACCAACAGTTATC

Plac8 Reverse Primer IDT GTTCCACACAGACAACACTC

Rab40b Forward Primer IDT GTGCGGGCCTACGATTTTCTA

Rab40b Reverse Primer IDT GTGGCCGTAAGGAGACTCG

Rgs2 Forward Primer IDT ACCAAATCACCCCAAAAACTGT

Rgs2 Reverse Primer IDT GCCACTTGTAGCCTCTTGGAT

Rprm Forward Primer IDT GTGTGGTGCAGATCGCAGT

Rprm Reverse Primer IDT ATCATGCCTTCGGACTTGATG

Sfrp2 Forward Primer IDT GGCCACGAGACCATGAAGG

Sfrp2 Reverse Primer IDT GAAGAGCGAGCACAGGAACT

Sms Forward Primer IDT CAGCTTTGCCAATTTGCGAAT

Sms Reverse Primer IDT CTATGGGTGGTAATCGCTTCAC

Wnt9a Forward Primer IDT GGTGGGCAAGCACCTAAAAC

Wnt9a Reverse Primer IDT GTACAAGCTCTGGTGTTCGGG

Zfp385 Forward Primer IDT CTACAAGGGTAATCGCCATGC

Zfp385 Reverse Primer IDT GTCCCGACTCTGGAACACTG

Recombinant DNA

pBabe-puro-Dapk1 Constructed for this study

pBabe-puro-Dffb Constructed for this study

pBabe-puro-Fas Constructed for this study

pBabe-puro-HoxC13 Constructed for this study

pBabe-hygro-HoxC13 Constructed for this study

pBabe-puro-Id2 Constructed for this study

pBabe-puro-Id4 Constructed for this study

pBabe-puro-Jag2 Constructed for this study

pBabe-puro-Notch3 Constructed for this study

pBabe-puro-Noxa Constructed for this study

pBabe-puro-Pard6g Constructed for this study

pBabe-puro-Perp Constructed for this study

pSuper.retro.puro-Pla2g7 Constructed for this study with target sequence:
GGCCGTCAGTAATGTTTCA

pSuper.retro.puro-Plac8 Constructed for this study with target sequence:
GTGGCAGCTGACATGAATGTT

pBabe-puro-Plac8 Constructed for this study

(Continued on next page)
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MATERIALS AND EQUIPMENT

Alternatives: If cells other than YAMC parental or derived lines are being grown, use appro-

priate culture media for the selected cells.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pBabe-puro-Rab40b Constructed for this study

pSuper.retro.puro-Rgs2 Constructed for this study with target sequence:
GGCTGTGACCTGCCAGAAA

pBabe-puro-Rgs2 Constructed for this study

pBabe-puro-Rprm Constructed for this study

pBabe-puro-Sfrp2 Constructed for this study

pSuper.retro.puro-Sfrp2 Constructed for this study with target sequence:
CCTAACATGTCCTGAG

pSuper.retro.puro-Sfrp2 Constructed for this study with target sequence:
TGGTCAGTCTGTTGGC

pSuper.retro.puro-Sms Constructed for this study with target sequence:
CGATCCACAACCTATTATA

pSuper.retro.puro-Sms Constructed for this study with target sequence: AGACAGCCCAGCAAAGACT

pLenti6/UbC/V5-Sms Constructed for this study

pBabe-puro-Wnt9a Constructed for this study

pBabe-hygro-Wnt9a Constructed for this study

pBabe-puro-Zfp385 Constructed for this study

Software and algorithms

Sequence Detection System software Applied Biosystems SDS v2.0, SDS v3.0

Cytoscape Cytoscape Consortium https://cytoscape.org/

Non-detect imputation algorithm (nondetects package) Bioconductor https://doi.org/10.18129/B9.bioc.nondetects

TopNet algorithm (ternarynet package) Bioconductor https://doi.org/10.18129/B9.bioc.ternarynet

Reproducible workflow (crgnet package) This paper https://doi.org/10.5281/zenodo.7047161

Pseudocode for the network modeling algorithm This paper Methods S1

Media for growth of YAMC or mp53/Ras Cells at 33�C

Reagent Final concentration Amount

RPMI 1640 medium (Invitrogen) N/A 500 mL

Fetal bovine serum (FBS, Hyclone) 9% 50 mL

Insulin / Transferrin / Selenium / Sodium Pyruvate (ITS-A, Invitrogen) 0.93 5 mL

Gentamycin (Invitrogen, 25 mg/mL stock) 2.25 mg/mL 50 mL

Interferon gamma (IFN-g, R&D Systems, 250 U/mL stock) 4.5 U/mL 10 mL

Total 555.06 mL

Prepared media should be stored at 4�C. Media can be used for up to one month if no signs of bacterial growth are seen and

the pH is in the range from approximately 7.2 to 7.6.

Media for growth of YAMC or mp53/Ras Cells at 39�C

Reagent Final concentration Amount

RPMI 1640 medium (Invitrogen) N/A 500 mL

Fetal bovine serum (FBS, Hyclone) �10% 50 mL

Insulin / Transferrin / Selenium / Sodium Pyruvate (ITS-A, Invitrogen) 13 5 mL

Gentamycin (Invitrogen, 25 mg/mL stock) 2.5 mg/mL 50 mL

Total 555.05 mL

Prepared media should be stored at 4�C. Media can be used for up to one month if no signs of bacterial growth, such as

turbidity or odor, are noted and the pH is in the range from approximately 7.2 to 7.6.
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Alternatives: As above for 33�C media.

Alternatives: As above for 33�C media.

CRITICAL: Adjust pH to 7.1–7.3. The pH of this solution is the key to transfection effi-

ciency. Filter sterilize.

Alternatives: Lipid-mediated transfection methods may be used as an alternative to calcium

phosphate transfection.

