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Distinct epigenetic landscapes underlie the
pathobiology of pancreatic cancer subtypes
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Recent studies have offered ample insight into genome-wide expression patterns to define

pancreatic ductal adenocarcinoma (PDAC) subtypes, although there remains a lack of

knowledge regarding the underlying epigenomics of PDAC. Here we perform multi-

parametric integrative analyses of chromatin immunoprecipitation-sequencing (ChIP-seq) on

multiple histone modifications, RNA-sequencing (RNA-seq), and DNA methylation to define

epigenomic landscapes for PDAC subtypes, which can predict their relative aggressiveness

and survival. Moreover, we describe the state of promoters, enhancers, super-enhancers,

euchromatic, and heterochromatic regions for each subtype. Further analyses indicate that

the distinct epigenomic landscapes are regulated by different membrane-to-nucleus path-

ways. Inactivation of a basal-specific super-enhancer associated pathway reveals the exis-

tence of plasticity between subtypes. Thus, our study provides new insight into the epigenetic

landscapes associated with the heterogeneity of PDAC, thereby increasing our mechanistic

understanding of this disease, as well as offering potential new markers and therapeutic

targets.
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Pancreatic ductal adenocarcinoma (PDAC) is a painful and
fatal disease that undoubtedly remains a health priority,
offers significant therapeutic challenges, and will soon rank

as the second cause of death by cancer in the world1. Searching
for somatic genetic causes, many laboratories have discovered
oncogenes and tumor suppressors for PDAC2. However, cumu-
lative evidence reveals more complex mechanisms underlying the
development and progression of this disease, involving, among
others, interactions between genomic and epigenomic altera-
tions3. Although extensive studies have provided an under-
standing of aberrant gene networks4, insights into the
epigenomics of PDAC remains remarkably limited.

Epigenomics, which is the basis for the regulation of gene
activity, expression, as well as nuclear organization and function
includes the posttranslational modifications of histone proteins and
DNA methylation. Histones contained within the basic repeating
unit of chromatin, a nucleosome, can be dynamically modified at
specific residues to signal for the activation or repression of tran-
scription. Several modifications have been associated with parti-
cular transcriptional regulatory outcomes, including H3K4me3
with active promoters, H3K27ac with active enhancers and pro-
moters, H3K4me1 with active and poised enhancers, H3K9me3
with heterochromatin, and H3K27me3 with Polycomb-repressed
regions5. In addition, the combined distribution of different his-
tone modifications reveals different epigenetic signals that mediate
transcriptional initiation, elongation, and splicing, as well as DNA
repair and replication, among others6.

Here we have performed a multi-factorial integrative analysis
of genome-wide chromatin immunoprecipitation-sequencing
(ChIP-seq) on multiple histone modifications, as well as RNA-
sequencing (RNA-seq) and DNA methylation studies to generate,
for the first time, new knowledge on epigenetic landscapes linked
to the heterogeneity of PDAC grown as patient-derived tumor
xenografts (PDTXs). We report that PDTXs recapitulate two
phenotypes observed in vivo, namely the classical and basal
subtypes. Multi-parametric integrative analyses of these multi-
omics datasets identify key epigenomic landscapes that are con-
gruent with disease aggressiveness and survival. Super-enhancer
mapping combined with transcription factor (TF) binding motif
and upstream regulatory analyses reveal that these tumors
populate two distinct epigenomic landscapes with classical
tumors associated with TFs involved in pancreatic development,
as well as metabolic regulators and Ras signaling, whereas the
basal phenotype tumors utilize proliferative and epithelial-to-
mesenchymal transition (EMT) transcriptional nodes down-
stream of the MET oncogene. The functional importance of these
findings is underscored by the fact that genetic inactivation of
MET results in a transition from a basal to more classical tran-
scriptomic signature. Combined, this new knowledge on the
PDAC epigenome, along with gene expression networks that it
regulates, provides valuable and biomedically relevant mechan-
istic insight into this disease, offers potential new markers for
PDAC, and informs the potential development of future ther-
apeutic regimens that may help manage patients affected by this
dismal malignancy. Therefore, these findings bear significant
mechanistic and medical importance.

Results
Distinct chromatin states underlie PDAC heterogeneity.
PDTXs have become a promising tool to generate diagnostic,
prognostic, and therapeutic approaches, particularly for indivi-
dualized medicine. Importantly, these xenografts often recapitu-
late the biology, pathobiology, and therapeutic response of the
primary counterpart, even though they do not actively reproduce
the same microenvironment7. However, an important finding of

the current study is that implantation of patient-derived tumors
into mice reproduces two molecularly distinct subtypes of pan-
creatic cancer, namely basal and classical, indicating that these
phenotypes are primarily maintained by the epithelial cell com-
ponent. We report the first known multi-factorial integrative
analysis of genome-wide ChIP-Seq for five distinct histone marks
(H3K4me1, H3K27ac, H3K4me3, H3K27me3, and H3K9me3),
DNA methylation, and RNA-seq on 24 human PDAC samples
grown as PDTXs (Supplementary Table 1). Using a multivariate
Hidden Markov Model, as built by ChromHMM8, our analysis
assigned fifteen chromatin states along with the average genome
coverage by each state (Fig. 1a–c). In agreement with the
ENCODE Roadmap project, we defined that H3K4me3 contain-
ing states are mostly found in promoter regions at the tran-
scription start site (TSS) or flanking the TSS, often combined with
the presence of H3K27ac and H3K4me1 (Fig. 1a). H3K4me3 near
the TSS was associated with highly expressed genes, as deter-
mined by RNA-seq (E1 to E4; Fig. 1d) and low DNA methylation
levels (Fig. 1c), unless present in combination with H3K27me3
(E5 and E6), which in general is a mark associated to strong
downregulation (E5, E6, E13, and E15; Fig. 1b). Overall, the
epigenetic states in PDAC correlated with clear effects on
expression of nearby genes, as defined by RNA-seq (Fig. 1b). In
addition, DNA methylation levels show specific patterns in
association with gene expression that are chromatin state-
dependent (Fig. 1c). Active promoters (E1 to E4) are, as expec-
ted, significantly hypomethylated and strong repressive states
(E12, E13, and E15) are highly methylated. However, DNA
methylation has a complex state-dependent role in gene regula-
tion as hypermethylation can be associated to over-expression
(e.g., E10 and E12) and hypomethylation to under-expression
(e.g., E5 and E6). On average, 28% of each PDAC sample’s epi-
genome was associated with silencing heterochromatin or
repressed polycomb-based modifications (E12, E13, and E15;
Fig. 1a). Approximately 57% of each epigenome had none of the
tested histone marks, which, similar to reports in most cell types9,
results in a majority of genome categorized in the so-called
quiescent state (E14). The remaining 15% of the epigenome
corresponded to promoters and enhancers, in either an active or
poised/bivalent state.

In order to characterize the impact of each of these
specific chromatin states on pancreatic carcinogenesis, we
identified cellular functions that were most frequently
associated to each of these states (Fig. 1d, Supplementary Figure 1,
and Supplementary Data 1). We found that virtually all aspects of
pancreatic cancer biology were regulated by specific combinations
of epigenetic marks and DNA methylation including the
following: proliferation and apoptotic control (RB and TP53,
other cell cycle checkpoints), major signaling pathways (ErbB,
IGF, RAS, mammalian target of rapamycin, and transforming
growth factor (TGF), among others), and cell adhesion
molecules (such as cadherins and integrins). More specifically,
we focused on the regulation of major pancreatic cancer genes
and evaluated their tight transcriptional control by epigenetic
modification (Fig. 1e). In particular, the major reprogramming
TFs, KLF4, and SOX9 (Fig. 1f and Supplementary Figure 2), as
well as the ERBB2 oncogene, were associated to marks of highly
active TSS and active enhancers, as well as notable hypomethyla-
tion. On the other hand, the hedgehog pathway appeared strongly
inhibited by the presence of extensive repressed-polycomb marks
over the promoters and gene bodies of SMO and PTCH1 (Fig. 1g
and Supplementary Figure 2). Other tumor suppressor genes,
such as WT1, SMAD4, and BRCA2, which are also silenced in all
samples, are frequently associated to polycomb-repressed (E15,
H3K27me3) or heterochromatin-like (E12, H3K9me3) states
(Fig. 1e). Key epigenetic regulators were found to be significantly
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upregulated by highly activated epigenetic states, potentially
explaining this extensive epigenetic control of cancer-related
genes. For instance, DNMT1 (DNA methyltransferase), the
repressing EZH2 (H3K27 methyltransferase), and HDAC1
(deacetylase), as well as the activating MLL2, SETD3 (both
H3K4 methyltransferases), and KAT2A (H3K acetyltransferase)
are significantly overexpressed in association with active TSS and
active enhancer chromatin in all samples (Fig. 1e).

Thus, this data indicates that the PDAC epigenome is
dynamically marked for regulation, which together likely
constitute areas that could react to extracellular signals, intrinsic
cellular clues, and potentially inheritable modifications.
The patterns of epigenetic marks on genes from major
carcinogenic pathways demonstrate the dominant role of the
epigenetic landscape on maintaining a neoplastic phenotype. As
these marks are reversible, this data suggests epigenetic drugs
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bear therapeutic potential, in particular for inhibitors of the
highly upregulated molecules, EZH2 (e.g., tazemetostat),
DNMT1 (e.g., decitabine), and HDAC1 (e.g., vorinostat and
trichostatin A).