STEP-BY-STEP METHOD DETAILS

Perturb gene expression in mp53/Ras cell populations by stable retroviral transduction and

drug selection

Timing: Two to three weeks

This step creates cell populations with expression of desired cDNA or knock-down of desired target

gene by shRNA. The derived cells are used for additional experiments described below.

1. One day prior to infection, plate mp53/Ras cells at 33�C.
a. Use one plate for each perturbation to be derived, including an empty vector control each

time infections are performed.

b. Make an additional plate of cells for ‘‘mock’’ infection (no virus added).

i. The mock infection allows monitoring of drug selection. Populations infected with retro-

virus should have surviving cells, while the ‘‘mock’’ infected cells should all die in the pres-

ence of drug.

c. Plate mp53/Ras cells at 250,000 cells / 10 cm collagen-coated dish.

2. Prepare polybrene (also known as hexadimethrine bromide) in PBS at desired stock concentra-

tion.

a. For 1003, dissolve 800 mg/mL. For 10003, dissolve 8 mg/mL.

Media for serum starvation of YAMC or mp53/Ras Cells at 39�C

Reagent Final concentration Amount

RPMI 1640 medium (Invitrogen) N/A 500 mL

Insulin / Transferrin / Selenium / Sodium Pyruvate (ITS-A, Invitrogen) 13 5 mL

Gentamycin (Invitrogen, 25 mg/mL stock) 2.5 mg/mL 50 mL

Total 505.05 mL

Prepared media should be stored at 4�C. Media can be used for up to one month if no signs of bacterial growth are seen and

the pH is in the range from approximately 7.2 to 7.6.

23 HBS for Use in Calcium Phosphate-Mediated Transfection

Reagent Final concentration Amount

Sodium Chloride (NaCl, 2.5 M stock) 250 mM 2 mL

HEPES, pH 8.0 (1 M stock) 50 mM 1 mL

Disodium Hydrophosphate (Na2HPO4, 200 mM stock) 1.5 mM 150 mL

Total N/A 20 mL

This solution must be prepared fresh each time transfections will be performed.
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b. Polybrene can be stored at 4�C for up to 6 months or can be frozen at –20�C for longer pe-

riods.

3. One day after plating cells (18–24 h), aspirate media from plates and pipet collected superna-

tants containing viruses on to each plate to be infected.

a. Retrovirus-containing supernatants should have a 5 mL volume if generated as described in

‘‘before you begin’’ steps 20 and 21 above.

b. Use only one type of virus per plate of cells.

4. For mock infection, replace media with 5 mL of fresh 33�C media.

5. Add 8 mg of polybrene per mL of supernatant to each dish being infected (i.e., dilute 1003 or

10003 stock to 13 final concentration in volume of supernatant on each dish).

6. Incubate for 1.5–3 h at 33�C in CO2 incubator.

7. Aspirate supernatant and replace with second aliquot of supernatant for virus containing the

same perturbagen. In other words, the same dish should receive multiple rounds of infection

with empty vector or virus harboring a single cDNA or shRNA insert.

a. Generally, we do 2 rounds of infection but YAMC and mp53/Ras cells can tolerate up to 6

rounds of infection before experiencing toxic effects from exposure to polybrene.

8. Following all desired rounds of infection, replace supernatant with fresh 33�C media.

9. Allow cells to recover for 48–72 h prior to beginning drug selection.

10. For drug selection of YAMC or mp53/Ras cells, i.e., elimination of uninfected cells in the popu-

lation, add the appropriate selective agent to 33�C media at concentrations listed below and

depending on the resistance marker present in the retroviral vector used.

a. Puromycin: 5 mg/mL media; Selection takes 2–4 days.

b. Hygromycin: 200 mg /mL media; Selection takes 4–7 days.

c. Bleomycin: 100–400 mg /mL media; Selection takes up to 2 weeks.

d. Neomycin/Geneticin: 100–400 mg /mL media; Selection takes up to 2 weeks.

11. Once perturbed populations are derived, they should be maintained in media with the appro-

priate selective agent during routine maintenance / cell splitting.

CRITICAL: Selected cell populations should be used for RNA isolation, tumor formation

studies and other experimentation within two weeks of derivation. Long-term culture of

perturbed populations can allow for drift in the population and altered cell behavior

over time in culture.

Note: For experiments described in McMurray et al., Cell Reports, 2021, we freshly trans-

duced and selected polyclonal populations for each biological replicate and each perturba-

tion described in the paper.

Note: For double / combined perturbation, derive polyclonal population harboring one

perturbation and then repeat above steps for second perturbagen. Be sure to use perturba-

gens with distinct selectable markers to enable selection of pure populations of perturbed

cells harboring both perturbations. When selecting with multiple selective agents, use half

the dosage recommended above to avoid non-specific cell killing.

Extract RNA and measure gene expression in perturbed mp53/Ras cell populations

Timing: 5–7 days

This step involves re-plating perturbed cell populations for short-term growth at 39�C and then

starving them of serum to remove the influence of serum-contributed growth factors from the

gene expression patterns observed. The temperature switching is unique to the YAMC cells and

their derivatives (mp53/Ras cells) used in our exemplar experiments. We measured gene expression

of genes downstream of the perturbed gene in the absence of serum to be consistent with our prior

work using YAMC and mp53/Ras cells (McMurray et al., 2008). For any other cell types or cell lines, it
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should be determined whether growth in the presence or absence of serum is more appropriate, as

serum can have substantial impact on observed gene expression patterns. Following serum starva-

tion, cells are harvested for RNA isolation and reverse transcription to generate cDNA that is used for

TaqMan quantitative PCR assays.

12. Trypsinize and count perturbed cell populations to be used experimentally. Include an empty

vector control in each experiment performed. For mp53/Ras cells, plate 250,000 cells per

10-cm dish.