Epigenomic landscapes differentiate clinical outcomes. Subse-
quently, we sought to identify the chromatin states that can serve
to epigenetically classify PDAC subtypes, by performing a MCA
(multiple correspondence analysis) factorial analysis10. This
method, which represents the categorical data generated by
ChromHMM as points in a low-dimensional Euclidean space,
behaves as the counterpart of the PCA (principal components
analysis) that is commonly used for continuous data, allowing us
to separate the tumors by their proximity. We found that the first
MCA component was associated to a global increase of histone
marks within regions gained in the genome, as determined by
SNP (single-nucleotide polymorphism) array analysis (Supple-
mentary Figure 3). This observation is extremely important, as it
suggests that ChIP-seq comparisons, which do not employ this
method to identify this type of epigenomic information in tumors
with a myriad of duplications and deletions, may introduce
technical bias yielding an increased probability of overestimating
or underestimating histone marks in genomic regions with vari-
able representation11. The second component was not influenced
by any of these factors, thus offering the richest unbiased infor-
mation for reliably classifying the tumors, as well as identifying
gene networks of pathobiological importance. The third MCA
component was mainly determined by one sample, which was
hereafter considered as an outlier (Supplementary Figure 3). The
outlier sample was a very differentiated tumor from a 60-year-old
woman, which, surprisingly, was wild-type for KRAS, SMAD4,
CDKN2A, and p53 alleles, and displayed expression profiles and
methylation patterns that were not characteristic of previously
described pancreatic cancer tumors, suggesting that it may have
been either clinically misclassified or represented a very rare type
of pancreatic cancer not previously described. This interpretation
further validated our classification method for the purpose of
individualized medicine, which most often deals with single rare
cases of diseases. Therefore, using the epigenomic regions asso-
ciated to the second MCA component (5412 regions), the
remaining 23 PDTXs were hierarchically clustered into two
subtypes (Fig. 2a). Transcriptome- and methylation-based unsu-
pervised analyses also supported this classification, thereby
revealing the impact of both DNA and histone-based epigenetic
components on gene expression (Fig. 2b and Supplementary
Figure 4). Control analyses of the average levels of each histone
modification in the enriched regions of the genome demonstrate
that our classifications were not influenced by differences in
overall levels of histone marks (Supplementary Figure 5). Cross-
referencing our epigenomic data with published PDAC classifi-
cations based on genomic data12, 13 clearly showed that these

subtypes of PDTXs correspond to the previously described clas-
sical and basal subtypes (Fig. 2c). These observations, plus
additional support from a previous study on PDTXs14, sub-
stantiate that these avatars retain features of human primary
tumors and validate our analytical methodologies. Notably,
although we found that the most frequent genomic alteration,
including point mutations and copy number aberrations, do not
distinguish subtypes (Supplementary Figure 6), the basal samples
were more frequently associated to advanced, unresectable PDAC
with liver metastasis (Fig. 2d). Overall, the integration of distinct
chromatin states characterized the epigenetic landscape of PDAC
to distinguish the less aggressive classical subtype from the more
aggressive basal subtype. Further support of this observation was
illustrated by the strong association of the second MCA com-
ponent with patient survival (Fig. 2e). In summary, the use of
multivariate histone-based information to develop a fifteen-state
chromatin landscape model by ChromHMM followed by an
MCA approach led to the classification of PDAC PDTXs into two
major subgroups, which correlated with clinical parameters.
Thus, this integrative method achieves better clinical value than
each of the assays used independently, but more importantly it
provides mapping of genome-wide epigenetic modifications,
which can potentially serve as candidates for phenotypic, diag-
nostic, prognostic markers, and potential pharmacological targets
from the significant growing number of epigenomic inhibitor
drugs.

Epigenomic landscapes implicate distinct pathways. To gain
biological and pathobiological mechanistic information on these
PDAC subtypes, we performed unsupervised cluster analyses of
the chromatin states defining the second MCA component
assembled into three clusters of loci with particular epigenetic
states, namely: cluster 1 mainly composed of enhancers active in
the most basal-like samples; cluster 2 consisting of enhancers
active in classical samples; and cluster 3 representing active
promoters in classical samples (Fig. 3a and Supplementary Fig-
ure 7). These three clusters of loci were associated with differ-
ential methylation patterns, specifically with hypermethylation
near enhancers in the basal samples and active promoters of
classical samples (Fig. 3b). Each of these clusters of epigenetic
landscapes was strongly associated with a corresponding change
in transcription levels of nearby genes (Fig. 3c). The transcrip-
tional activity of nearby genes was consistent with the pre-
dominant type of chromatin state in each cluster of loci, as
denoted by an overall pattern of gene upregulation near regions
of active enhancers (in basal samples for cluster 1 and classical
samples for cluster 2) or active promoters (cluster 3 with classical
samples only). Functional analysis of basal enhanced genes
(cluster 1) revealed that, consistent with the aggressiveness of
these tumors, these genes were implicated in signal transduction
pathways with strong oncogenic potential (e.g., ErbB/EGFR,

Fig. 1 Distinct chromatin states of human PDAC PDTXs. a Chromatin state definitions and histone mark probabilities as determined by ChromHMM8.
Average genome coverage. Genomic annotation enrichments for each chromatin state as calculated by ChromHMM. b Boxplots illustrate sample centered
averaged gene expression of genes within regions of particular chromatin states based on RNA-seq data. c Boxplots depict sample-averaged level of DNA
methylation for the overlapping CpGs with each chromatin state. Dotted line represents mean methylation cut-off (0.5). d Gene-set enrichment analysis
(GSEA) pathways for each chromatin state. Circle size is proportional to − log10 p-value (showing only p-value < 5%) and colors correspond to the mean
normalized expression of the genes driving the enrichment, or leading-edge genes. e Heatmap of the frequency of each state among all samples for tumor
suppressors (green labels), pro-tumorigenic genes (red labels), and epigenetic regulators (blue labels). Boxplots of gene expression and methylation level
are shown for each gene. f,g Visualization of chromatin state proportions on all samples and methylation levels across the SOX9 locus and the SMO locus.
Stacked bars represent the proportion of each chromatin state at a given genomic position. Methylation level is represented for each sample, at each
genomic position and colored by its value. For all boxplots (b,c,e), bottom and top of boxes are the first and third quartiles of the data, respectively, and
whiskers represent the lowest (respectively highest) data point still within 1.5 interquartile range of the lower (respectively upper) quartile. Center line
represents the median value
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PI3K-AKT, Hippo, and Wnt), EMT, such as the TGFβ pathway,
as well as deregulation of cell differentiation, proliferation and
apoptosis (e.g., YAP1, HEY1, MYC, and E2F7) (Fig. 3d and
Supplementary Table 2). Genes activated by epigenetic landscapes
in classical samples (clusters 2 and 3) were mainly involved in
pancreatic development (e.g., PDX1, BMP2, GATA6, SHH),
metabolic processes (e.g., HKDC1, FBP1), and Ras signaling (e.g.,
KITLG, RASA3) (Fig. 3d and Supplementary Table 2). Thus, these
results provide a better understanding of epigenetic landscapes
that regulate biological pathways differentially enriched in each
subtype of tumor, which likely explain the heterogeneity of
PDAC.

Super-enhancers reveal regulatory TF nodes for PDAC sub-
types. Additional mechanistic information was derived from
characterizing the heterogeneity in the representation of super-
enhancers in the different PDAC subtypes. Super-enhancers are
known to have a cell- and state-specific function, as well as
mediate the aberrant upregulation of cell fate determination genes
in both developing and cancer cells15. We found the majority of
super-enhancers to be specific for classical samples (250),
including a substantial number of loci (28) associated with TFs,
whereas only a few super-enhancers (30) were specific to basal
samples. To further understand the regulatory programs driving
the two phenotypes, we analyzed the upstream transcriptional
regulation of these super-enhancers (Fig. 4). We found that the
classical phenotype is likely influenced by at least 9 TFs contained
within super-enhancers (GATA6, FOS, FOXP1, FOXP4, KLF4,
ELF3, NFIX, CUX1, and SSBP3) (Fig. 4a and Supplementary
Figure 8). In addition, these super-enhancer-associated TFs
appear to exert their regulatory influence on other upregulated

TFs mostly associated with development, including TFs known to
influence pancreatic morphogenesis (e.g., HNFs, PDX1, MNX1)
and lipid metabolism (PPARs). This information suggests the
existence of a mechanism whereby enhancer-associated TFs
amplify their function through regulating other fate-determining
TFs and ultimately their target genes involved in distinct func-
tions, in particular, metabolic networks for the classical subtype
(Fig. 4a). Although no basal-specific TF was identified as an
upstream regulator, MET, the hepatocyte growth factor
(HGF) receptor, was associated with the regulation of basal-
specific super-enhancers (Fig. 4b). This finding is important since
anti-MET therapy is clinically used in other cancers16. Looking at
the gene networks downstream of MET, we found that TFs pri-
marily involved in proliferation, including MYC, MYBL1, and
E2F1, and in EMT, such as SNAI2, are the best candidates to be
key regulators of the basal phenotype.