13. Plate cells onto fresh collagen-coated dishes with 39�C media, which excludes

interferon gamma and any eukaryotic-selective agents from the media (i.e., should be free

of puromycin or similar). The media should contain anti-microbials, here kanamycin and

gentamycin.

14. Allow cells to adhere and grow in 39�C CO2 incubator for 48 h.

15. Serum-starve cells by aspirating media from each dish and replacing with fresh 39�C media

without serum.

16. Allow cells to grow for an additional 24 h in 39�C CO2 incubator.

17. Harvest cells following trypsinization. Inhibit trypsin activity using 39�C media with serum, then

immediately collect each cell population into 15 mL conical tubes (one per perturbation) and

pellet cells by centrifugation at 500 g for 5 min at 4�C.
18. Aspirate media and trypsin from cell pellets. Re-suspend cells in 5 mL 13 PBS (can be room tem-

perature or ice-cold), then pellet again by centrifugation.

19. Aspirate PBS from cell pellets. Use immediately for RNA extraction OR snap freeze and store at

�20�C.
a. Cell pellets can be stored at �20�C for up to one month prior to RNA extraction.

20. Isolate RNA by following manufacturer’s protocol for the QIAGEN RNeasy Mini kit with On-

Column DNase Digestion.

a. Isolated RNA can be stored at �20�C for two years or longer if handled in an RNase-free

manner and not exposed to repeated freeze-thaw cycles.

21. Prepare reverse transcription reactions:

a. Denature 10 mg of each RNA sample to be used by incubation on a heat block or in a water

bath at 70�C for 10 min.

b. Plunge samples into ice to stop denaturation. Then add the components listed in the table

below to each, keeping samples on ice.

i. For multiple reverse transcription reactions, all components except for RNA and water can

be made into a master mix for the appropriate number of reactions and aliquoted into

RNA + water for necessary final concentration.

22. Once all components have been added, incubate samples at 42�C for 60 min.

23. Heat inactivate RT enzyme by shifting samples to 70�C for 10 min.

24. Hold samples on ice and proceed to PCR setup OR store at �20�C for long-term storage.

Reverse transcription reaction (single reaction)

Reagent Final concentration Amount

Denatured RNA template 10 mg Varies per sample

SuperScript II RT Buffer (53) 13 20 mL

DTT (100 mM) 10 mM 10 mL

dNTP mixture (10 mM each) Dilute stock to 400 mM (100 mM each dNTP) 4 mL

Random hexamer primer (300 ng/mL) 300 ng 1 mL

RNaseOUT RNase Inhibitor (40 U/mL) 2 U/mL 5 mL

SuperScript II reverse transcriptase (200 U/mL) 4 U/mL 2 mL

ddH2O Bring volume to 100 mL
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25. Prepare TaqMan qPCR assays reaction mix.

a. The reactions were run on TaqMan Low Density Arrays, 384 well cards with primer pairs and

probes pre-loaded into each well.

b. Each reaction contained forward and reverse primer at a final concentration of 900 nM each

and a TaqMan MGB probe (6-FAM) at 250 nM final concentration.

c. For each sample:

26. Load mixture into each of 8 ports on the array at 100 mL per port.

a. Each individual sample of cDNA sample was processed on a separate card.

Note:As described below in step 32 and further sections on TopNet modeling, four biological

replicates of each perturbation were measured.

Note: As noted in step 13 of the before you begin section, we considered a replicate to be an

independently derived population of perturbed cells. Each replicate of a given perturbation

had an empty vector control population of cells that was derived in parallel with the perturbed

cell populations.

27. Seal arrays with a TaqMan Low-Density Array Sealer (Applied Biosystems) to prevent cross-

contamination.

28. Run real-time amplifications on an ABI Prism 7900HT Sequence Detection System (Applied Bio-

systems) with a TaqMan Low Density Array Upgrade.

29. After real-time amplification is complete, obtain threshold cycle (Ct) values via Sequence Detec-

tion Software (SDS, Applied Biosystems) following manufacturer’s instructions.

a. SDS is graphical user interface software designed for use by wet-lab biologists. For this pro-

tocol, each sample was analyzed individually using this software package.

Reverse transcription reaction steps

Step Temperature Time

Denaturation (step 21a, above) 70�C 10 min

Plunge in ice (step 21b) 4�C As necessary to prep master mix

Add master mix to each sample (step 21b) 4�C As necessary

Incubate (step 22) 42�C 60 min

Heat inactivate RT enzyme (step 23) 70�C 10 min

Hold samples on ice and proceed to PCR setup OR store at �20�C for long term storage (step 24).

PCR reaction master mix

Reagent Amount

cDNA template 82 mL

TaqMan Universal PCR Master Mix No AmpErase UNG (23) 410 mL

Nuclease free H2O 328 mL

PCR cycling conditions

Steps Temperature Time Cycles

Sample loading 50�C 2 min 1

Initial denaturation 94.5�C 10 min 1

Denaturation 97�C 30 s 40 cycles

Annealing and extension 59.7�C 1 min

Hold 4�C forever
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30. Export Ct values into a .csv file for use in the following steps.

a. The Ct values from each sample were merged into a single table with probe sets as rows and

perturbed samples or matched vector controls in each column.

Prepare gene expression data for network modeling

Timing: �10 min

This step prepares the data for input to the network estimation algorithm.

31. Read in gene expression measurements for each perturbation and control experiment.

a. As an example, here we read in Ct values from the crgnet experimental data R package avail-

able via github.

Normalization and missing data imputation

Timing: �1 h

32. Select one or more control features to normalize the data. In this example, we use Becn1 as a

control because it appears to track the lower quantile of the distribution of expression across

the controls reasonably well (Figure 1A) and has relatively low variability across the control sam-

ples compared to the other genes (Figure 1B). This suggests that normalizing to this house-

keeping gene may perform well in these data.

a. Examine variability in the distribution of expression across control samples. While some vari-

ability might be ascribed to the different control vectors, it is unlikely that the effect would be

of this magnitude and consistency. Moreover, note that while there is substantial variability in

the location of the expression distribution across the empty vector control samples, the

range (e.g., IQR) remains relatively constant (except for one sample with the lowest overall

expression that also had noticeably higher variability).

The house-keeping gene, Becn1, appears to track the lower quantile of the distribution of

expression across the controls reasonably well (Figure 1A). This suggests that normalizing to

this house-keeping gene may perform well in these data.

if(!require(remotes)){

install.packages("remotes")

}

remotes::install_github(’mccallm/crgnet’)

library(’crgnet’)

data("crgdata")

ictl <- which(is.na(crgdata$pGene1))

controlSamples <- assay(crgdata)[ ,ictl]

boxplot(controlSamples, xaxt="n", xlab="Control Samples")

becn1 <- controlSamples[rownames(controlSamples)=="Becn1",]

points(becn1, pch=20, col="red")

legend("bottom", pch=20, col="red", "Becn1")
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b. Further examine the suitability of Becn1 for normalization by looking at the median absolute

deviation (MAD) vs median expression.

Becn1 has relatively low variability across the control samples compared to the other genes (Fig-

ure 1B).

33. Perform normalization and missing data imputation.

a. Examine the relationship between the proportion of non-detects (those reactions failing to

produce fluorescence values above a certain threshold) and the average observed expres-

sion value in the empty vector control samples. When the plot argument is set to TRUE,

Figure 1. Rationale for the use of Becn1 to normalize qPCR data

(A) shows the cycle threshold value (Ct) distribution for all measured genes in each control sample. Each box

represents an independently derived cell population transduced with an empty vector.

(B) shows the median average deviation (MAD) versus the median Ct value for each measured gene across all control

samples. The red dot denotes Becn1 in both Panel A & B.

controlMedians <- apply(controlSamples, 1, median)

controlMADs <- apply(controlSamples, 1, mad)

plot(x=controlMedians, y=controlMADs, pch=20, ylab="MAD", xlab="Median")

ind <- which(rownames(controlSamples)=="Becn1")

points(x=controlMedians[ind], y=controlMADs[ind], pch=20, col="red")

text(x=controlMedians[ind], y=controlMADs[ind], "Becn1", pos=4)points(becn1, pch=20,

col="red")

legend("bottom", pch=20, col="red", "Becn1")
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the model_prep function returns a scatterplot of the proportion of non-detects versus

average expression for each gene across all control samples.

Note: The proportion of non-detects general increases for larger Ct values (lower gene

expression). However, if this is not the case, an alternative imputation procedure, such as

mean imputation, should be used. Additionally, if there are a large number of non-detects

spread randomly across all measured genes, this may indicate poor sample quality.

Additionally, the model_prep function converts the data to the qPCRset object format needed

to impute the non-detects and returns normalization factors. Specifically, the sampleType field

of the sample annotation contains a unique description of each experiment: which gene(s) were

perturbed and the direction of perturbation. This is used to define replicates for use in the impu-

tation.

b. Treat non-detects as non-random missing data and impute using the R/Bioconductor pack-

age nondetects (McCall et al., 2014). This replaces missing values (non-detects) with an

imputed values based on an estimated missing data mechanism as well as the expression

values seen in replicate experiments.

Note: Attempting to measure lowly expressed genes will result in a higher number of non-de-

tects. As the number of non-detects increases, the imputation procedure becomes less reli-

able. Therefore, while there isn’t a universal threshold for the applicability of the non-detects

imputation, there is a trade-off between the ability to measure lowly expressed genes and the

reliability of the imputation. Often this can be addressed by increasing the number of repli-

cates such that the number of observed values for each gene is sufficiently large.

Note: This function takes a while to run.

c. Normalize the data. Here, we normalize the data to the house-keeping gene, Becn1.

If we were normalizing tomultiple control genes, we would first calculate themean expression of

the control genes then proceed as above.

Note: After normalization, we have lost the cycle threshold (Ct) interpretation but retained the in-

verse relationship between expression values (on the Ct scale) and the amount of transcript in the

sample. Therefore, we consider the negative DCt value as our measure of normalized expression.

Quantify response to perturbations

Timing: �30 min

crgprepL1 <- model_prep(crgdata, plot=TRUE)

crgdataImputed <- qpcrImpute(crgprepL1$object, groupVars="sampleType")

library(HTqPCR)

crgdataNorm <- normalizeCtData(crgdataImputed, deltaCt.genes="Becn1")

exprs(crgdataNorm) <- -exprs(crgdataNorm)
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In the previous sections we have dealt with non-detects (missing values) and normalized the data.

We now turn out attention to assessing which genes are up- or down-regulated in response to

each perturbation.

34. Calculate DDCt values that quantify the change in expression from controls for each perturba-

tion.

a. Examine whether a given perturbed sample is more similar to the control sample from the

same batch then to control samples from other batches by running the check_matched_

controls function. If there is a batch-effect, it is advantageous to compare each perturbed

sample to the control sample from the same batch.

b. In almost all cases, the control sample from the same batch is the most similar to the per-

turbed sample (Figure 2). This suggests that there is a difference between batches and mo-

tivates the calculation of paired DDCt values as our measure of normalized change in expres-

sion in response to each perturbation. If there were no difference between batches, the

distance from a given perturbed sample to its matched control (points in Figure 2) would

be randomly distributed within the set of pairwise differences. An eyeball test is often suffi-

cient to assess this; however, a permutation-based statistical test could also be used. If a

batch effect does not exist, then we can simply compare each perturbed sample to the

average of all the control samples to compute unpaired DDCt values.