When considering established knowledge on PDAC genetics
and now, through the current study, the epigenetic landscape of
these tumors, the data is in agreement with our previously
described model for PDAC3. This model, refined by the data
derived here, predicts that key epigenetic pathways, most likely
working as effectors of well-known genetic alterations, serve as
amplifiers and differentiating nodes to give rise to distinct PDAC
phenotypes (Fig. 5a). It is likely that, at some moment of
tumorigenesis, patient, environmental, and tumor-intrinsic fac-
tors (e.g., tumor microenvironment), or their combination push
cells through various epigenetic landscapes. The spontaneous
inter-conversion between subtype landscapes, once their pheno-
type is established, is unlikely. However, we believe that this could
potentially be achieved through the inhibition of key pathways or
processes, such as super-enhancers, which are predicted to be
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important for the acquisition of a distinct phenotype. Conse-
quently, we tested the importance of MET in the maintenance of
the basal phenotype, using small interfering RNA (siRNA)
knockdown in PDTX-derived cell lines (Fig. 5b). Congruent with
the epigenetic data, MET-inhibited samples underwent an overall
shift towards the classical phenotype (Fig. 5c), which involved the
increase of GATA6 transcriptional activity, as evidenced by
upregulation of its gene targets (Fig. 5d), and the inhibition of cell
cycle related pathways (Fig. 5e). Over-expression of apoptotic-
related genes and metabolic modifications was also caused by
manipulation of the MET pathway (Supplementary Figure 9 and
Supplementary Data 2). Thus, these results reveal that subtypes
have a potential plasticity, which can be manipulated by targeting
pathways described in this study.

Discussion
Epigenomic mechanisms are responsible for the regulation of
ontologically related gene expression networks at an appropriate
level, time, and place to give rise to both normal and diseased
phenotypes. The current study provides the most comprehensive
understanding, to date, of epigenomic landscapes underlying
PDAC heterogeneity, predicts survival, informs the molecular
pathobiology of this disease, as well as identifies epigenetically
modified regions of the genome, which can serve as potential new
markers and therapeutic targets. The integration of all datasets
provides new information as to the state of promoter, enhancer,
and super-enhancer associated transcriptional processes that are
operational in the basal and classical PDAC phenotypes. When

modeled, our data leads to the inference that genetic, environ-
mental, and tumor-intrinsic factors, such as the tumor micro-
environment, likely all converge to give rise to distinct epigenetic
landscapes during carcinogenesis. The inter-conversion between
landscapes may not occur spontaneously, thereby fixing distinct
subtypes. On the other hand, the targeting of upstream regulator
pathways of key super-enhancers (e.g., MET), provides a proof-
of-principle for the existence of phenotypic plasticity. Thus, we
envision that through the guidance of this work, some agents may
be useful for achieving this result. For instance, our results from
targeting super-enhancer-mediated mechanisms of the more
aggressive basal subtype, through MET inactivation, support the
future testing of anti-MET therapies, such as those in clinical
trials for many types of tumors16, in PDAC. Furthermore, the
data provided on both DNA methylation and histone marks
support the testing of novel therapies with many drugs against
writers, readers, and erasers that are in several phases of clinical
trials or approved for other diseases17. Thus, we speculate that, in
the future, pharmacological manipulation targeting specific
pathways described here may convert the most aggressive tumors
into a more benign or manageable counterpart in the clinic to
improve survival.

Methods
Patient-derived xenografts. Three expert clinical centers collaborated on this
project after receiving ethics review board approval. Patients were included in this
project under the Paoli-Calmettes Institute clinical trial number 2011-A01439-32.
Consent forms of informed patients were collected and registered in a central
database. The tumor tissues used for xenograft generation were deemed excess to
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that required for the patient’s diagnosis. PDAC tissue from surgical samples was
fragmented, mixed with 100 μL of Matrigel, and implanted with a trocar (10 gauge;
Innovative Research of America, Sarasota, FL) in the subcutaneous right upper
flank of an anesthetized and disinfected male NMRI (Naval Medical Research
Institute)-nude mouse. Samples obtained from EUS-FNA were mixed with 100 μL
of Matrigel (BD Biosciences, Franklin Lakes, NJ) and injected in the upper right
flank of a male nude mice (Swiss Nude Mouse Crl: NU(lco)-Foxn1nu; Charles
River Laboratories, Wilmington, MA) for the first implantation. When xenografts
reached 1 cm3, these were removed and passed to NMRI-nude mice in the same
manner as the surgical samples. All animal experiments were conducted in
accordance with institutional guidelines and were approved by the “Plateforme de
Stabulation et d’Expérimentation Animale” (PSEA, Scientific Park of Luminy,
Marseille).

DNA and RNA extraction. Nucleic acids were extracted for 24 xenograft samples
corresponding to 24 unique patients. DNA was extracted using Blood & Cell
culture DNA mini kit (Qiagen) following the manufacturer’s instructions. RNA
was extracted using RNeasy mini kit with optional on-column DNA digestion
(Qiagen).

Histone modification profiling (ChIP-seq) and analysis. Tissue (50mg) was
homogenized for 15–30 s in 500 μL of 1 × PBS using a tissue grinder. Homogenized
tissues were cross-linked to final 1% formaldehyde for 10min, followed by
quenching with 125mM glycine for 5 min at room temperature, and by washing
with tris-buffered saline (TBS). The pellets were resuspended in cell lysis buffer (10
mM Tris-HCl, pH 7.5, 10mM NaCl, 0.5% NP-40) and incubated on ice for 10 min.
The lysates were aliquoted into two tubes and washed with MNase digestion buffer
(20mM Tris-HCl, pH 7.5, 15mM NaCl, 60mM KCl, 1 mM CaCl2) once. After
resuspending in 250 μL of the MNase digestion buffer with proteinase inhibitor
cocktails for each tube, the lysates were incubated in the presence of 1000 gel units
of MNase (NEB, M0247S) per 4e6 cells at 37 °C for 20min with continuous mixing
in a thermal mixer. After adding an equal volume of sonication buffer (100mM
Tris-HCl, pH 8.1, 20mM EDTA, 200mM NaCl, 2% Triton X-100, 0.2% sodium
deoxycholate), the lysates were sonicated for 15min (30 s on; 30 s off) in a Diag-
enode bioruptor and centrifuged at 15,000 r.p.m. for 10 min. The cleared super-
natant was incubated with 2 μg of histone modification-specific antibodies overnight
at 4 °C. The following antibodies were used: anti-H3K4me1 (Abcam, ab8895, lot
114262), anti-H3K27ac, (Abcam, ab4729, lot GR150367), anti-H3K4me3 (Abcam,
ab8580, lot GR188707-1), anti-H3K27me3 (Cell Signaling Technology, 9733 s, lot
8), and anti-H3K9me3 (Diagenode, C15410056, lot A1675-001p). After adding 30
μL of protein G-agarose magnetic beads, the reactions were incubated for another 3
h. Beads were washed extensively with ChIP buffer, high-salt buffer, LiCl2 buffer,
and TE buffer. Bound chromatin was eluted and reverse-crosslinked at 65 °C
overnight. DNA was purified using the Mini-Elute PCR purification kit (Qiagen)
after treatment with RNase A and proteinase K. Enrichment was confirmed by
targeted real-time PCR in positive and negative genomic loci. For next-generation
sequencing, ChIP-seq libraries were prepared from 10 ng of ChIP, and input DNA
with the Ovation Ultralow DR Multiplex system (NuGEN). The ChIP-seq libraries
were sequenced to 51 base pairs from both ends using the Illumina HiSeq 2000 in
the Mayo Clinic Medical Genomics Core. Data were analyzed using the HiChIP
pipeline18. Briefly, paired-end reads were mapped by BWA19 and pairs with one or
both ends uniquely mapped were retained. H3K4me3, H3K4me1, and H3K27ac
peaks were called using the MACS2 software package20 at false discovery rate
(FDR) ≤ 1%. SICER21 was used to identify enriched domains for H3K27me3 and
H3K9me3. For data visualization, BEDTools22 in combination with in-house scripts
were used to generate normalized tag density profile at a window size of 200 bp and
step size of 20 bp. We also visualized the average profile around TSS for H3K4me1,
H3K4me3, H3K9me3, H3K27ac, and H3K27me3 across all samples. The tags were
normalized to tags-per-million with a flanking region of 10 kb around the TSS. The
data was plotted with a Y-axis as the normalized log2 fold change of IP over control
and the X axis as the bins across the given region of interest. Unsupervised clus-
tering was performed by selecting the top 20,000 merged peak regions with highest
variance to generate the clusters for individual histone modifications.

DNA methylation profiling and analysis. Whole-genome DNA methylation was
analyzed using the Illumina Infinium MethylationEPIC Beadchip. Integragen SA
(Evry, France) carried out microarray experiments and hybridized to the BeadChip
arrays following the manufacturer’s instructions. Illumina GenomeStudio software
was used to extract the probe DNA methylation intensity signal values for each
locus. Data were then preprocessed following recommendations from the
Dedeurwaerder et al23. Data were removed from probes that were not detected or
saturated and that contained SNPs or overlapped with a repetitive element that was
not uniquely aligned to the human genome or regions of insertions and deletions in
the human genome. Data were then adjusted for color balance bias and normalized
between samples using the SSN (shift and scaling normalization) method using the
lumi package functions. The CpG Island Methylator Phenotype (CIMP) index was
estimated by adapting the approach by Toyota et al.24. In brief, CpG islands found
to be unmethylated ( < 20% β-value) in all 25 normal pancreatic samples from the
ICGC consortium were selected. The CIMP index was calculated independently for

each sample as the proportion of methylated ( > 30% β-value) CpGs among the
selected normally unmethylated island CpG.

mRNA profiling (RNA-seq) and analysis. RNA libraries were prepared (Illumina
TruSeq RNA v2) and run on the Illumina High Seq-2000 for 101 bp paired end
reads in the Mayo Clinic Medical Genomics Core. Gene expression profiles were
obtained using the MAP-RSeq v.1.2.1 workflow25, the Mayo Bioinformatics Core
pipeline. MAP-RSeq consists of alignment with TopHat 2.0.626 against the human
hg19 genome build and gene counts with the HTSeq software 0.5.3p9 (http://www.
huber.embl.de/users/anders/HTSeq/doc/overview.html) using gene annotation files
obtained from Illumina (http://cufflinks.cbcb.umd.edu/igenomes.html). RNA-seq
reads were also mapped using STAR27 with the proposed ENCODE parameters
and XENOME28 on the human hg19 and mouse mm10 genomes and transcript
annotation (Ensembl 75). Gene counts were normalized using reads per kilobase
per million mapped reads (RPKMs).