c. Calculate paired DDCt values by computing the difference in expression between each per-

turbed sample and its corresponding control sample from the same batch by running

calculate_ddCt().

d. One final check of the non-detect imputation procedure from before is to examine the dis-

tribution of residuals stratified by the presence of imputed non-detect values. These can exist

in either the perturbed sample, the control sample, or both samples.

check_matched_controls(crgdataNorm)

ddCt <- calculate_ddCt(crgdataNorm)

Figure 2. Matched control samples capture potential batch effects

For each perturbed sample (x-axis), the distribution of Euclidean distances from that the vector of Ct values for that

perturbed sample to each control sample is shown. The matched control sample for each perturbed sample is

highlighted in red. In general, a perturbed sample is most similar to its corresponding control sample, suggesting that

matched control and perturbed samples are similarly affected by potential batch effects.

resids <- examine_residuals(ddCt, plot=TRUE)
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Here, we see what one would expect: a median of zero and roughly equal spread when there are

no non-detects, a median slightly below zero when there is a non-detect in only the perturbed

sample, and a median slightly above zero when there is a non-detect in only the control sample

(Figure 3).

e. Calculate approximate z-scores for each perturbation after removing any control genes.

Here, we remove the control gene Becn1.

f. Calculate the probability of up- / down-regulation in response to each perturbation by fitting

a uniform / normal / uniform mixture model.

g. Filter genes that were measured but are not perturbed in any experiment. While these genes

are useful in modeling the missing data mechanism for non-detect imputation and esti-

mating probabilities of up- / down-regulation, they will not be used in the subsequent

network modeling and can be removed at this point. Here, we also filter several samples

that do not represent the type of perturbation being modeled, a single perturbation back

to normal expression levels.

h. Format the probabilities for input to the network model fitting algorithm.

ddCt_no_ctl <- ddCt[-which(rownames(ddCt)=="Becn1"), ]

zscores <- calculate_zscores(ddCt_no_ctl)

Figure 3. The effect of non-detects on estimates of gene expression

The distribution of residuals stratified by the presence of imputed missing values (non-detects) is shown. Note that on

average, a non-detect in the perturbed sample results in slightly negative residuals, while a non-detect in the control

sample results in slightly positive residuals.

probabilities <- calculate_probs(zscores)

perts <- gsub(":.+","",colnames(probabilities))

ind <- which(!rownames(probabilities) %in% perts)

probabilities <- probabilities[-ind, -c(1,9,12,13,20,23)]

-c(1,9,12,13,20,23)

networkInputData <- format_network_input(probabilities)
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Optional: Connectivity graph analysis. Either the z-scores or probabilities could be thresh-

olded to produce a connectivity graph, in which nodes represent genes and directed edges

denote that perturbation of the parent gene results in a change in expression of the child

gene. Here, we create a connectivity graph based on the probabilities by thresholding the

probabilities at an absolute value of 0.5. In other words, if the probability that perturbation

of gene A results in a change in expression of gene B exceeds 0.5 then an edge from gene

A to gene B is included in the connectivity graph.

Next, we use the network package to create and plot the connectivity graph (Figure 4). We also

add data on tumor inhibition and direction of response.

Figure 4. A connectivity graph showing the effect of perturbation for 20 CRGs

Arrows originating from a node denote the effect of perturbation of that node. Arrows terminating at a node represent

the effect on that node, and the edge color denotes up-regulation (red) or down regulation (blue). The tumor

inhibitory effect of each perturbation is encoded by the color of each node, tumor inhibitory (yellow) or not tumor

inhibitory (grey).

probs <- networkInputData$ssObj

colnames(probs) <- rownames(probs)

probs[which(abs(probs)<0.5, arr.ind=TRUE)] <- 0

diag(probs) <- 0

library(network)

cgraph <- network(t(probs), matrix.type="adjacency",

ignore.eval=FALSE, names.eval="probs")

data("tumor_inhibition")

set.vertex.attribute(cgraph, "tumor_inhibition", tumor_inhibition$TumorEffect)

set.edge.attribute(cgraph, "direction", sign(get.edge.attribute(cgraph,"probs")))

plot(cgraph, displaylabels=TRUE, mode="circle", boxed.labels=TRUE,

label.bg=ifelse(get.vertex.attribute(cgraph, "tumor_inhibition")=="Smaller", "yel-

low", "grey"),

edge.col=ifelse(get.edge.attribute(cgraph, "direction")==1, "red", "blue"))

legend("topleft", c("Tumor Inhibitory",

ll
OPEN ACCESS

18 STAR Protocols 3, 101737, December 16, 2022

Protocol



Perform network modeling

Timing: �5 days

This step estimates the network of interactions.

35. Network modeling. Use a ternary network model that accounts for the dynamic nature of gene

regulatory networks and facilitates the evaluation of uncertainty to model a gene regulatory

network. Specifically, use a parallel tempering algorithm (Swendsen and Wang, 1986) to search

the model space for networks that produce attractors that are most similar to the observed

steady state data. Pseudocode for the network modeling algorithm is supplied in Methods

S1, while a reproducible workflow of the analyses in this paper is included as the vignette of

the crgnet package.

Note: Unlike previous approaches, here we have incorporated uncertainty in the differential

expression estimates via probabilities of up- / down-regulation. This allows the networkmodel

to give more weight to data points with higher certainty. Additionally, the ability to produce

non-integer network scores eased transitions between network models and significantly

decreased computational time.

a. Here, we show example code to fit a network using 1,000,000,000 cycles in parallel across 20

processors with temperatures ranging from 0.001 to 1. These parameters should be chosen

such that either the network reaches a score of zero (indicating a fit that perfectly explains the

observed data) or until additional cycles do not produce a reduction in the network score. The

code used to produce these network fits is shown below:

"Not Tumor Inhibitory"), title="Node Color",

fill=c("yellow","grey"))

legend("topright", c("Up-regulation", "Down-regulation"), title="Edge Color",

col=c("red","blue"), lty=1, lwd=5)

library("ternarynet")

data("crgnet_scores")

results <- parallelFit(experiment_set=crgnet_scores,

max_parents=4,

n_cycles=1e9,

n_write=10,

T_lo=0.001,

T_hi=1,

target_score=0,

n_proc=20,

logfile="tnet-fit.log"),

seed=as.integer(112358)

)
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Note: The computational time required to generate these network models is substantial: each

independent network fit presented in McMurray et al. (2021) took approximately 12 h to run in

parallel on 20 compute nodes. However, less than 1 GB of RAM was sufficient to fit these

network models.

Create network summaries and visualization

Timing: �1 h (�1 month with optional steps included)

This step prepares the data for input to the network estimation algorithm.

36. Summary statistics can be computed by calculating the proportion of networks in which a given

feature or features are present. One can also examine the transition functions, attractors, and

trajectories all stored in the fits object. One of the most common ways to visualize a network

model is to present the topology. Here we calculate proportion of networks in which a given

gene is a parent of another given gene.

This information can be exported to Cytoscape or other network visualization software to create a

graphical representation of these results.

Optional:One question of interest is whether it is significant that one can obtain a low scoring

network model. This can be examined by permuting the network input data. For each gene,

permute its response to all of the experiments while retaining the number of experiments to

which each gene responds. In other words, the number of parents in a connectivity graph re-

mains constant but which other genes are parents’ changes. Then fit a network model to the

permuted data using the same parameters as above and repeat this process to generate mul-

tiple permuted fits. Here, we load precomputed permuted fits from the crgnet package.

The network scores based on the real data are less than nearly all the scores based on the permuted

data (Figure 5; empirical p-value% 0.01). With the current network constraints, we can obtain good

data(networkInputData)

data(networkFits)

topo <- topology(fits)

rownames(topo) <- rownames(networkInputData$ssObj)

colnames(topo) <- rownames(networkInputData$ssObj)

data(networkFits)

data(permutedNetworkFits)

real_scores <- sapply(fits, function(x) x$unnormalized_score)

permuted_scores <- sapply(pfits, function(x) x$unnormalized_score)

hist(permuted_scores, breaks=25, main="",

xlab="Network Scores")

rug(real_scores, lwd=3)
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scores for the real data but not for the permuted data. This suggests that we are not extensively over-

fitting these data and that the current network constraints are reasonable.

Optional: To examine whether we could obtain similar fits with a simpler network model, one

can vary the in-degree and compare model fits. As an example, we reran the network

modeling algorithm with the max_parents reduced from 4 to 3 and also considered a more

complex model by increasing the max_parents parameter to 5. We ran both models on

permuted data as well as the real data.

data(networkFits)

data(networkFitsIndeg3)

data(networkFitsIndeg5)

indeg4_scores <- sapply(fits, function(x) x$unnormalized_score)

indeg3_scores <- sapply(fits3, function(x) x$unnormalized_score)

indeg5_scores <- sapply(fits5, function(x) x$unnormalized_score)

data(permutedNetworkFits)

data(permutedNetworkFitsIndeg3)

data(permutedNetworkFitsIndeg5)

indeg4_permuted_scores <- sapply(pfits, function(x) x$unnormalized_score)

indeg3_permuted_scores <- sapply(pfits3, function(x) x$unnormalized_score)

indeg5_permuted_scores <- sapply(pfits5, function(x) x$unnormalized_score)

plot(x=jitter(rep(c(1:6), c(length(indeg3_scores), length(indeg3_permuted_scores), length

(indeg4_scores), length(indeg4_permuted_scores), length(indeg5_scores), length(indeg5_

permuted_scores)))),

y=c(indeg3_scores, indeg3_permuted_scores, indeg4_scores, indeg4_permuted_scores, in-

deg5_scores, indeg5_permuted_scores),

Figure 5. Network scores produced by real data are lower than those produced by permuted data

For each gene, its response to all of the experiments was permuted while retaining the number of experiments to

which each gene responds. In other words, the number of parents in a connectivity graph was held constant but the

identities of the parent genes were changed. A network model was then fit to the permuted data using the same

parameters as used for the real data, and this process was repeated 100 times to generate multiple permuted fits.

A histogram of network scores corresponding to the permuted fits is shown. Tick marks on the x-axis denote the scores

produced by the real data network fits.
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Note: Figure 6 illustrates that increasing the in-degree cap from 3 to 4 results in a

sizeable reduction in the model score; however, increasing the in-degree cap to 5 produces

only a modest improvement (the in-degree 4 network models already do quite well).

Regardless of the in-degree cap, better scores were achieved using the real data (as

expected). The separation between real and permuted scores is greatest for an in-degree

cap of 4. This lends further support to the choice of a maximum in-degree of four for these

data.

Optional: Comparison between network models generated using different in-degree

thresholds. Here, we demonstrate the effect of the maximum in-degree on the resulting

network topology. Note that a larger in-degree threshold will produce a network with

more edges. Of primary interest is whether the high confidence edges are retained for vary-

ing in-degrees.

ylab="Network Score", xlab="", xaxt="n")

axis(1, line=1.5, at=c(1.5,3.5,5.5), labels = c("In-degree 3", "In-degree 4", "In-degree