Public dataset comparison. ICGC Methylation chips, RNAse, and microarray
gene expression datasets were downloaded from the ICGC data portal (dcc.icgc.org,
release 20). Other datasets were downloaded from the provided Gene Expression
Omnibus entry (Moffitt et al. GSE7172913 and Collisson et al.12 GSE17891). All
non-cancer samples were removed from each dataset. Expression datasets were
then centered gene-wise. Centroid classifiers were built for each dataset describing
a classification using an approach described in previous works29, 30. Briefly, after
gene-wise centering, the 1000 most differentially expressed genes (limma) or dif-
ferentially methylated CpG (Student’s t-test), were used to build centroids of each
subtype. Gene expression profiles of samples to test were correlated (Pearson’s
correlation) to all the centroids of a classification system and the closest centroid
class (highest correlation coefficient) was assigned. When specified, indeterminate
samples correspond to samples that did not significantly correlated to any centroid.

SNP arrays analysis. Illumina Infinium HumanCode-24 BeadChip SNP arrays
were used to analyze the DNA samples. Integragen SA (Evry, France) carried out
hybridization, according to the manufacturer’s recommendations. The BeadStudio
software (Illumina) was used to normalize raw fluorescent signals and to obtain log
R ratio (LRR) and B allele frequency (BAF) values. Asymmetry in BAF signals due
to bias between the two dyes used in Illumina assays was corrected using the tQN
normalization procedure31. We used the circular binary segmentation algorithm32

to segment genomic profiles and assign corresponding smoothed values of LRR
and BAF. The Genome Alteration Print method was used to determine the ploidy
of each sample, the level of contamination with normal cells, and the allele-specific
copy number of each segment33.

Unsupervised clustering. Features on sexual chromosomes were removed for
subsequent analysis. One sample outlier identified by MCA analysis was removed
for clustering. Unsupervised clustering analysis was carried out on: gene expression
(RNA-seq, 23 samples), CpG methylation (MethEpic, 23 samples), and H3K4me3,
H3K4me1, H3K27ac, H3K9me3, and H3K27me3 (ChIP-seq, 23 samples). For
histone marks, ChIP-seq data were filtered as follows: − log10(FDR) > 10 and
number of samples that share the peak > 3. For sequence or ChIP-based data, an
extension of the ConsensusClusterPlus algorithm was used34. In brief, using all
paired combination of Pearson’s distance and different linkage metrics (Ward,
complete and average), hierarchical clustering is bootstrapped in 1000 iterations of
resampling of the most variant features. An additional level of iteration adjusts the
threshold of feature variability. The consensus is given by a final hierarchical
clustering using the complete linkage and the number of co-classification as sample
distance. For Methylation chips, the SD was used as a measure of variability and 10
thresholds between 1% and 10% were used for each iteration of Consensu-
sClusterPlus. To consider the specificity of the mean-variance relationship in count
data, a combination of mean and SD of the log-counts (minimum rank of both)
was used to select between 1% and 50% of the features with the highest counts and
variance in RNA-seq and ChIP-seq data. Chromatin state-based clustering was
performed on the 5412 regions that were associated to the second MCA compo-
nents using a binary distance and Ward linkage metrics. Clustering of chromatin
states regions was performed using hierarchical clustering and the number of
clusters was determined using the cutreeDynamic function (dynamicTreeCut R
package35) with a minimum size module of 500 features.

ChromHMM. ChromHMM8 was used to perform hidden Markov modeling on the
five histone marks and, by default, chromatin states were analyzed at 200 bp
intervals and a fold threshold of 10. The tool was used to learn consensus models
from virtually concatenated aligned bam files from all the samples. Control data
were used in the model to help reduce copy number variation and repeat associate
artifacts in the ChIP-seq samples. Multiple state models were visualized to capture
all the key chromatin states. A 15-state model was selected and applied on all
samples to obtain overlap and enrichment for each state. Enrichment of each state
was calculated across genomic regions of interest and visualized as heatmaps for
genomic regulatory regions of interest. The states were then given functional
annotation based on these enrichment patterns.
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MCA analysis. ChromHMM output files were concatenated using the unionbed
function from BEDTools22. Chromatin states (4,810,649 regions) were filtered so
that the 2 main representative states per region were present in at least 30% of
samples, and that the quiescent states (E14) was not the main representative state
per region. Sex chromosomes were removed for the rest of the analysis. An MCA
analysis10 was performed on the filtered chromatin states matrix (665,328 regions)
using FactoMineR36. As in PCA, the MCA decomposes the variance into a com-
ponent of a set of new orthogonal variables (dimensions) ordered by the amount of
variance that each component explains. For a given dimension, the most con-
tributing regions were selected as those having a significant association (Anova test,
ɑ 5%) and having a determination coefficient above 0.6 (dimdesc function from
FactoMineR).