5"), tick=FALSE, cex.axis=1.25)

axis(1, at=c(1:6), labels = rep(c("Real", "Permuted"), 3))

data(networkFits)

data(networkFitsIndeg3)

data(networkFitsIndeg5)

topo_i4 <- topology(fits)

topo_i3 <- topology(fits3)

topo_i5 <- topology(fits5)

rownames(topo_i3) <- colnames(topo_i3) <-

rownames(topo_i4) <- colnames(topo_i4) <-

rownames(topo_i5) <- colnames(topo_i5) <- rownames(networkInputData$ssObj)

par(mfrow=c(1,2))

plot(x=topo_i4, y=topo_i3, pch=20,

xlab="In-degree 4 edge proportions",

ylab="In-degree 3 edge proportions",

main=paste0("Correlation = ", round(cor(as.vector(topo_i3), as.vector(topo_i4)),

digits = 2)))

abline(v=0.8)

plot(x=topo_i4, y=topo_i5, pch=20,

xlab="In-degree 4 edge proportions",

ylab="In-degree 5 edge proportions",

main=paste0("Correlation = ", round(cor(as.vector(topo_i4), as.vector(topo_i5)), digits =

2)))

abline(v=0.8)
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Testing tumor formation capacity of cells with two genetic perturbations based on features

of the network model

Timing: 5–6 weeks

Here, we describe the process of measuring tumor formation in perturbed mp53/Ras cell popula-

tions and linking these measurements to features of the network model. This is done by perturbation

of multiple target genes selected from among the network nodes in mp53/Ras cells. Subsequently,

the perturbed cell populations are implanted into allogeneic, immune compromised mice and tu-

mor growth is measured by monitoring tumor size over time. We perform these studies in CD-1

nude mice (Crl:CD-1-Foxn1nu, Charles River Laboratories, purchased at 6–8 weeks of age), but a

number of other immune compromised mouse strains could be used (e.g., NOD/SCID animals).

37. Follow steps 1 through 16 in the step-by-step method details section to generate cell popula-

tions with desired perturbation of combinations of target genes selected based on network

modeling results.

38. Trypsinize cells following 48 h of growth at 39�C. Pellet cells, wash with 13 PBS (as in step 17

above) BUT DO NOT FREEZE.

39. Re-suspend cell pellets in 500 mL of RPMI with no additives and keep on ice. Count cells with an

automated cell counter or hemacytometer.

40. Dilute cells to 5 3 105 per 100 mL in RPMI 1640 media with no additives.

41. Implant 100 mL of re-suspended cells into each flank of each experimental animal (i.e., two im-

plantations per animal).

a. Animals should be implanted with only one type of cell population – vector control or a single

gene perturbation per animal.

i. For experiments in McMurray et al. (2021), six implantations were done using cells from

each perturbed cell population. In parallel, six implantations were done with cells from a

freshly derived empty vector control population included in each experiment.

Note: At implantation, mark or number animals in some manner (ear punch, tattoo or alterna-

tive method) to keep track of tumor growth per animal per week.

42. At 7, 14, 21 and 28 days post-implantation, measure tumor diameter by caliper at two distinct

points of each tumor for each animal on both flanks independently.

Figure 6. The effect of different in-degree limits on network scores and the ability to distinguish between real and

permuted data

The network modeling algorithm was run with in-degree limits of 3, 4, and 5 on both real and permuted data. Larger in-

degree limits produce generally better scores, and the real data produce better scores than the permuted data across

all three in-degree limits.
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43. Use tumor diameter data to calculate tumor volume using the standard formula for volume of a

sphere (volume=(4/3)pr3).

44. Examine and quantify the association between predicted gene interactions and phenotypic out-

comes (here tumor size).

EXPECTED OUTCOMES

TopNet provides an integrated pipeline to process data from perturbation experiments, generate

network models consistent with the observed data, and summarize and visualize these networks.

The outputs of this pipeline are the network topology and set of transition functions that define

the network, as well as several parameters that can be used to assess the quality of the network

model. The output of TopNet can also be readily visualized in Cytoscape and other network visual-

ization tools. As demonstrated in (McMurray et al., 2021), summaries of the network topology can be

analyzed in concert with phenotypic variables of interest (e.g., tumor growth) to pinpoint biologically

relevant aspects of the network architecture.

LIMITATIONS

Generating cell populations with gene perturbations via retroviral vectors

The pBabe retroviral packaging system cannot effectively transduce gene expression inserts larger

than about 7,000 bp, due to the retroviral capsid particle size and thus the amount of nucleic acid

that can be packaged.

The pSuper-retro vector system delivers shRNA-expressing constructs to the target cell population.

Despite following specific shRNA design guidelines, not every shRNA insert will effectively reduce

the expression of the targeted gene. Thus, it is necessary to test multiple shRNAs that target distinct

sequences in a given gene to identify those that successfully knock down the gene’s expression.

shRNA is known to have potential off-target effects. Thus, it is advisable to independently derive cell

populations using constructs that target distinct sequences within a given gene of interest to ensure

that observed phenotypes are consistent between constructs and target sequences, and thus un-

likely to result from off-target effects of a single vector.

Control of perturbagen expression

When perturbing gene expression using these systems, there is little control over the amount of

perturbation that is achieved. For experiments described in McMurray et al. (2021), every derivation

of each perturbed mp53/Ras cell population was compared to empty vector-infected mp53/Ras

control populations derived in parallel. Expression of the perturbed gene was also compared to

parental YAMC expression levels to discern whether the gene’s expression was re-set in perturbed

mp53/Ras cells to YAMC levels, our target for these experiments. As described previously (McMur-

ray et al., 2008, 2021), cell populations that did not meet this standard were either excluded from

further studies or results were interpreted in the context of known over-expression.

Flexibility of TopNet modeling

TopNet requires data in which each node in the network is both measurable and perturbable. In

McMurray et al. (2021), the nodes of the network were genes measured via qPCR and perturbed us-

ing lentiviral vectors. While applicable to more than just gene expression data, TopNet cannot

currently handle data in which the perturbations are not also the nodes of the network, e.g., chemical

compound perturbation.

Scalability of TopNet modeling

The size of the network model space scales rapidly with both the number of nodes and the maximum

number of parents per node (the in-degree limit). This means with current computational resources,

networks larger than 1,000 nodes are likely infeasible to estimate. However, advances in computa-

tional power and improvements in search algorithms will likely reduce this limitation over time.
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TROUBLESHOOTING

Problem 1

Inability to derive a polyclonal cell population following retroviral infection and drug selection.

This problem can arise for several reasons that all lead to the same problem – insufficient expression

of the resistance gene encoded by the vector, such that transduced cells succumb to drug selection.

This can happen due to 1) poor transduction of cells with the retroviral supernatants, 2) insufficient

viral titers to generate an efficient infection, 3) sensitivity of the particular cell line / cell type to the

drug of choice or 4) failing to wait for cells to undergo at least one cell division before beginning drug

selection (retroviruses require cell division for integration into the host cell genome).

Potential solution

The solution depends on the source of the problem.

� Poor transduction (1) may be improved by increasing the amount of polybrene mixed into the

retroviral supernatants during infection. This is limited by overt toxicity of this additive, so test a

range of dosages on the cells of interest to identify a maximum concentration.

� Insufficient viral titers may be overcome by improving transfection efficiency to produce more

retrovirus and/or by using more supernatant or concentrating supernatants to provide more infec-

tious units to the target cells.

� Cell sensitivity to the selection agent can be examined by testing a range of drug dosages on un-

infected cells. Choose the minimum dose to achieve the desired effect – either cytotoxicity or

cytostatic effects.

� Alternatively, inserts can be cloned into vectors with different drug selectable markers to allow

for use of a selection agent with less baseline toxicity to the target cells.

� If it is necessary to move rapidly from infection to selection, use of lentiviral vectors may be pref-

erable. Lentiviruses are able to infect non-dividing cells and thus generally have higher infection

efficiencies than retroviral vector systems.

Problem 2

The network returns a null model after a short runtime.

This could arise in two situations: (1) the experimental data itself does not contain any connections,

or (2) the input data to the network fitting algorithm was incorrectly formatted.

Potential solution

First, examine a connectivity graph to assess whether any nodes in the network response to pertur-

bation of other nodes. If the connectivity graph contains no edges, then it is possible that the per-

turbations that were performed did not produce changes in any of the measured nodes. However, if

the connectivity graph contains edges, the input data to the network fitting algorithm was likely

incorrectly formatted. An example of correctly formatted data is available in the crgnet package

and helper functions to produce correctly formatted data are available in the ternarynet package.

Problem 3

The network model never runs to completion.

This problem may arise when the number of nodes in the network or the number of possible parents

for each node (the in-degree limit) are too large for the available computation resources used to run

the network fitting algorithm.

Potential solution

This problem can be solved by: (1) reducing the size of the network model (either the number of nodes

or the in-degree limit) or (2) increasing the available computational resources, e.g., running the code on
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a high performance computing cluster or in the cloud. Additionally, if running the network fitting algo-

rithm using the serial simulated annealing search algorithm, it could help to instead use the parallel

replica exchange Monte Carlo search algorithm. Figure 7 shows the normalized network scores (zero

corresponds to a perfect fit) for varying network sizes (64, 128, and 256 nodes), vary in-degree limits

of 1–5, and varying number of replicas using in the replica exchange Monte Carlo search algorithm.

Problem 4

The network model returns a score far from zero.

This problem may arise for several reasons: (1) the input scores are on a different scale, (2) the

network search algorithm was not allowed to run for a sufficient length of time, (3) the data contain

seemingly contradictory responses to the perturbation experiments.

Figure 7. The effect of number of replicas and in-degree limit on network modeling

The normalized score (where the normalization factor is the product of the number of genes and experiments) vs the

number of Monte Carlo steps for networks of size 64, 128, and 256 genes and perturbations. Left: varying the number

of replicas, keeping indegree fixed at 4. Right: varying the indegree from 1 to 5, keeping the number of replicas fixed

at 3.
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Potential solution

This will likely take some investigation. First, to check if possibility (1) is correct, one can calculate the

minimum possible score from the input data. If this is far from zero, an error may have occurred in

generating the scores. Alternatively, if using a custom scoring function that simply produces scores

on a different scale, one could consider shifting or rescaling the input scores. Second, to check if pos-

sibility (2) is the issue, simply run the network model for more cycles and see if the scores improve.

One can examine the scores as a function of cycles (see Figure 7 for examples) to determine whether

the scores are still decreasing when the maximum number of cycles is reached. Finally, possibility (3)

is the most challenging to assess but is a likely cause if possibilities (1) & (2) are ruled out. In this sit-

uation, the best approach is to increase the in-degree limit of the network model.

Problem 5

The network model returns few if any high confidence edges.

This problem may arise when there is insufficient information to resolve uncertainty in the network

model space.

Potential solution

The most direct solution would be to perform additional perturbation experiments to reduce

modeling uncertainty. Alternatively, one could restrict the model space algorithmically by

decreasing the maximum in-degree allowed.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Matthew McCall (matthew_mccall@urmc.rochester.edu).

Materials availability

Plasmids generated in this study are available upon request.

Primer sequences and TaqMan probe sets are tabulated in the key resources table.

There are restrictions to the availability of YAMC cells due to materials transfer agreement.

Data and code availability

All qPCR data are available in the supplemental information of McMurray et al., Cell Reports, Dec

2021. Tumor volume data reported in this paper will be shared by the lead contact upon request.

All original code to reproduce all statistical analyses is available in the crgnet R package available at:

https://github.com/mccallm/crgnet/ and the ternarynet R/Bioconductor package, available at:

https://bioconductor.org/packages/ternarynet/.

The pseudocode for the network modeling algorithm is supplied in Methods S1, while a reproduc-

ible workflow of the analyses in this paper is included as the vignette of the crgnet package.

Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xpro.2022.101737.
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