Functional analysis. In order to retrieve the pathways affected by a particular
chromatin state, a gene-set enrichment analysis (GSEA) approach was per-
formed for each chromatin state, using the fgsea R package37, which implements
GSEA on a pre-ranked genelist and MsigDB signaling database38. Gene score used
in fgsea was the frequency among all samples of the presence of a particular
chromatin state within − 20 kb from TSS+ 1 kb from TSE of the gene. Leading
edges correspond to genes that drive the enrichment as given by fgsea.

For the regions contributing the most to the second MCA dimension (5412
regions selected as described in the previous paragraph), we retrieved nearby CpGs
and genes. Nearby CpGs were determined using the findOverlaps function from
the IRanges packages39 and with a location < 1 kb upstream from regions. Nearby
genes were retrieved using rGreat40 (basal plus extension; proximal 5 kb upstream
1 kb downstream, plus distal: up to 20 kb for Active TSS regions and 100 kb for
active enhancer regions). Pearson’s correlation (ɑ 5%) with the MCA component
coordinates was used to select associated genes and CpGs. We performed
functional enrichment analysis on the genes corresponding to each region clusters
using the Enrichr software41.

TF and super-enhancer analysis. ROSE42, 43 was employed to identify super-
enhancers based on their density and length of the stitched regions. A peak
stitching distance of 12,500 bp was used and the regions around TSS 2500 bp were
excluded, while identifying super-enhancers in each sample. The signal and ranks
are normalized from 0 to 1 and sorted by their score and plotted. All stitched
regions above the inflection point were considered as super-enhancers for further
analysis. BAM tracks were visualized using the gviz R package44. Significant TFs
were identified by gene-target enrichment analysis using the ChEA database
(Fisher exact test on the basal-classical component associated genes)45 or by motif
enrichment on the basal-classical component associated regions using PWMEnrich
R package. TFs, for which expression was negatively or positively correlated to the
basal-classical component, were regarded as classical or basal TFs, respectively.
Cytoscape46 was used for network visualization and the ClueGO app47 was applied
to target genes for clustered enriched pathway network representation.

Met siRNA transfection, RNA-seq, and qPCR validations. Cells (3e5) were
plated in six-well plates and 24 h later transfected with a pool of 4 MET siRNAs
(ON-TARGETplus siRNA Reagents, Dharmacon), using INTERFERin reagent
(Polyplus-transfection) according to the manufacturer’s protocol. A scrambled
siRNA pool was used as the negative control. After 72 h, cells were lysed, and RNA
extracted with RNeasy Mini Kit (Qiagen). The sequences of Met-specific siRNAs
were as follows: Met1: 5′AACUGGUGUCCCGGAUAU-3′; Met2: 5′-GAA-
CAGCGAGCUAAAUAUA-3′; Met3: 5′-GAGCCAGCCUGAAUGAUGA-3′; and
Met4: 5′-GUAAGUGCCCGAAGUGUAA-3′. RNA libraries were prepared (Illu-
mina TruSeq RNA v2) and run on the Illumina High Seq-2500 for 125 bp paired
end reads in the Genomic Sciences and Precision Medicine Center, Medical College
of Wisconsin. Gene counts were normalized using RPKM. Student’s t-tests were
performed to test for differentially expressed genes (list is given in Supplementary
Table 3) between the siMET basal and scramble basal samples. Fgsea enrichment
tests were performed based on Pvalues of the differential analysis of basal siMET
vs. basal control samples, and by using MsigDB database and the described open
resource48. For qPCR, total RNA (1 μg) was used as a template for cDNA synthesis,
using the GoScript™ reverse transcription kit (Promega). GoTaq® qPCR 2 ×Master
Mix (Promega) was used with the following reaction conditions: denaturation at
95 °C for 2 min; 40 cycles of 15 s at 95 °C, 45 s at 60 °C. Reactions were carried out
using the AriaMx real‐time PCR system and analyzed using the AriaMx software
v1.1 (Agilent Technologies, Santa Clara, CA, USA). Primer lists for each transcript
are provided in Supplementary Table 4.

Data availability. ChIP-seq, DNA methylation, RNA-seq, and SNP datasets that
support the findings of this study have been deposited at ArrayExpress (http://
www.ebi.ac.uk/arrayexpress) under accession codes E-MTAB-5632, E-MTAB-
5571, E-MTAB-5639, and E-MTAB-5570, respectively.
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